preprocessor/src/Shocks.cc

810 lines
28 KiB
C++

/*
* Copyright © 2003-2021 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <https://www.gnu.org/licenses/>.
*/
#include <cassert>
#include <cstdlib>
#include <iostream>
#include <utility>
#include "Shocks.hh"
AbstractShocksStatement::AbstractShocksStatement(bool mshocks_arg,
bool overwrite_arg,
det_shocks_t det_shocks_arg,
const SymbolTable &symbol_table_arg) :
mshocks{mshocks_arg},
overwrite{overwrite_arg},
det_shocks{move(det_shocks_arg)},
symbol_table{symbol_table_arg}
{
}
void
AbstractShocksStatement::writeDetShocks(ostream &output) const
{
int exo_det_length = 0;
for (const auto & [id, shock_vec] : det_shocks)
{
bool exo_det = (symbol_table.getType(id) == SymbolType::exogenousDet);
for (const auto &it : shock_vec)
{
int period1 = it.period1;
int period2 = it.period2;
expr_t value = it.value;
output << "M_.det_shocks = [ M_.det_shocks;" << endl
<< "struct('exo_det'," << static_cast<int>(exo_det)
<< ",'exo_id'," << symbol_table.getTypeSpecificID(id)+1
<< ",'multiplicative'," << static_cast<int>(mshocks)
<< ",'periods'," << period1 << ":" << period2
<< ",'value',";
value->writeOutput(output);
output << ") ];" << endl;
if (exo_det && period2 > exo_det_length)
exo_det_length = period2;
}
}
output << "M_.exo_det_length = " << exo_det_length << ";\n";
}
void
AbstractShocksStatement::writeJsonDetShocks(ostream &output) const
{
output << R"("deterministic_shocks": [)";
for (auto it = det_shocks.begin(); it != det_shocks.end(); ++it)
{
if (it != det_shocks.begin())
output << ", ";
output << R"({"var": ")" << symbol_table.getName(it->first) << R"(", )"
<< R"("values": [)";
for (auto it1 = it->second.begin(); it1 != it->second.end(); ++it1)
{
if (it1 != it->second.begin())
output << ", ";
output << R"({"period1": )" << it1->period1 << ", "
<< R"("period2": )" << it1->period2 << ", "
<< R"("value": ")";
it1->value->writeJsonOutput(output, {}, {});
output << R"("})";
}
output << "]}";
}
output << "]";
}
ShocksStatement::ShocksStatement(bool overwrite_arg,
const det_shocks_t &det_shocks_arg,
var_and_std_shocks_t var_shocks_arg,
var_and_std_shocks_t std_shocks_arg,
covar_and_corr_shocks_t covar_shocks_arg,
covar_and_corr_shocks_t corr_shocks_arg,
const SymbolTable &symbol_table_arg) :
AbstractShocksStatement{false, overwrite_arg, det_shocks_arg, symbol_table_arg},
var_shocks{move(var_shocks_arg)},
std_shocks{move(std_shocks_arg)},
covar_shocks{move(covar_shocks_arg)},
corr_shocks{move(corr_shocks_arg)}
{
}
void
ShocksStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
output << "%" << endl
<< "% SHOCKS instructions" << endl
<< "%" << endl;
if (overwrite)
{
output << "M_.det_shocks = [];" << endl;
output << "M_.Sigma_e = zeros(" << symbol_table.exo_nbr() << ", "
<< symbol_table.exo_nbr() << ");" << endl
<< "M_.Correlation_matrix = eye(" << symbol_table.exo_nbr() << ", "
<< symbol_table.exo_nbr() << ");" << endl;
if (has_calibrated_measurement_errors())
output << "M_.H = zeros(" << symbol_table.observedVariablesNbr() << ", "
<< symbol_table.observedVariablesNbr() << ");" << endl
<< "M_.Correlation_matrix_ME = eye(" << symbol_table.observedVariablesNbr() << ", "
<< symbol_table.observedVariablesNbr() << ");" << endl;
else
output << "M_.H = 0;" << endl
<< "M_.Correlation_matrix_ME = 1;" << endl;
}
writeDetShocks(output);
writeVarAndStdShocks(output);
writeCovarAndCorrShocks(output);
/* M_.sigma_e_is_diagonal is initialized to 1 by ModFile.cc.
If there are no off-diagonal elements, and we are not in overwrite mode,
then we don't reset it to 1, since there might be previous shocks blocks
with off-diagonal elements. */
if (covar_shocks.size()+corr_shocks.size() > 0)
output << "M_.sigma_e_is_diagonal = 0;" << endl;
else if (overwrite)
output << "M_.sigma_e_is_diagonal = 1;" << endl;
}
void
ShocksStatement::writeJsonOutput(ostream &output) const
{
output << R"({"statementName": "shocks")"
<< R"(, "overwrite": )" << (overwrite ? "true" : "false");
if (!det_shocks.empty())
{
output << ", ";
writeJsonDetShocks(output);
}
output<< R"(, "variance": [)";
for (auto it = var_shocks.begin(); it != var_shocks.end(); ++it)
{
if (it != var_shocks.begin())
output << ", ";
output << R"({"name": ")" << symbol_table.getName(it->first) << R"(", )"
<< R"("variance": ")";
it->second->writeJsonOutput(output, {}, {});
output << R"("})";
}
output << "]"
<< R"(, "stderr": [)";
for (auto it = std_shocks.begin(); it != std_shocks.end(); it++)
{
if (it != std_shocks.begin())
output << ", ";
output << R"({"name": ")" << symbol_table.getName(it->first) << R"(", )"
<< R"("stderr": ")";
it->second->writeJsonOutput(output, {}, {});
output << R"("})";
}
output << "]"
<< R"(, "covariance": [)";
for (auto it = covar_shocks.begin(); it != covar_shocks.end(); ++it)
{
if (it != covar_shocks.begin())
output << ", ";
output << "{"
<< R"("name": ")" << symbol_table.getName(it->first.first) << R"(", )"
<< R"("name2": ")" << symbol_table.getName(it->first.second) << R"(", )"
<< R"("covariance": ")";
it->second->writeJsonOutput(output, {}, {});
output << R"("})";
}
output << "]"
<< R"(, "correlation": [)";
for (auto it = corr_shocks.begin(); it != corr_shocks.end(); ++it)
{
if (it != corr_shocks.begin())
output << ", ";
output << "{"
<< R"("name": ")" << symbol_table.getName(it->first.first) << R"(", )"
<< R"("name2": ")" << symbol_table.getName(it->first.second) << R"(", )"
<< R"("correlation": ")";
it->second->writeJsonOutput(output, {}, {});
output << R"("})";
}
output << "]"
<< "}";
}
void
ShocksStatement::writeVarOrStdShock(ostream &output, var_and_std_shocks_t::const_iterator &it,
bool stddev) const
{
SymbolType type = symbol_table.getType(it->first);
assert(type == SymbolType::exogenous || symbol_table.isObservedVariable(it->first));
int id;
if (type == SymbolType::exogenous)
{
output << "M_.Sigma_e(";
id = symbol_table.getTypeSpecificID(it->first) + 1;
}
else
{
output << "M_.H(";
id = symbol_table.getObservedVariableIndex(it->first) + 1;
}
output << id << ", " << id << ") = ";
if (stddev)
output << "(";
it->second->writeOutput(output);
if (stddev)
output << ")^2";
output << ";" << endl;
}
void
ShocksStatement::writeVarAndStdShocks(ostream &output) const
{
for (auto it = var_shocks.begin(); it != var_shocks.end(); ++it)
writeVarOrStdShock(output, it, false);
for (auto it = std_shocks.begin(); it != std_shocks.end(); ++it)
writeVarOrStdShock(output, it, true);
}
void
ShocksStatement::writeCovarOrCorrShock(ostream &output, covar_and_corr_shocks_t::const_iterator &it,
bool corr) const
{
SymbolType type1 = symbol_table.getType(it->first.first);
SymbolType type2 = symbol_table.getType(it->first.second);
assert((type1 == SymbolType::exogenous && type2 == SymbolType::exogenous)
|| (symbol_table.isObservedVariable(it->first.first) && symbol_table.isObservedVariable(it->first.second)));
string matrix, corr_matrix;
int id1, id2;
if (type1 == SymbolType::exogenous)
{
matrix = "M_.Sigma_e";
corr_matrix = "M_.Correlation_matrix";
id1 = symbol_table.getTypeSpecificID(it->first.first) + 1;
id2 = symbol_table.getTypeSpecificID(it->first.second) + 1;
}
else
{
matrix = "M_.H";
corr_matrix = "M_.Correlation_matrix_ME";
id1 = symbol_table.getObservedVariableIndex(it->first.first) + 1;
id2 = symbol_table.getObservedVariableIndex(it->first.second) + 1;
}
output << matrix << "(" << id1 << ", " << id2 << ") = ";
it->second->writeOutput(output);
if (corr)
output << "*sqrt(" << matrix << "(" << id1 << ", " << id1 << ")*"
<< matrix << "(" << id2 << ", " << id2 << "))";
output << ";" << endl
<< matrix << "(" << id2 << ", " << id1 << ") = "
<< matrix << "(" << id1 << ", " << id2 << ");" << endl;
if (corr)
{
output << corr_matrix << "(" << id1 << ", " << id2 << ") = ";
it->second->writeOutput(output);
output << ";" << endl
<< corr_matrix << "(" << id2 << ", " << id1 << ") = "
<< corr_matrix << "(" << id1 << ", " << id2 << ");" << endl;
}
}
void
ShocksStatement::writeCovarAndCorrShocks(ostream &output) const
{
for (auto it = covar_shocks.begin(); it != covar_shocks.end(); ++it)
writeCovarOrCorrShock(output, it, false);
for (auto it = corr_shocks.begin(); it != corr_shocks.end(); ++it)
writeCovarOrCorrShock(output, it, true);
}
void
ShocksStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
/* Error out if variables are not of the right type. This must be done here
and not at parsing time (see #448).
Also Determine if there is a calibrated measurement error */
for (auto [id, val] : var_shocks)
{
if (symbol_table.getType(id) != SymbolType::exogenous
&& !symbol_table.isObservedVariable(id))
{
cerr << "shocks: setting a variance on '"
<< symbol_table.getName(id) << "' is not allowed, because it is neither an exogenous variable nor an observed endogenous variable" << endl;
exit(EXIT_FAILURE);
}
}
for (auto [id, val] : std_shocks)
{
if (symbol_table.getType(id) != SymbolType::exogenous
&& !symbol_table.isObservedVariable(id))
{
cerr << "shocks: setting a standard error on '"
<< symbol_table.getName(id) << "' is not allowed, because it is neither an exogenous variable nor an observed endogenous variable" << endl;
exit(EXIT_FAILURE);
}
}
for (const auto & [ids, val] : covar_shocks)
{
int symb_id1 = ids.first, symb_id2 = ids.second;
if (!((symbol_table.getType(symb_id1) == SymbolType::exogenous
&& symbol_table.getType(symb_id2) == SymbolType::exogenous)
|| (symbol_table.isObservedVariable(symb_id1)
&& symbol_table.isObservedVariable(symb_id2))))
{
cerr << "shocks: setting a covariance between '"
<< symbol_table.getName(symb_id1) << "' and '"
<< symbol_table.getName(symb_id2) << "'is not allowed; covariances can only be specified for exogenous or observed endogenous variables of same type" << endl;
exit(EXIT_FAILURE);
}
}
for (const auto & [ids, val] : corr_shocks)
{
int symb_id1 = ids.first, symb_id2 = ids.second;
if (!((symbol_table.getType(symb_id1) == SymbolType::exogenous
&& symbol_table.getType(symb_id2) == SymbolType::exogenous)
|| (symbol_table.isObservedVariable(symb_id1)
&& symbol_table.isObservedVariable(symb_id2))))
{
cerr << "shocks: setting a correlation between '"
<< symbol_table.getName(symb_id1) << "' and '"
<< symbol_table.getName(symb_id2) << "'is not allowed; correlations can only be specified for exogenous or observed endogenous variables of same type" << endl;
exit(EXIT_FAILURE);
}
}
// Determine if there is a calibrated measurement error
mod_file_struct.calibrated_measurement_errors |= has_calibrated_measurement_errors();
// Fill in mod_file_struct.parameters_with_shocks_values (related to #469)
for (auto [id, val] : var_shocks)
val->collectVariables(SymbolType::parameter, mod_file_struct.parameters_within_shocks_values);
for (auto [id, val] : std_shocks)
val->collectVariables(SymbolType::parameter, mod_file_struct.parameters_within_shocks_values);
for (const auto &[ids, val] : covar_shocks)
val->collectVariables(SymbolType::parameter, mod_file_struct.parameters_within_shocks_values);
for (const auto &[ids, val] : corr_shocks)
val->collectVariables(SymbolType::parameter, mod_file_struct.parameters_within_shocks_values);
}
bool
ShocksStatement::has_calibrated_measurement_errors() const
{
for (auto [id, val] : var_shocks)
if (symbol_table.isObservedVariable(id))
return true;
for (auto [id, val] : std_shocks)
if (symbol_table.isObservedVariable(id))
return true;
for (const auto & [ids, val] : covar_shocks)
if (symbol_table.isObservedVariable(ids.first)
|| symbol_table.isObservedVariable(ids.second))
return true;
for (const auto & [ids, val] : corr_shocks)
if (symbol_table.isObservedVariable(ids.first)
|| symbol_table.isObservedVariable(ids.second))
return true;
return false;
}
MShocksStatement::MShocksStatement(bool overwrite_arg,
const det_shocks_t &det_shocks_arg,
const SymbolTable &symbol_table_arg) :
AbstractShocksStatement{true, overwrite_arg, det_shocks_arg, symbol_table_arg}
{
}
void
MShocksStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
output << "%" << endl
<< "% MSHOCKS instructions" << endl
<< "%" << endl;
if (overwrite)
output << "M_.det_shocks = [];" << endl;
writeDetShocks(output);
}
void
MShocksStatement::writeJsonOutput(ostream &output) const
{
output << R"({"statementName": "mshocks")"
<< R"(, "overwrite": )" << (overwrite ? "true" : "false");
if (!det_shocks.empty())
{
output << ", ";
writeJsonDetShocks(output);
}
output << "}";
}
ConditionalForecastPathsStatement::ConditionalForecastPathsStatement(AbstractShocksStatement::det_shocks_t paths_arg,
const SymbolTable &symbol_table_arg) :
paths{move(paths_arg)},
symbol_table{symbol_table_arg}
{
}
void
ConditionalForecastPathsStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
for (const auto &path : paths)
{
int this_path_length = 0;
const vector<AbstractShocksStatement::DetShockElement> &elems = path.second;
for (auto elem : elems)
// Period1 < Period2, as enforced in ParsingDriver::add_period()
this_path_length = max(this_path_length, elem.period2);
path_length = max(this_path_length, path_length);
}
}
void
ConditionalForecastPathsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
assert(path_length > 0);
output << "constrained_vars_ = [];" << endl
<< "constrained_paths_ = NaN(" << paths.size() << ", " << path_length << ");" << endl;
int k = 1;
for (auto it = paths.begin(); it != paths.end(); ++it, k++)
{
if (it == paths.begin())
output << "constrained_vars_ = " << symbol_table.getTypeSpecificID(it->first) + 1 << ";" << endl;
else
output << "constrained_vars_ = [constrained_vars_; " << symbol_table.getTypeSpecificID(it->first) + 1 << "];" << endl;
for (const auto &elem : it->second)
for (int j = elem.period1; j <= elem.period2; j++)
{
output << "constrained_paths_(" << k << "," << j << ")=";
elem.value->writeOutput(output);
output << ";" << endl;
}
}
}
void
ConditionalForecastPathsStatement::writeJsonOutput(ostream &output) const
{
output << R"({"statementName": "conditional_forecast_paths")"
<< R"(, "paths": [)";
for (auto it = paths.begin(); it != paths.end(); ++it)
{
if (it != paths.begin())
output << ", ";
output << R"({"var": ")" << symbol_table.getName(it->first) << R"(", )"
<< R"("values": [)";
for (auto it1 = it->second.begin(); it1 != it->second.end(); ++it1)
{
if (it1 != it->second.begin())
output << ", ";
output << R"({"period1": )" << it1->period1 << ", "
<< R"("period2": )" << it1->period2 << ", "
<< R"("value": ")";
it1->value->writeJsonOutput(output, {}, {});
output << R"("})";
}
output << "]}";
}
output << "]}";
}
MomentCalibration::MomentCalibration(constraints_t constraints_arg,
const SymbolTable &symbol_table_arg)
: constraints{move(constraints_arg)}, symbol_table{symbol_table_arg}
{
}
void
MomentCalibration::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
output << "options_.endogenous_prior_restrictions.moment = {" << endl;
for (const auto &c : constraints)
{
output << "'" << symbol_table.getName(c.endo1) << "', "
<< "'" << symbol_table.getName(c.endo2) << "', "
<< c.lags << ", "
<< "[ ";
c.lower_bound->writeOutput(output);
output << ", ";
c.upper_bound->writeOutput(output);
output << " ];"
<< endl;
}
output << "};" << endl;
}
void
MomentCalibration::writeJsonOutput(ostream &output) const
{
output << R"({"statementName": "moment_calibration")"
<< R"(, "moment_calibration_criteria": [)";
for (auto it = constraints.begin(); it != constraints.end(); ++it)
{
if (it != constraints.begin())
output << ", ";
output << R"({"endogenous1": ")" << symbol_table.getName(it->endo1) << R"(")"
<< R"(, "endogenous2": ")" << symbol_table.getName(it->endo2) << R"(")"
<< R"(, "lags": ")" << it->lags << R"(")"
<< R"(, "lower_bound": ")";
it->lower_bound->writeJsonOutput(output, {}, {});
output << R"(")"
<< R"(, "upper_bound": ")";
it->upper_bound->writeJsonOutput(output, {}, {});
output << R"(")"
<< "}";
}
output << "]"
<< "}";
}
IrfCalibration::IrfCalibration(constraints_t constraints_arg,
const SymbolTable &symbol_table_arg,
OptionsList options_list_arg)
: constraints{move(constraints_arg)}, symbol_table{symbol_table_arg}, options_list{move(options_list_arg)}
{
}
void
IrfCalibration::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
options_list.writeOutput(output);
output << "options_.endogenous_prior_restrictions.irf = {" << endl;
for (const auto &c : constraints)
{
output << "'" << symbol_table.getName(c.endo) << "', "
<< "'" << symbol_table.getName(c.exo) << "', "
<< c.periods << ", "
<< "[ ";
c.lower_bound->writeOutput(output);
output << ", ";
c.upper_bound->writeOutput(output);
output << " ];"
<< endl;
}
output << "};" << endl;
}
void
IrfCalibration::writeJsonOutput(ostream &output) const
{
output << R"({"statementName": "irf_calibration")";
if (options_list.getNumberOfOptions())
{
output << ", ";
options_list.writeJsonOutput(output);
}
output << R"(, "irf_restrictions": [)";
for (auto it = constraints.begin(); it != constraints.end(); ++it)
{
if (it != constraints.begin())
output << ", ";
output << R"({"endogenous": ")" << symbol_table.getName(it->endo) << R"(")"
<< R"(, "exogenous": ")" << symbol_table.getName(it->exo) << R"(")"
<< R"(, "periods": ")" << it->periods << R"(")"
<< R"(, "lower_bound": ")";
it->lower_bound->writeJsonOutput(output, {}, {});
output << R"(")";
output << R"(, "upper_bound": ")";
it->upper_bound->writeJsonOutput(output, {}, {});
output << R"(")"
<< "}";
}
output << "]"
<< "}";
}
ShockGroupsStatement::ShockGroupsStatement(group_t shock_groups_arg, string name_arg)
: shock_groups{move(shock_groups_arg)}, name{move(name_arg)}
{
}
void
ShockGroupsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
int i = 1;
bool unique_label = true;
for (auto it = shock_groups.begin(); it != shock_groups.end(); ++it, unique_label = true)
{
for (auto it1 = it+1; it1 != shock_groups.end(); ++it1)
if (it->name == it1->name)
{
unique_label = false;
cerr << "Warning: shock group label '" << it->name << "' has been reused. "
<< "Only using the last definition." << endl;
break;
}
if (unique_label)
{
output << "M_.shock_groups." << name
<< ".group" << i << ".label = '" << it->name << "';" << endl
<< "M_.shock_groups." << name
<< ".group" << i << ".shocks = {";
for (const auto &it1 : it->list)
output << " '" << it1 << "'";
output << "};" << endl;
i++;
}
}
}
void
ShockGroupsStatement::writeJsonOutput(ostream &output) const
{
output << R"({"statementName": "shock_groups", "name": ")" << name << R"(", "groups": [)";
bool unique_label = true;
bool printed_group = false;
for (auto it = shock_groups.begin(); it != shock_groups.end(); ++it, unique_label = true)
{
for (auto it1 = it+1; it1 != shock_groups.end(); ++it1)
if (it->name == it1->name)
{
unique_label = false;
break;
}
if (unique_label)
{
if (printed_group)
output << ", ";
else
printed_group = true;
output << R"({"group_name": ")" << it->name << R"(",)"
<< R"("shocks": [)";
for (auto it1 = it->list.begin(); it1 != it->list.end(); ++it1)
{
if (it1 != it->list.begin())
output << ", ";
output << R"(")" << *it1 << R"(")";
}
output << "]}";
}
}
output << "]}";
}
Init2shocksStatement::Init2shocksStatement(vector<pair<int, int>> init2shocks_arg, string name_arg,
const SymbolTable &symbol_table_arg)
: init2shocks{move(init2shocks_arg)}, name{move(name_arg)}, symbol_table{symbol_table_arg}
{
}
void
Init2shocksStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
for (size_t i = 0; i < init2shocks.size(); i++)
for (size_t j = i + 1; j < init2shocks.size(); j++)
if (init2shocks.at(i).first == init2shocks.at(j).first)
{
cerr << "Init2shocks(" << name << "): enogenous variable '"
<< symbol_table.getName(init2shocks.at(i).first)
<< "' appears more than once in the init2shocks statement" << endl;
exit(EXIT_FAILURE);
}
}
void
Init2shocksStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
output << "M_.init2shocks." << name << " = {" << endl;
for (auto &it : init2shocks)
output << "{'" << symbol_table.getName(it.first) << "', '" << symbol_table.getName(it.second) << "'};" << endl;
output << "};" << endl;
}
void
Init2shocksStatement::writeJsonOutput(ostream &output) const
{
output << R"({"statementName": "init2shocks", "name": ")" << name << R"(", "groups": [)";
for (auto &it : init2shocks)
{
if (it != *(init2shocks.begin()))
output << ",";
output << R"({"endogenous": ")" << symbol_table.getName(it.first) << R"(", )"
<< R"( "exogenous": ")" << symbol_table.getName(it.second) << R"("})";
}
output << "]}";
}
HeteroskedasticShocksStatement::HeteroskedasticShocksStatement(bool overwrite_arg,
const heteroskedastic_shocks_t &values_arg,
const heteroskedastic_shocks_t &scales_arg,
const SymbolTable &symbol_table_arg)
: overwrite{overwrite_arg}, values{values_arg}, scales{scales_arg}, symbol_table{symbol_table_arg}
{
}
void
HeteroskedasticShocksStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
if (overwrite)
output << "M_.heteroskedastic_shocks.Qhet = [];" << endl;
for (const auto &[var, vec] : values)
{
string varname = symbol_table.getName(var);
for (const auto &[period1, period2, value] : vec)
{
output << "M_.heteroskedastic_shocks.Qhet." << varname << ".time_value = " << period1 << ":" << period2 << ";" << endl
<< "M_.heteroskedastic_shocks.Qhet." << varname << ".value = ";
value->writeOutput(output);
output << ";" << endl;
}
}
for (const auto &[var, vec] : scales)
{
string varname = symbol_table.getName(var);
for (const auto &[period1, period2, scale] : vec)
{
output << "M_.heteroskedastic_shocks.Qhet." << varname << ".time_scale = " << period1 << ":" << period2 << ";" << endl
<< "M_.heteroskedastic_shocks.Qhet." << varname << ".scale = ";
scale->writeOutput(output);
output << ";" << endl;
}
}
}
void
HeteroskedasticShocksStatement::writeJsonOutput(ostream &output) const
{
output << R"({"statementName": "heteroskedastic_shocks")"
<< R"(, "overwrite": )" << (overwrite ? "true" : "false")
<< R"(, "shocks_values": [)";
for (auto it = values.begin(); it != values.end(); ++it)
{
if (it != values.begin())
output << ", ";
output << R"({"var": ")" << symbol_table.getName(it->first) << R"(", )"
<< R"("values": [)";
for (auto it1 = it->second.begin(); it1 != it->second.end(); ++it1)
{
if (it1 != it->second.begin())
output << ", ";
auto [period1, period2, value] = *it1;
output << R"({"period1": )" << period1 << ", "
<< R"("period2": )" << period2 << ", "
<< R"("value": ")";
value->writeJsonOutput(output, {}, {});
output << R"("})";
}
output << "]}";
}
output << R"(], "shocks_scales": [)";
for (auto it = scales.begin(); it != scales.end(); ++it)
{
if (it != scales.begin())
output << ", ";
output << R"({"var": ")" << symbol_table.getName(it->first) << R"(", )"
<< R"("scales": [)";
for (auto it1 = it->second.begin(); it1 != it->second.end(); ++it1)
{
if (it1 != it->second.begin())
output << ", ";
auto [period1, period2, value] = *it1;
output << R"({"period1": )" << period1 << ", "
<< R"("period2": )" << period2 << ", "
<< R"("value": ")";
value->writeJsonOutput(output, {}, {});
output << R"("})";
}
output << "]}";
}
output << "]}";
}