/* * Copyright © 2003-2021 Dynare Team * * This file is part of Dynare. * * Dynare is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Dynare is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Dynare. If not, see . */ #include #include #include #include #include "Shocks.hh" AbstractShocksStatement::AbstractShocksStatement(bool mshocks_arg, bool overwrite_arg, det_shocks_t det_shocks_arg, const SymbolTable &symbol_table_arg) : mshocks{mshocks_arg}, overwrite{overwrite_arg}, det_shocks{move(det_shocks_arg)}, symbol_table{symbol_table_arg} { } void AbstractShocksStatement::writeDetShocks(ostream &output) const { int exo_det_length = 0; for (const auto & [id, shock_vec] : det_shocks) { bool exo_det = (symbol_table.getType(id) == SymbolType::exogenousDet); for (const auto &it : shock_vec) { int period1 = it.period1; int period2 = it.period2; expr_t value = it.value; output << "M_.det_shocks = [ M_.det_shocks;" << endl << "struct('exo_det'," << static_cast(exo_det) << ",'exo_id'," << symbol_table.getTypeSpecificID(id)+1 << ",'multiplicative'," << static_cast(mshocks) << ",'periods'," << period1 << ":" << period2 << ",'value',"; value->writeOutput(output); output << ") ];" << endl; if (exo_det && period2 > exo_det_length) exo_det_length = period2; } } output << "M_.exo_det_length = " << exo_det_length << ";\n"; } void AbstractShocksStatement::writeJsonDetShocks(ostream &output) const { output << R"("deterministic_shocks": [)"; for (auto it = det_shocks.begin(); it != det_shocks.end(); ++it) { if (it != det_shocks.begin()) output << ", "; output << R"({"var": ")" << symbol_table.getName(it->first) << R"(", )" << R"("values": [)"; for (auto it1 = it->second.begin(); it1 != it->second.end(); ++it1) { if (it1 != it->second.begin()) output << ", "; output << R"({"period1": )" << it1->period1 << ", " << R"("period2": )" << it1->period2 << ", " << R"("value": ")"; it1->value->writeJsonOutput(output, {}, {}); output << R"("})"; } output << "]}"; } output << "]"; } ShocksStatement::ShocksStatement(bool overwrite_arg, const det_shocks_t &det_shocks_arg, var_and_std_shocks_t var_shocks_arg, var_and_std_shocks_t std_shocks_arg, covar_and_corr_shocks_t covar_shocks_arg, covar_and_corr_shocks_t corr_shocks_arg, const SymbolTable &symbol_table_arg) : AbstractShocksStatement{false, overwrite_arg, det_shocks_arg, symbol_table_arg}, var_shocks{move(var_shocks_arg)}, std_shocks{move(std_shocks_arg)}, covar_shocks{move(covar_shocks_arg)}, corr_shocks{move(corr_shocks_arg)} { } void ShocksStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const { output << "%" << endl << "% SHOCKS instructions" << endl << "%" << endl; if (overwrite) { output << "M_.det_shocks = [];" << endl; output << "M_.Sigma_e = zeros(" << symbol_table.exo_nbr() << ", " << symbol_table.exo_nbr() << ");" << endl << "M_.Correlation_matrix = eye(" << symbol_table.exo_nbr() << ", " << symbol_table.exo_nbr() << ");" << endl; if (has_calibrated_measurement_errors()) output << "M_.H = zeros(" << symbol_table.observedVariablesNbr() << ", " << symbol_table.observedVariablesNbr() << ");" << endl << "M_.Correlation_matrix_ME = eye(" << symbol_table.observedVariablesNbr() << ", " << symbol_table.observedVariablesNbr() << ");" << endl; else output << "M_.H = 0;" << endl << "M_.Correlation_matrix_ME = 1;" << endl; } writeDetShocks(output); writeVarAndStdShocks(output); writeCovarAndCorrShocks(output); /* M_.sigma_e_is_diagonal is initialized to 1 by ModFile.cc. If there are no off-diagonal elements, and we are not in overwrite mode, then we don't reset it to 1, since there might be previous shocks blocks with off-diagonal elements. */ if (covar_shocks.size()+corr_shocks.size() > 0) output << "M_.sigma_e_is_diagonal = 0;" << endl; else if (overwrite) output << "M_.sigma_e_is_diagonal = 1;" << endl; } void ShocksStatement::writeJsonOutput(ostream &output) const { output << R"({"statementName": "shocks")" << R"(, "overwrite": )" << (overwrite ? "true" : "false"); if (!det_shocks.empty()) { output << ", "; writeJsonDetShocks(output); } output<< R"(, "variance": [)"; for (auto it = var_shocks.begin(); it != var_shocks.end(); ++it) { if (it != var_shocks.begin()) output << ", "; output << R"({"name": ")" << symbol_table.getName(it->first) << R"(", )" << R"("variance": ")"; it->second->writeJsonOutput(output, {}, {}); output << R"("})"; } output << "]" << R"(, "stderr": [)"; for (auto it = std_shocks.begin(); it != std_shocks.end(); it++) { if (it != std_shocks.begin()) output << ", "; output << R"({"name": ")" << symbol_table.getName(it->first) << R"(", )" << R"("stderr": ")"; it->second->writeJsonOutput(output, {}, {}); output << R"("})"; } output << "]" << R"(, "covariance": [)"; for (auto it = covar_shocks.begin(); it != covar_shocks.end(); ++it) { if (it != covar_shocks.begin()) output << ", "; output << "{" << R"("name": ")" << symbol_table.getName(it->first.first) << R"(", )" << R"("name2": ")" << symbol_table.getName(it->first.second) << R"(", )" << R"("covariance": ")"; it->second->writeJsonOutput(output, {}, {}); output << R"("})"; } output << "]" << R"(, "correlation": [)"; for (auto it = corr_shocks.begin(); it != corr_shocks.end(); ++it) { if (it != corr_shocks.begin()) output << ", "; output << "{" << R"("name": ")" << symbol_table.getName(it->first.first) << R"(", )" << R"("name2": ")" << symbol_table.getName(it->first.second) << R"(", )" << R"("correlation": ")"; it->second->writeJsonOutput(output, {}, {}); output << R"("})"; } output << "]" << "}"; } void ShocksStatement::writeVarOrStdShock(ostream &output, var_and_std_shocks_t::const_iterator &it, bool stddev) const { SymbolType type = symbol_table.getType(it->first); assert(type == SymbolType::exogenous || symbol_table.isObservedVariable(it->first)); int id; if (type == SymbolType::exogenous) { output << "M_.Sigma_e("; id = symbol_table.getTypeSpecificID(it->first) + 1; } else { output << "M_.H("; id = symbol_table.getObservedVariableIndex(it->first) + 1; } output << id << ", " << id << ") = "; if (stddev) output << "("; it->second->writeOutput(output); if (stddev) output << ")^2"; output << ";" << endl; } void ShocksStatement::writeVarAndStdShocks(ostream &output) const { for (auto it = var_shocks.begin(); it != var_shocks.end(); ++it) writeVarOrStdShock(output, it, false); for (auto it = std_shocks.begin(); it != std_shocks.end(); ++it) writeVarOrStdShock(output, it, true); } void ShocksStatement::writeCovarOrCorrShock(ostream &output, covar_and_corr_shocks_t::const_iterator &it, bool corr) const { SymbolType type1 = symbol_table.getType(it->first.first); SymbolType type2 = symbol_table.getType(it->first.second); assert((type1 == SymbolType::exogenous && type2 == SymbolType::exogenous) || (symbol_table.isObservedVariable(it->first.first) && symbol_table.isObservedVariable(it->first.second))); string matrix, corr_matrix; int id1, id2; if (type1 == SymbolType::exogenous) { matrix = "M_.Sigma_e"; corr_matrix = "M_.Correlation_matrix"; id1 = symbol_table.getTypeSpecificID(it->first.first) + 1; id2 = symbol_table.getTypeSpecificID(it->first.second) + 1; } else { matrix = "M_.H"; corr_matrix = "M_.Correlation_matrix_ME"; id1 = symbol_table.getObservedVariableIndex(it->first.first) + 1; id2 = symbol_table.getObservedVariableIndex(it->first.second) + 1; } output << matrix << "(" << id1 << ", " << id2 << ") = "; it->second->writeOutput(output); if (corr) output << "*sqrt(" << matrix << "(" << id1 << ", " << id1 << ")*" << matrix << "(" << id2 << ", " << id2 << "))"; output << ";" << endl << matrix << "(" << id2 << ", " << id1 << ") = " << matrix << "(" << id1 << ", " << id2 << ");" << endl; if (corr) { output << corr_matrix << "(" << id1 << ", " << id2 << ") = "; it->second->writeOutput(output); output << ";" << endl << corr_matrix << "(" << id2 << ", " << id1 << ") = " << corr_matrix << "(" << id1 << ", " << id2 << ");" << endl; } } void ShocksStatement::writeCovarAndCorrShocks(ostream &output) const { for (auto it = covar_shocks.begin(); it != covar_shocks.end(); ++it) writeCovarOrCorrShock(output, it, false); for (auto it = corr_shocks.begin(); it != corr_shocks.end(); ++it) writeCovarOrCorrShock(output, it, true); } void ShocksStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings) { /* Error out if variables are not of the right type. This must be done here and not at parsing time (see #448). Also Determine if there is a calibrated measurement error */ for (auto [id, val] : var_shocks) { if (symbol_table.getType(id) != SymbolType::exogenous && !symbol_table.isObservedVariable(id)) { cerr << "shocks: setting a variance on '" << symbol_table.getName(id) << "' is not allowed, because it is neither an exogenous variable nor an observed endogenous variable" << endl; exit(EXIT_FAILURE); } } for (auto [id, val] : std_shocks) { if (symbol_table.getType(id) != SymbolType::exogenous && !symbol_table.isObservedVariable(id)) { cerr << "shocks: setting a standard error on '" << symbol_table.getName(id) << "' is not allowed, because it is neither an exogenous variable nor an observed endogenous variable" << endl; exit(EXIT_FAILURE); } } for (const auto & [ids, val] : covar_shocks) { int symb_id1 = ids.first, symb_id2 = ids.second; if (!((symbol_table.getType(symb_id1) == SymbolType::exogenous && symbol_table.getType(symb_id2) == SymbolType::exogenous) || (symbol_table.isObservedVariable(symb_id1) && symbol_table.isObservedVariable(symb_id2)))) { cerr << "shocks: setting a covariance between '" << symbol_table.getName(symb_id1) << "' and '" << symbol_table.getName(symb_id2) << "'is not allowed; covariances can only be specified for exogenous or observed endogenous variables of same type" << endl; exit(EXIT_FAILURE); } } for (const auto & [ids, val] : corr_shocks) { int symb_id1 = ids.first, symb_id2 = ids.second; if (!((symbol_table.getType(symb_id1) == SymbolType::exogenous && symbol_table.getType(symb_id2) == SymbolType::exogenous) || (symbol_table.isObservedVariable(symb_id1) && symbol_table.isObservedVariable(symb_id2)))) { cerr << "shocks: setting a correlation between '" << symbol_table.getName(symb_id1) << "' and '" << symbol_table.getName(symb_id2) << "'is not allowed; correlations can only be specified for exogenous or observed endogenous variables of same type" << endl; exit(EXIT_FAILURE); } } // Determine if there is a calibrated measurement error mod_file_struct.calibrated_measurement_errors |= has_calibrated_measurement_errors(); // Fill in mod_file_struct.parameters_with_shocks_values (related to #469) for (auto [id, val] : var_shocks) val->collectVariables(SymbolType::parameter, mod_file_struct.parameters_within_shocks_values); for (auto [id, val] : std_shocks) val->collectVariables(SymbolType::parameter, mod_file_struct.parameters_within_shocks_values); for (const auto &[ids, val] : covar_shocks) val->collectVariables(SymbolType::parameter, mod_file_struct.parameters_within_shocks_values); for (const auto &[ids, val] : corr_shocks) val->collectVariables(SymbolType::parameter, mod_file_struct.parameters_within_shocks_values); } bool ShocksStatement::has_calibrated_measurement_errors() const { for (auto [id, val] : var_shocks) if (symbol_table.isObservedVariable(id)) return true; for (auto [id, val] : std_shocks) if (symbol_table.isObservedVariable(id)) return true; for (const auto & [ids, val] : covar_shocks) if (symbol_table.isObservedVariable(ids.first) || symbol_table.isObservedVariable(ids.second)) return true; for (const auto & [ids, val] : corr_shocks) if (symbol_table.isObservedVariable(ids.first) || symbol_table.isObservedVariable(ids.second)) return true; return false; } MShocksStatement::MShocksStatement(bool overwrite_arg, const det_shocks_t &det_shocks_arg, const SymbolTable &symbol_table_arg) : AbstractShocksStatement{true, overwrite_arg, det_shocks_arg, symbol_table_arg} { } void MShocksStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const { output << "%" << endl << "% MSHOCKS instructions" << endl << "%" << endl; if (overwrite) output << "M_.det_shocks = [];" << endl; writeDetShocks(output); } void MShocksStatement::writeJsonOutput(ostream &output) const { output << R"({"statementName": "mshocks")" << R"(, "overwrite": )" << (overwrite ? "true" : "false"); if (!det_shocks.empty()) { output << ", "; writeJsonDetShocks(output); } output << "}"; } ConditionalForecastPathsStatement::ConditionalForecastPathsStatement(AbstractShocksStatement::det_shocks_t paths_arg, const SymbolTable &symbol_table_arg) : paths{move(paths_arg)}, symbol_table{symbol_table_arg} { } void ConditionalForecastPathsStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings) { for (const auto &path : paths) { int this_path_length = 0; const vector &elems = path.second; for (auto elem : elems) // Period1 < Period2, as enforced in ParsingDriver::add_period() this_path_length = max(this_path_length, elem.period2); path_length = max(this_path_length, path_length); } } void ConditionalForecastPathsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const { assert(path_length > 0); output << "constrained_vars_ = [];" << endl << "constrained_paths_ = NaN(" << paths.size() << ", " << path_length << ");" << endl; int k = 1; for (auto it = paths.begin(); it != paths.end(); ++it, k++) { if (it == paths.begin()) output << "constrained_vars_ = " << symbol_table.getTypeSpecificID(it->first) + 1 << ";" << endl; else output << "constrained_vars_ = [constrained_vars_; " << symbol_table.getTypeSpecificID(it->first) + 1 << "];" << endl; for (const auto &elem : it->second) for (int j = elem.period1; j <= elem.period2; j++) { output << "constrained_paths_(" << k << "," << j << ")="; elem.value->writeOutput(output); output << ";" << endl; } } } void ConditionalForecastPathsStatement::writeJsonOutput(ostream &output) const { output << R"({"statementName": "conditional_forecast_paths")" << R"(, "paths": [)"; for (auto it = paths.begin(); it != paths.end(); ++it) { if (it != paths.begin()) output << ", "; output << R"({"var": ")" << symbol_table.getName(it->first) << R"(", )" << R"("values": [)"; for (auto it1 = it->second.begin(); it1 != it->second.end(); ++it1) { if (it1 != it->second.begin()) output << ", "; output << R"({"period1": )" << it1->period1 << ", " << R"("period2": )" << it1->period2 << ", " << R"("value": ")"; it1->value->writeJsonOutput(output, {}, {}); output << R"("})"; } output << "]}"; } output << "]}"; } MomentCalibration::MomentCalibration(constraints_t constraints_arg, const SymbolTable &symbol_table_arg) : constraints{move(constraints_arg)}, symbol_table{symbol_table_arg} { } void MomentCalibration::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const { output << "options_.endogenous_prior_restrictions.moment = {" << endl; for (const auto &c : constraints) { output << "'" << symbol_table.getName(c.endo1) << "', " << "'" << symbol_table.getName(c.endo2) << "', " << c.lags << ", " << "[ "; c.lower_bound->writeOutput(output); output << ", "; c.upper_bound->writeOutput(output); output << " ];" << endl; } output << "};" << endl; } void MomentCalibration::writeJsonOutput(ostream &output) const { output << R"({"statementName": "moment_calibration")" << R"(, "moment_calibration_criteria": [)"; for (auto it = constraints.begin(); it != constraints.end(); ++it) { if (it != constraints.begin()) output << ", "; output << R"({"endogenous1": ")" << symbol_table.getName(it->endo1) << R"(")" << R"(, "endogenous2": ")" << symbol_table.getName(it->endo2) << R"(")" << R"(, "lags": ")" << it->lags << R"(")" << R"(, "lower_bound": ")"; it->lower_bound->writeJsonOutput(output, {}, {}); output << R"(")" << R"(, "upper_bound": ")"; it->upper_bound->writeJsonOutput(output, {}, {}); output << R"(")" << "}"; } output << "]" << "}"; } IrfCalibration::IrfCalibration(constraints_t constraints_arg, const SymbolTable &symbol_table_arg, OptionsList options_list_arg) : constraints{move(constraints_arg)}, symbol_table{symbol_table_arg}, options_list{move(options_list_arg)} { } void IrfCalibration::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const { options_list.writeOutput(output); output << "options_.endogenous_prior_restrictions.irf = {" << endl; for (const auto &c : constraints) { output << "'" << symbol_table.getName(c.endo) << "', " << "'" << symbol_table.getName(c.exo) << "', " << c.periods << ", " << "[ "; c.lower_bound->writeOutput(output); output << ", "; c.upper_bound->writeOutput(output); output << " ];" << endl; } output << "};" << endl; } void IrfCalibration::writeJsonOutput(ostream &output) const { output << R"({"statementName": "irf_calibration")"; if (options_list.getNumberOfOptions()) { output << ", "; options_list.writeJsonOutput(output); } output << R"(, "irf_restrictions": [)"; for (auto it = constraints.begin(); it != constraints.end(); ++it) { if (it != constraints.begin()) output << ", "; output << R"({"endogenous": ")" << symbol_table.getName(it->endo) << R"(")" << R"(, "exogenous": ")" << symbol_table.getName(it->exo) << R"(")" << R"(, "periods": ")" << it->periods << R"(")" << R"(, "lower_bound": ")"; it->lower_bound->writeJsonOutput(output, {}, {}); output << R"(")"; output << R"(, "upper_bound": ")"; it->upper_bound->writeJsonOutput(output, {}, {}); output << R"(")" << "}"; } output << "]" << "}"; } ShockGroupsStatement::ShockGroupsStatement(group_t shock_groups_arg, string name_arg) : shock_groups{move(shock_groups_arg)}, name{move(name_arg)} { } void ShockGroupsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const { int i = 1; bool unique_label = true; for (auto it = shock_groups.begin(); it != shock_groups.end(); ++it, unique_label = true) { for (auto it1 = it+1; it1 != shock_groups.end(); ++it1) if (it->name == it1->name) { unique_label = false; cerr << "Warning: shock group label '" << it->name << "' has been reused. " << "Only using the last definition." << endl; break; } if (unique_label) { output << "M_.shock_groups." << name << ".group" << i << ".label = '" << it->name << "';" << endl << "M_.shock_groups." << name << ".group" << i << ".shocks = {"; for (const auto &it1 : it->list) output << " '" << it1 << "'"; output << "};" << endl; i++; } } } void ShockGroupsStatement::writeJsonOutput(ostream &output) const { output << R"({"statementName": "shock_groups", "name": ")" << name << R"(", "groups": [)"; bool unique_label = true; bool printed_group = false; for (auto it = shock_groups.begin(); it != shock_groups.end(); ++it, unique_label = true) { for (auto it1 = it+1; it1 != shock_groups.end(); ++it1) if (it->name == it1->name) { unique_label = false; break; } if (unique_label) { if (printed_group) output << ", "; else printed_group = true; output << R"({"group_name": ")" << it->name << R"(",)" << R"("shocks": [)"; for (auto it1 = it->list.begin(); it1 != it->list.end(); ++it1) { if (it1 != it->list.begin()) output << ", "; output << R"(")" << *it1 << R"(")"; } output << "]}"; } } output << "]}"; } Init2shocksStatement::Init2shocksStatement(vector> init2shocks_arg, string name_arg, const SymbolTable &symbol_table_arg) : init2shocks{move(init2shocks_arg)}, name{move(name_arg)}, symbol_table{symbol_table_arg} { } void Init2shocksStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings) { for (size_t i = 0; i < init2shocks.size(); i++) for (size_t j = i + 1; j < init2shocks.size(); j++) if (init2shocks.at(i).first == init2shocks.at(j).first) { cerr << "Init2shocks(" << name << "): enogenous variable '" << symbol_table.getName(init2shocks.at(i).first) << "' appears more than once in the init2shocks statement" << endl; exit(EXIT_FAILURE); } } void Init2shocksStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const { output << "M_.init2shocks." << name << " = {" << endl; for (auto &it : init2shocks) output << "{'" << symbol_table.getName(it.first) << "', '" << symbol_table.getName(it.second) << "'};" << endl; output << "};" << endl; } void Init2shocksStatement::writeJsonOutput(ostream &output) const { output << R"({"statementName": "init2shocks", "name": ")" << name << R"(", "groups": [)"; for (auto &it : init2shocks) { if (it != *(init2shocks.begin())) output << ","; output << R"({"endogenous": ")" << symbol_table.getName(it.first) << R"(", )" << R"( "exogenous": ")" << symbol_table.getName(it.second) << R"("})"; } output << "]}"; } HeteroskedasticShocksStatement::HeteroskedasticShocksStatement(bool overwrite_arg, const heteroskedastic_shocks_t &values_arg, const heteroskedastic_shocks_t &scales_arg, const SymbolTable &symbol_table_arg) : overwrite{overwrite_arg}, values{values_arg}, scales{scales_arg}, symbol_table{symbol_table_arg} { } void HeteroskedasticShocksStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const { if (overwrite) output << "M_.heteroskedastic_shocks.Qhet = [];" << endl; for (const auto &[var, vec] : values) { string varname = symbol_table.getName(var); for (const auto &[period1, period2, value] : vec) { output << "M_.heteroskedastic_shocks.Qhet." << varname << ".time_value = " << period1 << ":" << period2 << ";" << endl << "M_.heteroskedastic_shocks.Qhet." << varname << ".value = "; value->writeOutput(output); output << ";" << endl; } } for (const auto &[var, vec] : scales) { string varname = symbol_table.getName(var); for (const auto &[period1, period2, scale] : vec) { output << "M_.heteroskedastic_shocks.Qhet." << varname << ".time_scale = " << period1 << ":" << period2 << ";" << endl << "M_.heteroskedastic_shocks.Qhet." << varname << ".scale = "; scale->writeOutput(output); output << ";" << endl; } } } void HeteroskedasticShocksStatement::writeJsonOutput(ostream &output) const { output << R"({"statementName": "heteroskedastic_shocks")" << R"(, "overwrite": )" << (overwrite ? "true" : "false") << R"(, "shocks_values": [)"; for (auto it = values.begin(); it != values.end(); ++it) { if (it != values.begin()) output << ", "; output << R"({"var": ")" << symbol_table.getName(it->first) << R"(", )" << R"("values": [)"; for (auto it1 = it->second.begin(); it1 != it->second.end(); ++it1) { if (it1 != it->second.begin()) output << ", "; auto [period1, period2, value] = *it1; output << R"({"period1": )" << period1 << ", " << R"("period2": )" << period2 << ", " << R"("value": ")"; value->writeJsonOutput(output, {}, {}); output << R"("})"; } output << "]}"; } output << R"(], "shocks_scales": [)"; for (auto it = scales.begin(); it != scales.end(); ++it) { if (it != scales.begin()) output << ", "; output << R"({"var": ")" << symbol_table.getName(it->first) << R"(", )" << R"("scales": [)"; for (auto it1 = it->second.begin(); it1 != it->second.end(); ++it1) { if (it1 != it->second.begin()) output << ", "; auto [period1, period2, value] = *it1; output << R"({"period1": )" << period1 << ", " << R"("period2": )" << period2 << ", " << R"("value": ")"; value->writeJsonOutput(output, {}, {}); output << R"("})"; } output << "]}"; } output << "]}"; }