/* * Copyright (C) 2007-2008 Dynare Team * * This file is part of Dynare. * * Dynare is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Dynare is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Dynare. If not, see . */ #ifndef _BLOCKTRIANGULAR_HH #define _BLOCKTRIANGULAR_HH #include #include "CodeInterpreter.hh" #include "ExprNode.hh" #include "SymbolTable.hh" //#include "ModelNormalization.hh" //#include "ModelBlocks.hh" #include "IncidenceMatrix.hh" #include "ModelTree.hh" //! Sparse matrix of double to store the values of the Jacobian typedef map,double> jacob_map; typedef vector > > t_type; //! Vector describing equations: BlockSimulationType, if BlockSimulationType == EVALUATE_s then a NodeID on the new normalized equation typedef vector > t_etype; //! Vector describing variables: max_lag in the block, max_lead in the block typedef vector > t_vtype; //! Creates the incidence matrix, computes prologue & epilogue, normalizes the model and computes the block decomposition class BlockTriangular { private: //! Find equations and endogenous variables belonging to the prologue and epilogue of the model void Prologue_Epilogue(bool* IM, int &prologue, int &epilogue, int n, vector &Index_Var_IM, vector &Index_Equ_IM, bool* IM0); //! Allocates and fills the Model structure describing the content of each block void Allocate_Block(int size, int *count_Equ, int count_Block, BlockType type, BlockSimulationType SimType, Model_Block * ModelBlock, t_etype &Equation_Type, int recurs_Size); //! Finds a matching between equations and endogenous variables bool Compute_Normalization(bool *IM, int equation_number, int prologue, int epilogue, bool verbose, bool *IM0, vector &Index_Var_IM) const; //! Decomposes into recurive blocks the non purely recursive equations and determines for each block the minimum feedback variables void Compute_Block_Decomposition_and_Feedback_Variables_For_Each_Block(bool *IM, int nb_var, int prologue, int epilogue, vector &Index_Equ_IM, vector &Index_Var_IM, vector > &blocks, t_etype &Equation_Type, bool verbose_) const; //! determines the type of each equation of the model (could be evaluated or need to be solved) t_etype Equation_Type_determination(vector &equations, map >, NodeID> &first_order_endo_derivatives, vector &Index_Var_IM, vector &Index_Equ_IM); //! Tries to merge the consecutive blocks in a single block and determine the type of each block: recursive, simultaneous, ... t_type Reduce_Blocks_and_type_determination(int prologue, int epilogue, vector > &blocks, vector &equations, t_etype &Equation_Type); //! Compute for each variable its maximum lead and lag in its block t_vtype Get_Variable_LeadLag_By_Block(vector &components_set, int nb_blck_sim, int prologue, int epilogue) const; public: SymbolTable &symbol_table; /*Blocks blocks; Normalization normalization;*/ IncidenceMatrix incidencematrix; NumericalConstants &num_const; DataTree *Normalized_Equation; BlockTriangular(SymbolTable &symbol_table_arg, NumericalConstants &num_const_arg); ~BlockTriangular(); //! Frees the Model structure describing the content of each block void Free_Block(Model_Block* ModelBlock) const; void Normalize_and_BlockDecompose_Static_0_Model(jacob_map &j_m, vector &equations, t_etype &V_Equation_Type, map >, NodeID> &first_order_endo_derivatives); void Normalize_and_BlockDecompose(bool* IM, Model_Block* ModelBlock, int n, int &prologue, int &epilogue, vector &Index_Var_IM, vector &Index_Equ_IM, bool* IM_0 , jacob_map &j_m, vector &equations, t_etype &equation_simulation_type, map >, NodeID> &first_order_endo_derivatives); vector Index_Equ_IM; vector Index_Var_IM; int prologue, epilogue; bool bt_verbose; Model_Block* ModelBlock; int periods; inline static std::string BlockType0(int type) { switch (type) { case 0: return ("SIMULTANEOUS TIME SEPARABLE "); break; case 1: return ("PROLOGUE "); break; case 2: return ("EPILOGUE "); break; case 3: return ("SIMULTANEOUS TIME UNSEPARABLE"); break; default: return ("UNKNOWN "); break; } }; inline static std::string BlockSim(int type) { switch (type) { case EVALUATE_FORWARD: //case EVALUATE_FORWARD_R: return ("EVALUATE FORWARD "); break; case EVALUATE_BACKWARD: //case EVALUATE_BACKWARD_R: return ("EVALUATE BACKWARD "); break; case SOLVE_FORWARD_SIMPLE: return ("SOLVE FORWARD SIMPLE "); break; case SOLVE_BACKWARD_SIMPLE: return ("SOLVE BACKWARD SIMPLE "); break; case SOLVE_TWO_BOUNDARIES_SIMPLE: return ("SOLVE TWO BOUNDARIES SIMPLE "); break; case SOLVE_FORWARD_COMPLETE: return ("SOLVE FORWARD COMPLETE "); break; case SOLVE_BACKWARD_COMPLETE: return ("SOLVE BACKWARD COMPLETE "); break; case SOLVE_TWO_BOUNDARIES_COMPLETE: return ("SOLVE TWO BOUNDARIES COMPLETE"); break; default: return ("UNKNOWN "); break; } }; inline static std::string c_Equation_Type(int type) { char c_Equation_Type[5][13]= { "E_UNKNOWN ", "E_EVALUATE ", //"E_EVALUATE_R", "E_EVALUATE_S", "E_SOLVE " }; return(c_Equation_Type[type]); }; }; #endif