preprocessor/BlockTriangular.hh

155 lines
6.2 KiB
C++

/*
* Copyright (C) 2007-2008 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _BLOCKTRIANGULAR_HH
#define _BLOCKTRIANGULAR_HH
#include <string>
#include "CodeInterpreter.hh"
#include "ExprNode.hh"
#include "SymbolTable.hh"
//#include "ModelNormalization.hh"
//#include "ModelBlocks.hh"
#include "IncidenceMatrix.hh"
#include "ModelTree.hh"
//! Sparse matrix of double to store the values of the Jacobian
typedef map<pair<int ,int >,double> jacob_map;
typedef vector<pair<BlockSimulationType, pair<int, int> > > t_type;
//! Vector describing equations: BlockSimulationType, if BlockSimulationType == EVALUATE_s then a NodeID on the new normalized equation
typedef vector<pair<EquationType, NodeID > > t_etype;
//! Vector describing variables: max_lag in the block, max_lead in the block
typedef vector<pair< int, int> > t_vtype;
//! Creates the incidence matrix, computes prologue & epilogue, normalizes the model and computes the block decomposition
class BlockTriangular
{
private:
//! Find equations and endogenous variables belonging to the prologue and epilogue of the model
void Prologue_Epilogue(bool* IM, int &prologue, int &epilogue, int n, vector<int> &Index_Var_IM, vector<int> &Index_Equ_IM, bool* IM0);
//! Allocates and fills the Model structure describing the content of each block
void Allocate_Block(int size, int *count_Equ, int count_Block, BlockType type, BlockSimulationType SimType, Model_Block * ModelBlock, t_etype &Equation_Type, int recurs_Size);
//! Finds a matching between equations and endogenous variables
bool Compute_Normalization(bool *IM, int equation_number, int prologue, int epilogue, bool verbose, bool *IM0, vector<int> &Index_Var_IM) const;
//! Decomposes into recurive blocks the non purely recursive equations and determines for each block the minimum feedback variables
void Compute_Block_Decomposition_and_Feedback_Variables_For_Each_Block(bool *IM, int nb_var, int prologue, int epilogue, vector<int> &Index_Equ_IM, vector<int> &Index_Var_IM, vector<pair<int, int> > &blocks, t_etype &Equation_Type, bool verbose_) const;
//! determines the type of each equation of the model (could be evaluated or need to be solved)
t_etype Equation_Type_determination(vector<BinaryOpNode *> &equations, map<pair<int, pair<int, int> >, NodeID> &first_order_endo_derivatives, vector<int> &Index_Var_IM, vector<int> &Index_Equ_IM);
//! Tries to merge the consecutive blocks in a single block and determine the type of each block: recursive, simultaneous, ...
t_type Reduce_Blocks_and_type_determination(int prologue, int epilogue, vector<pair<int, int> > &blocks, vector<BinaryOpNode *> &equations, t_etype &Equation_Type);
//! Compute for each variable its maximum lead and lag in its block
t_vtype Get_Variable_LeadLag_By_Block(vector<int > &components_set, int nb_blck_sim, int prologue, int epilogue) const;
public:
SymbolTable &symbol_table;
/*Blocks blocks;
Normalization normalization;*/
IncidenceMatrix incidencematrix;
NumericalConstants &num_const;
DataTree *Normalized_Equation;
BlockTriangular(SymbolTable &symbol_table_arg, NumericalConstants &num_const_arg);
~BlockTriangular();
//! Frees the Model structure describing the content of each block
void Free_Block(Model_Block* ModelBlock) const;
void Normalize_and_BlockDecompose_Static_0_Model(jacob_map &j_m, vector<BinaryOpNode *> &equations, t_etype &V_Equation_Type, map<pair<int, pair<int, int> >, NodeID> &first_order_endo_derivatives);
void Normalize_and_BlockDecompose(bool* IM, Model_Block* ModelBlock, int n, int &prologue, int &epilogue, vector<int> &Index_Var_IM, vector<int> &Index_Equ_IM, bool* IM_0 , jacob_map &j_m, vector<BinaryOpNode *> &equations, t_etype &equation_simulation_type, map<pair<int, pair<int, int> >, NodeID> &first_order_endo_derivatives);
vector<int> Index_Equ_IM;
vector<int> Index_Var_IM;
int prologue, epilogue;
bool bt_verbose;
Model_Block* ModelBlock;
int periods;
inline static std::string BlockType0(int type)
{
switch (type)
{
case 0:
return ("SIMULTANEOUS TIME SEPARABLE ");
break;
case 1:
return ("PROLOGUE ");
break;
case 2:
return ("EPILOGUE ");
break;
case 3:
return ("SIMULTANEOUS TIME UNSEPARABLE");
break;
default:
return ("UNKNOWN ");
break;
}
};
inline static std::string BlockSim(int type)
{
switch (type)
{
case EVALUATE_FORWARD:
//case EVALUATE_FORWARD_R:
return ("EVALUATE FORWARD ");
break;
case EVALUATE_BACKWARD:
//case EVALUATE_BACKWARD_R:
return ("EVALUATE BACKWARD ");
break;
case SOLVE_FORWARD_SIMPLE:
return ("SOLVE FORWARD SIMPLE ");
break;
case SOLVE_BACKWARD_SIMPLE:
return ("SOLVE BACKWARD SIMPLE ");
break;
case SOLVE_TWO_BOUNDARIES_SIMPLE:
return ("SOLVE TWO BOUNDARIES SIMPLE ");
break;
case SOLVE_FORWARD_COMPLETE:
return ("SOLVE FORWARD COMPLETE ");
break;
case SOLVE_BACKWARD_COMPLETE:
return ("SOLVE BACKWARD COMPLETE ");
break;
case SOLVE_TWO_BOUNDARIES_COMPLETE:
return ("SOLVE TWO BOUNDARIES COMPLETE");
break;
default:
return ("UNKNOWN ");
break;
}
};
inline static std::string c_Equation_Type(int type)
{
char c_Equation_Type[5][13]=
{
"E_UNKNOWN ",
"E_EVALUATE ",
//"E_EVALUATE_R",
"E_EVALUATE_S",
"E_SOLVE "
};
return(c_Equation_Type[type]);
};
};
#endif