preprocessor/src/ModelTree.cc

2469 lines
92 KiB
C++
Raw Normal View History

/*
* Copyright © 2003-2020 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <http://www.gnu.org/licenses/>.
*/
#include "ModelTree.hh"
#include "MinimumFeedbackSet.hh"
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wold-style-cast"
#pragma GCC diagnostic ignored "-Wsign-compare"
#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/max_cardinality_matching.hpp>
#include <boost/graph/strong_components.hpp>
#include <boost/graph/topological_sort.hpp>
#pragma GCC diagnostic pop
#ifdef __APPLE__
2019-12-20 16:59:30 +01:00
# include <mach-o/dyld.h>
#endif
#include <regex>
using namespace MFS;
void
ModelTree::copyHelper(const ModelTree &m)
{
auto f = [this](expr_t e) { return e->clone(*this); };
// Equations
2019-12-20 16:59:30 +01:00
for (const auto &it : m.equations)
equations.push_back(dynamic_cast<BinaryOpNode *>(f(it)));
2019-12-20 16:59:30 +01:00
for (const auto &it : m.aux_equations)
aux_equations.push_back(dynamic_cast<BinaryOpNode *>(f(it)));
auto convert_deriv_map = [f](map<vector<int>, expr_t> dm)
2019-12-20 16:59:30 +01:00
{
map<vector<int>, expr_t> dm2;
for (const auto &it : dm)
dm2.emplace(it.first, f(it.second));
return dm2;
};
// Derivatives
for (const auto &it : m.derivatives)
derivatives.push_back(convert_deriv_map(it));
for (const auto &it : m.params_derivatives)
params_derivatives[it.first] = convert_deriv_map(it.second);
auto convert_temporary_terms_t = [f](temporary_terms_t tt)
2019-12-20 16:59:30 +01:00
{
temporary_terms_t tt2;
for (const auto &it : tt)
tt2.insert(f(it));
return tt2;
};
// Temporary terms
2019-12-20 16:59:30 +01:00
for (const auto &it : m.temporary_terms)
temporary_terms.insert(f(it));
2019-12-20 16:59:30 +01:00
for (const auto &it : m.temporary_terms_mlv)
temporary_terms_mlv[f(it.first)] = f(it.second);
for (const auto &it : m.temporary_terms_derivatives)
temporary_terms_derivatives.push_back(convert_temporary_terms_t(it));
2019-12-20 16:59:30 +01:00
for (const auto &it : m.temporary_terms_idxs)
temporary_terms_idxs[f(it.first)] = it.second;
2019-12-20 16:59:30 +01:00
for (const auto &it : m.params_derivs_temporary_terms)
params_derivs_temporary_terms[it.first] = convert_temporary_terms_t(it.second);
2019-12-20 16:59:30 +01:00
for (const auto &it : m.params_derivs_temporary_terms_idxs)
params_derivs_temporary_terms_idxs[f(it.first)] = it.second;
// Other stuff
2019-12-20 16:59:30 +01:00
for (const auto &it : m.trend_symbols_map)
trend_symbols_map[it.first] = f(it.second);
2019-12-20 16:59:30 +01:00
for (const auto &it : m.nonstationary_symbols_map)
2019-02-21 10:30:25 +01:00
nonstationary_symbols_map[it.first] = {it.second.first, f(it.second.second)};
}
ModelTree::ModelTree(SymbolTable &symbol_table_arg,
NumericalConstants &num_constants_arg,
ExternalFunctionsTable &external_functions_table_arg,
bool is_dynamic_arg) :
2019-12-20 16:59:30 +01:00
DataTree{symbol_table_arg, num_constants_arg, external_functions_table_arg, is_dynamic_arg},
derivatives(4),
NNZDerivatives(4, 0),
temporary_terms_derivatives(4)
{
}
ModelTree::ModelTree(const ModelTree &m) :
2019-12-20 16:59:30 +01:00
DataTree{m},
user_set_add_flags{m.user_set_add_flags},
user_set_subst_flags{m.user_set_subst_flags},
user_set_add_libs{m.user_set_add_libs},
user_set_subst_libs{m.user_set_subst_libs},
user_set_compiler{m.user_set_compiler},
equations_lineno{m.equations_lineno},
equation_tags{m.equation_tags},
equation_tags_xref{m.equation_tags_xref},
NNZDerivatives{m.NNZDerivatives},
equation_reordered{m.equation_reordered},
variable_reordered{m.variable_reordered},
inv_equation_reordered{m.inv_equation_reordered},
inv_variable_reordered{m.inv_variable_reordered},
is_equation_linear{m.is_equation_linear},
endo2eq{m.endo2eq},
epilogue{m.epilogue},
prologue{m.prologue},
block_lag_lead{m.block_lag_lead},
cutoff{m.cutoff},
mfs{m.mfs}
{
copyHelper(m);
}
ModelTree &
ModelTree::operator=(const ModelTree &m)
{
DataTree::operator=(m);
equations.clear();
equations_lineno = m.equations_lineno;
aux_equations.clear();
equation_tags = m.equation_tags;
2019-10-29 12:56:53 +01:00
equation_tags_xref = m.equation_tags_xref;
NNZDerivatives = m.NNZDerivatives;
derivatives.clear();
params_derivatives.clear();
temporary_terms.clear();
temporary_terms_mlv.clear();
temporary_terms_derivatives.clear();
params_derivs_temporary_terms.clear();
params_derivs_temporary_terms_idxs.clear();
trend_symbols_map.clear();
nonstationary_symbols_map.clear();
equation_reordered = m.equation_reordered;
variable_reordered = m.variable_reordered;
inv_equation_reordered = m.inv_equation_reordered;
inv_variable_reordered = m.inv_variable_reordered;
is_equation_linear = m.is_equation_linear;
endo2eq = m.endo2eq;
epilogue = m.epilogue;
prologue = m.prologue;
block_lag_lead = m.block_lag_lead;
cutoff = m.cutoff;
mfs = m.mfs;
user_set_add_flags = m.user_set_add_flags;
user_set_subst_flags = m.user_set_subst_flags;
user_set_add_libs = m.user_set_add_libs;
user_set_subst_libs = m.user_set_subst_libs;
user_set_compiler = m.user_set_compiler;
copyHelper(m);
return *this;
}
bool
ModelTree::computeNormalization(const jacob_map_t &contemporaneous_jacobian, bool verbose)
{
const int n = equations.size();
assert(n == symbol_table.endo_nbr());
using BipartiteGraph = boost::adjacency_list<boost::vecS, boost::vecS, boost::undirectedS>;
/*
Vertices 0 to n-1 are for endogenous (using type specific ID)
Vertices n to 2*n-1 are for equations (using equation no.)
*/
BipartiteGraph g(2 * n);
// Fill in the graph
set<pair<int, int>> endo;
2019-12-20 16:59:30 +01:00
for (const auto &it : contemporaneous_jacobian)
add_edge(it.first.first + n, it.first.second, g);
// Compute maximum cardinality matching
vector<int> mate_map(2*n);
#if 1
bool check = checked_edmonds_maximum_cardinality_matching(g, &mate_map[0]);
#else // Alternative way to compute normalization, by giving an initial matching using natural normalizations
fill(mate_map.begin(), mate_map.end(), boost::graph_traits<BipartiteGraph>::null_vertex());
auto natural_endo2eqs = computeNormalizedEquations();
for (int i = 0; i < symbol_table.endo_nbr(); i++)
{
if (natural_endo2eqs.count(i) == 0)
continue;
int j = natural_endo2eqs.find(i)->second;
put(&mate_map[0], i, n+j);
put(&mate_map[0], n+j, i);
}
boost::edmonds_augmenting_path_finder<BipartiteGraph, int *, boost::property_map<BipartiteGraph, boost::vertex_index_t>::type> augmentor(g, &mate_map[0], get(boost::vertex_index, g));
while (augmentor.augment_matching())
{
};
augmentor.get_current_matching(&mate_map[0]);
bool check = boost::maximum_cardinality_matching_verifier<BipartiteGraph, int *, boost::property_map<BipartiteGraph, boost::vertex_index_t>::type>::verify_matching(g, &mate_map[0], get(boost::vertex_index, g));
#endif
assert(check);
#ifdef DEBUG
for (int i = 0; i < n; i++)
cout << "Endogenous " << symbol_table.getName(symbol_table.getID(eEndogenous, i))
<< " matched with equation " << (mate_map[i]-n+1) << endl;
#endif
// Create the resulting map, by copying the n first elements of mate_map, and substracting n to them
endo2eq.resize(equations.size());
transform(mate_map.begin(), mate_map.begin() + n, endo2eq.begin(), [=](int i) { return i-n; });
#ifdef DEBUG
auto natural_endo2eqs = computeNormalizedEquations(natural_endo2eqs);
int n1 = 0, n2 = 0;
for (int i = 0; i < symbol_table.endo_nbr(); i++)
{
if (natural_endo2eqs.count(i) == 0)
continue;
n1++;
auto x = natural_endo2eqs.equal_range(i);
if (find_if(x.first, x.second, [=](auto y) { return y.second == endo2eq[i]; }) == x.second)
cout << "Natural normalization of variable " << symbol_table.getName(symbol_table.getID(SymbolType::endogenous, i))
<< " not used." << endl;
else
n2++;
}
cout << "Used " << n2 << " natural normalizations out of " << n1 << ", for a total of " << n << " equations." << endl;
#endif
// Check if all variables are normalized
if (auto it = find(mate_map.begin(), mate_map.begin() + n, boost::graph_traits<BipartiteGraph>::null_vertex());
it != mate_map.begin() + n)
{
if (verbose)
cerr << "ERROR: Could not normalize the model. Variable "
<< symbol_table.getName(symbol_table.getID(SymbolType::endogenous, it - mate_map.begin()))
<< " is not in the maximum cardinality matching." << endl;
check = false;
}
return check;
}
void
ModelTree::computeNonSingularNormalization(jacob_map_t &contemporaneous_jacobian, double cutoff, jacob_map_t &static_jacobian, dynamic_jacob_map_t &dynamic_jacobian)
{
bool check = false;
cout << "Normalizing the model..." << endl;
int n = equations.size();
// compute the maximum value of each row of the contemporaneous Jacobian matrix
//jacob_map normalized_contemporaneous_jacobian;
jacob_map_t normalized_contemporaneous_jacobian(contemporaneous_jacobian);
vector<double> max_val(n, 0.0);
for (const auto &it : contemporaneous_jacobian)
if (fabs(it.second) > max_val[it.first.first])
max_val[it.first.first] = fabs(it.second);
2019-12-20 16:59:30 +01:00
for (auto &iter : normalized_contemporaneous_jacobian)
iter.second /= max_val[iter.first.first];
//We start with the highest value of the cutoff and try to normalize the model
double current_cutoff = 0.99999999;
int suppressed = 0;
while (!check && current_cutoff > 1e-19)
{
jacob_map_t tmp_normalized_contemporaneous_jacobian;
int suppress = 0;
2019-12-20 16:59:30 +01:00
for (auto &iter : normalized_contemporaneous_jacobian)
if (fabs(iter.second) > max(current_cutoff, cutoff))
tmp_normalized_contemporaneous_jacobian[{ iter.first.first, iter.first.second }] = iter.second;
else
suppress++;
if (suppress != suppressed)
check = computeNormalization(tmp_normalized_contemporaneous_jacobian, false);
suppressed = suppress;
if (!check)
{
current_cutoff /= 2;
// In this last case try to normalize with the complete jacobian
if (current_cutoff <= 1e-19)
check = computeNormalization(normalized_contemporaneous_jacobian, false);
}
}
if (!check)
{
cout << "Normalization failed with cutoff, trying symbolic normalization..." << endl;
//if no non-singular normalization can be found, try to find a normalization even with a potential singularity
jacob_map_t tmp_normalized_contemporaneous_jacobian;
set<pair<int, int>> endo;
for (int i = 0; i < n; i++)
{
endo.clear();
equations[i]->collectEndogenous(endo);
2019-12-20 16:59:30 +01:00
for (const auto &it : endo)
tmp_normalized_contemporaneous_jacobian[{ i, it.first }] = 1;
}
check = computeNormalization(tmp_normalized_contemporaneous_jacobian, true);
if (check)
{
// Update the jacobian matrix
for (const auto &[key, ignore] : tmp_normalized_contemporaneous_jacobian)
{
if (static_jacobian.find({ key.first, key.second }) == static_jacobian.end())
static_jacobian[{ key.first, key.second }] = 0;
if (dynamic_jacobian.find({ 0, key.first, key.second }) == dynamic_jacobian.end())
dynamic_jacobian[{ 0, key.first, key.second }] = nullptr;
if (contemporaneous_jacobian.find({ key.first, key.second }) == contemporaneous_jacobian.end())
contemporaneous_jacobian[{ key.first, key.second }] = 0;
try
{
if (derivatives[1].find({ key.first, getDerivID(symbol_table.getID(SymbolType::endogenous, key.second), 0) }) == derivatives[1].end())
derivatives[1][{ key.first, getDerivID(symbol_table.getID(SymbolType::endogenous, key.second), 0) }] = Zero;
}
2017-06-14 07:01:31 +02:00
catch (DataTree::UnknownDerivIDException &e)
{
cerr << "The variable " << symbol_table.getName(symbol_table.getID(SymbolType::endogenous, key.second))
<< " does not appear at the current period (i.e. with no lead and no lag); this case is not handled by the 'block' option of the 'model' block." << endl;
exit(EXIT_FAILURE);
}
}
}
}
if (!check)
{
cerr << "No normalization could be computed. Aborting." << endl;
exit(EXIT_FAILURE);
}
}
multimap<int, int>
ModelTree::computeNormalizedEquations() const
{
multimap<int, int> endo2eqs;
for (size_t i = 0; i < equations.size(); i++)
{
auto lhs = dynamic_cast<VariableNode *>(equations[i]->arg1);
if (!lhs)
continue;
int symb_id = lhs->symb_id;
if (symbol_table.getType(symb_id) != SymbolType::endogenous)
continue;
set<pair<int, int>> endo;
equations[i]->arg2->collectEndogenous(endo);
if (endo.find({ symbol_table.getTypeSpecificID(symb_id), 0 }) != endo.end())
continue;
endo2eqs.emplace(symbol_table.getTypeSpecificID(symb_id), static_cast<int>(i));
cout << "Endogenous " << symbol_table.getName(symb_id) << " normalized in equation " << i+1 << endl;
}
return endo2eqs;
}
void
ModelTree::evaluateAndReduceJacobian(const eval_context_t &eval_context, jacob_map_t &contemporaneous_jacobian, jacob_map_t &static_jacobian, dynamic_jacob_map_t &dynamic_jacobian, double cutoff, bool verbose)
{
int nb_elements_contemparenous_Jacobian = 0;
set<vector<int>> jacobian_elements_to_delete;
for (const auto &[indices, d1] : derivatives[1])
{
int deriv_id = indices[1];
if (getTypeByDerivID(deriv_id) == SymbolType::endogenous)
{
int eq = indices[0];
int symb = getSymbIDByDerivID(deriv_id);
int var = symbol_table.getTypeSpecificID(symb);
int lag = getLagByDerivID(deriv_id);
double val = 0;
try
{
val = d1->eval(eval_context);
}
catch (ExprNode::EvalExternalFunctionException &e)
{
val = 1;
}
catch (ExprNode::EvalException &e)
{
cerr << "ERROR: evaluation of Jacobian failed for equation " << eq+1 << " (line " << equations_lineno[eq] << ") and variable " << symbol_table.getName(symb) << "(" << lag << ") [" << symb << "] !" << endl;
d1->writeOutput(cerr, ExprNodeOutputType::matlabDynamicModelSparse, temporary_terms, {});
cerr << endl;
exit(EXIT_FAILURE);
}
if (fabs(val) < cutoff)
{
if (verbose)
cout << "the coefficient related to variable " << var << " with lag " << lag << " in equation " << eq << " is equal to " << val << " and is set to 0 in the incidence matrix (size=" << symbol_table.endo_nbr() << ")" << endl;
jacobian_elements_to_delete.insert({ eq, deriv_id });
}
else
{
if (lag == 0)
{
nb_elements_contemparenous_Jacobian++;
contemporaneous_jacobian[{ eq, var }] = val;
}
if (static_jacobian.find({ eq, var }) != static_jacobian.end())
static_jacobian[{ eq, var }] += val;
else
static_jacobian[{ eq, var }] = val;
dynamic_jacobian[{ lag, eq, var }] = d1;
}
}
}
// Get rid of the elements of the Jacobian matrix below the cutoff
2019-12-20 16:59:30 +01:00
for (const auto &it : jacobian_elements_to_delete)
derivatives[1].erase(it);
if (jacobian_elements_to_delete.size() > 0)
{
cout << jacobian_elements_to_delete.size() << " elements among " << derivatives[1].size() << " in the incidence matrices are below the cutoff (" << cutoff << ") and are discarded" << endl
<< "The contemporaneous incidence matrix has " << nb_elements_contemparenous_Jacobian << " elements" << endl;
}
}
2019-12-20 16:59:30 +01:00
vector<pair<int, int>>
ModelTree::select_non_linear_equations_and_variables(vector<bool> is_equation_linear, const dynamic_jacob_map_t &dynamic_jacobian, vector<int> &equation_reordered, vector<int> &variable_reordered,
vector<int> &inv_equation_reordered, vector<int> &inv_variable_reordered,
lag_lead_vector_t &equation_lag_lead, lag_lead_vector_t &variable_lag_lead,
vector<unsigned int> &n_static, vector<unsigned int> &n_forward, vector<unsigned int> &n_backward, vector<unsigned int> &n_mixed)
{
vector<int> eq2endo(equations.size(), 0);
/*equation_reordered.resize(equations.size());
2019-12-20 16:59:30 +01:00
variable_reordered.resize(equations.size());*/
unsigned int num = 0;
for (auto it : endo2eq)
if (!is_equation_linear[it])
num++;
vector<int> endo2block = vector<int>(endo2eq.size(), 1);
vector<pair<set<int>, pair<set<int>, vector<int>>>> components_set(num);
int i = 0, j = 0;
for (auto it : endo2eq)
if (!is_equation_linear[it])
{
equation_reordered[i] = it;
variable_reordered[i] = j;
endo2block[j] = 0;
components_set[endo2block[j]].first.insert(i);
i++;
j++;
}
getVariableLeadLagByBlock(dynamic_jacobian, endo2block, endo2block.size(), equation_lag_lead, variable_lag_lead, equation_reordered, variable_reordered);
n_static = vector<unsigned int>(endo2eq.size(), 0);
n_forward = vector<unsigned int>(endo2eq.size(), 0);
n_backward = vector<unsigned int>(endo2eq.size(), 0);
n_mixed = vector<unsigned int>(endo2eq.size(), 0);
for (unsigned int i = 0; i < endo2eq.size(); i++)
{
if (variable_lag_lead[variable_reordered[i]].first != 0 && variable_lag_lead[variable_reordered[i]].second != 0)
n_mixed[i]++;
else if (variable_lag_lead[variable_reordered[i]].first == 0 && variable_lag_lead[variable_reordered[i]].second != 0)
n_forward[i]++;
else if (variable_lag_lead[variable_reordered[i]].first != 0 && variable_lag_lead[variable_reordered[i]].second == 0)
n_backward[i]++;
else if (variable_lag_lead[variable_reordered[i]].first == 0 && variable_lag_lead[variable_reordered[i]].second == 0)
n_static[i]++;
}
cout.flush();
int nb_endo = is_equation_linear.size();
2019-02-21 10:30:25 +01:00
vector<pair<int, int>> blocks(1, {i, i});
inv_equation_reordered.resize(nb_endo);
inv_variable_reordered.resize(nb_endo);
for (int i = 0; i < nb_endo; i++)
{
inv_variable_reordered[variable_reordered[i]] = i;
inv_equation_reordered[equation_reordered[i]] = i;
}
return blocks;
}
bool
ModelTree::computeNaturalNormalization()
{
bool bool_result = true;
2019-12-20 16:59:30 +01:00
set<pair<int, int>> result;
endo2eq.resize(equations.size());
for (int eq = 0; eq < static_cast<int>(equations.size()); eq++)
if (!is_equation_linear[eq])
{
BinaryOpNode *eq_node = equations[eq];
expr_t lhs = eq_node->arg1;
result.clear();
lhs->collectDynamicVariables(SymbolType::endogenous, result);
if (result.size() == 1 && result.begin()->second == 0)
{
//check if the endogenous variable has not been already used in an other match !
if (find(endo2eq.begin(), endo2eq.end(), result.begin()->first) == endo2eq.end())
endo2eq[result.begin()->first] = eq;
else
{
bool_result = false;
break;
}
}
}
return bool_result;
}
void
ModelTree::computePrologueAndEpilogue(const jacob_map_t &static_jacobian_arg, vector<int> &equation_reordered, vector<int> &variable_reordered)
{
vector<int> eq2endo(equations.size(), 0);
equation_reordered.resize(equations.size());
variable_reordered.resize(equations.size());
int n = equations.size();
vector<bool> IM(n*n);
int i = 0;
for (auto it : endo2eq)
{
eq2endo[it] = i;
equation_reordered[i] = i;
variable_reordered[it] = i;
i++;
2017-06-14 07:01:31 +02:00
}
if (cutoff == 0)
{
set<pair<int, int>> endo;
for (int i = 0; i < n; i++)
2017-06-14 07:01:31 +02:00
{
endo.clear();
2017-06-14 07:01:31 +02:00
equations[i]->collectEndogenous(endo);
2019-12-20 16:59:30 +01:00
for (const auto &it : endo)
IM[i * n + endo2eq[it.first]] = true;
2017-06-14 07:01:31 +02:00
}
}
else
2019-12-20 16:59:30 +01:00
for (const auto &it : static_jacobian_arg)
IM[it.first.first * n + endo2eq[it.first.second]] = true;
bool something_has_been_done = true;
prologue = 0;
int k = 0;
// Find the prologue equations and place first the AR(1) shock equations first
while (something_has_been_done)
{
int tmp_prologue = prologue;
something_has_been_done = false;
for (int i = prologue; i < n; i++)
{
int nze = 0;
for (int j = tmp_prologue; j < n; j++)
if (IM[i * n + j])
{
nze++;
k = j;
}
if (nze == 1)
{
for (int j = 0; j < n; j++)
{
bool tmp_bool = IM[tmp_prologue * n + j];
IM[tmp_prologue * n + j] = IM[i * n + j];
IM[i * n + j] = tmp_bool;
}
int tmp = equation_reordered[tmp_prologue];
equation_reordered[tmp_prologue] = equation_reordered[i];
equation_reordered[i] = tmp;
for (int j = 0; j < n; j++)
{
bool tmp_bool = IM[j * n + tmp_prologue];
IM[j * n + tmp_prologue] = IM[j * n + k];
IM[j * n + k] = tmp_bool;
}
tmp = variable_reordered[tmp_prologue];
variable_reordered[tmp_prologue] = variable_reordered[k];
variable_reordered[k] = tmp;
tmp_prologue++;
something_has_been_done = true;
}
}
prologue = tmp_prologue;
}
something_has_been_done = true;
epilogue = 0;
// Find the epilogue equations
while (something_has_been_done)
{
int tmp_epilogue = epilogue;
something_has_been_done = false;
for (int i = prologue; i < n - static_cast<int>(epilogue); i++)
{
int nze = 0;
for (int j = prologue; j < n - tmp_epilogue; j++)
if (IM[j * n + i])
{
nze++;
k = j;
}
if (nze == 1)
{
for (int j = 0; j < n; j++)
{
bool tmp_bool = IM[(n - 1 - tmp_epilogue) * n + j];
IM[(n - 1 - tmp_epilogue) * n + j] = IM[k * n + j];
IM[k * n + j] = tmp_bool;
}
int tmp = equation_reordered[n - 1 - tmp_epilogue];
equation_reordered[n - 1 - tmp_epilogue] = equation_reordered[k];
equation_reordered[k] = tmp;
for (int j = 0; j < n; j++)
{
bool tmp_bool = IM[j * n + n - 1 - tmp_epilogue];
IM[j * n + n - 1 - tmp_epilogue] = IM[j * n + i];
IM[j * n + i] = tmp_bool;
}
tmp = variable_reordered[n - 1 - tmp_epilogue];
variable_reordered[n - 1 - tmp_epilogue] = variable_reordered[i];
variable_reordered[i] = tmp;
tmp_epilogue++;
something_has_been_done = true;
}
}
epilogue = tmp_epilogue;
}
}
equation_type_and_normalized_equation_t
ModelTree::equationTypeDetermination(const map<tuple<int, int, int>, expr_t> &first_order_endo_derivatives, const vector<int> &Index_Var_IM, const vector<int> &Index_Equ_IM, int mfs) const
{
expr_t lhs;
BinaryOpNode *eq_node;
EquationType Equation_Simulation_Type;
equation_type_and_normalized_equation_t V_Equation_Simulation_Type(equations.size());
for (unsigned int i = 0; i < equations.size(); i++)
{
int eq = Index_Equ_IM[i];
int var = Index_Var_IM[i];
eq_node = equations[eq];
lhs = eq_node->arg1;
Equation_Simulation_Type = E_SOLVE;
auto derivative = first_order_endo_derivatives.find({ eq, var, 0 });
pair<bool, expr_t> res;
if (derivative != first_order_endo_derivatives.end())
{
set<pair<int, int>> result;
derivative->second->collectEndogenous(result);
auto d_endo_variable = result.find({ var, 0 });
//Determine whether the equation could be evaluated rather than to be solved
if (lhs->isVariableNodeEqualTo(SymbolType::endogenous, Index_Var_IM[i], 0) && derivative->second->isNumConstNodeEqualTo(1))
Equation_Simulation_Type = E_EVALUATE;
else
{
vector<tuple<int, expr_t, expr_t>> List_of_Op_RHS;
2019-12-20 16:59:30 +01:00
res = equations[eq]->normalizeEquation(var, List_of_Op_RHS);
if (mfs == 2)
{
if (d_endo_variable == result.end() && res.second)
Equation_Simulation_Type = E_EVALUATE_S;
}
else if (mfs == 3)
{
if (res.second) // The equation could be solved analytically
Equation_Simulation_Type = E_EVALUATE_S;
}
}
}
V_Equation_Simulation_Type[eq] = { Equation_Simulation_Type, dynamic_cast<BinaryOpNode *>(res.second) };
}
return V_Equation_Simulation_Type;
}
void
ModelTree::getVariableLeadLagByBlock(const dynamic_jacob_map_t &dynamic_jacobian, const vector<int> &components_set, int nb_blck_sim, lag_lead_vector_t &equation_lead_lag, lag_lead_vector_t &variable_lead_lag, const vector<int> &equation_reordered, const vector<int> &variable_reordered) const
{
int nb_endo = symbol_table.endo_nbr();
variable_lead_lag = lag_lead_vector_t(nb_endo, { 0, 0 });
equation_lead_lag = lag_lead_vector_t(nb_endo, { 0, 0 });
vector<int> variable_blck(nb_endo), equation_blck(nb_endo);
for (int i = 0; i < nb_endo; i++)
{
if (i < static_cast<int>(prologue))
{
variable_blck[variable_reordered[i]] = i;
equation_blck[equation_reordered[i]] = i;
}
else if (i < static_cast<int>(components_set.size() + prologue))
{
variable_blck[variable_reordered[i]] = components_set[i-prologue] + prologue;
equation_blck[equation_reordered[i]] = components_set[i-prologue] + prologue;
}
else
{
variable_blck[variable_reordered[i]] = i- (nb_endo - nb_blck_sim - prologue - epilogue);
equation_blck[equation_reordered[i]] = i- (nb_endo - nb_blck_sim - prologue - epilogue);
}
}
2019-12-20 16:59:30 +01:00
for (const auto &it : dynamic_jacobian)
{
auto [lag, j_1, i_1] = it.first;
if (variable_blck[i_1] == equation_blck[j_1])
{
if (lag > variable_lead_lag[i_1].second)
variable_lead_lag[i_1] = { variable_lead_lag[i_1].first, lag };
if (lag < -variable_lead_lag[i_1].first)
variable_lead_lag[i_1] = { -lag, variable_lead_lag[i_1].second };
if (lag > equation_lead_lag[j_1].second)
equation_lead_lag[j_1] = { equation_lead_lag[j_1].first, lag };
if (lag < -equation_lead_lag[j_1].first)
equation_lead_lag[j_1] = { -lag, equation_lead_lag[j_1].second };
}
}
}
void
ModelTree::computeBlockDecompositionAndFeedbackVariablesForEachBlock(const jacob_map_t &static_jacobian, const dynamic_jacob_map_t &dynamic_jacobian, vector<int> &equation_reordered, vector<int> &variable_reordered, vector<pair<int, int>> &blocks, const equation_type_and_normalized_equation_t &Equation_Type, bool verbose_, bool select_feedback_variable, int mfs, vector<int> &inv_equation_reordered, vector<int> &inv_variable_reordered, lag_lead_vector_t &equation_lag_lead, lag_lead_vector_t &variable_lag_lead, vector<unsigned int> &n_static, vector<unsigned int> &n_forward, vector<unsigned int> &n_backward, vector<unsigned int> &n_mixed) const
{
int nb_var = variable_reordered.size();
int n = nb_var - prologue - epilogue;
AdjacencyList_t G2(n);
// It is necessary to manually initialize vertex_index property since this graph uses listS and not vecS as underlying vertex container
auto v_index = get(boost::vertex_index, G2);
for (int i = 0; i < n; i++)
put(v_index, vertex(i, G2), i);
vector<int> reverse_equation_reordered(nb_var), reverse_variable_reordered(nb_var);
for (int i = 0; i < nb_var; i++)
{
reverse_equation_reordered[equation_reordered[i]] = i;
reverse_variable_reordered[variable_reordered[i]] = i;
2017-06-14 07:01:31 +02:00
}
jacob_map_t tmp_normalized_contemporaneous_jacobian;
if (cutoff == 0)
{
set<pair<int, int>> endo;
for (int i = 0; i < nb_var; i++)
2017-06-14 07:01:31 +02:00
{
endo.clear();
2017-06-14 07:01:31 +02:00
equations[i]->collectEndogenous(endo);
2019-12-20 16:59:30 +01:00
for (const auto &it : endo)
tmp_normalized_contemporaneous_jacobian[{ i, it.first }] = 1;
2017-06-14 07:01:31 +02:00
}
}
else
tmp_normalized_contemporaneous_jacobian = static_jacobian;
for (const auto &[key, value] : tmp_normalized_contemporaneous_jacobian)
if (reverse_equation_reordered[key.first] >= static_cast<int>(prologue) && reverse_equation_reordered[key.first] < static_cast<int>(nb_var - epilogue)
&& reverse_variable_reordered[key.second] >= static_cast<int>(prologue) && reverse_variable_reordered[key.second] < static_cast<int>(nb_var - epilogue)
&& key.first != endo2eq[key.second])
add_edge(vertex(reverse_equation_reordered[endo2eq[key.second]]-prologue, G2),
vertex(reverse_equation_reordered[key.first]-prologue, G2),
G2);
vector<int> endo2block(num_vertices(G2)), discover_time(num_vertices(G2));
boost::iterator_property_map<int *, boost::property_map<AdjacencyList_t, boost::vertex_index_t>::type, int, int &> endo2block_map(&endo2block[0], get(boost::vertex_index, G2));
// Compute strongly connected components
int num = strong_components(G2, endo2block_map);
blocks = vector<pair<int, int>>(num, { 0, 0 });
// Create directed acyclic graph associated to the strongly connected components
using DirectedGraph = boost::adjacency_list<boost::vecS, boost::vecS, boost::directedS>;
DirectedGraph dag(num);
for (unsigned int i = 0; i < num_vertices(G2); i++)
{
AdjacencyList_t::out_edge_iterator it_out, out_end;
AdjacencyList_t::vertex_descriptor vi = vertex(i, G2);
for (tie(it_out, out_end) = out_edges(vi, G2); it_out != out_end; ++it_out)
{
int t_b = endo2block_map[target(*it_out, G2)];
int s_b = endo2block_map[source(*it_out, G2)];
if (s_b != t_b)
add_edge(s_b, t_b, dag);
}
}
// Compute topological sort of DAG (ordered list of unordered SCC)
deque<int> ordered2unordered;
topological_sort(dag, front_inserter(ordered2unordered)); // We use a front inserter because topological_sort returns the inverse order
// Construct mapping from unordered SCC to ordered SCC
vector<int> unordered2ordered(num);
for (int i = 0; i < num; i++)
unordered2ordered[ordered2unordered[i]] = i;
//This vector contains for each block:
// - first set = equations belonging to the block,
// - second set = the feeback variables,
// - third vector = the reordered non-feedback variables.
vector<tuple<set<int>, set<int>, vector<int>>> components_set(num);
for (unsigned int i = 0; i < endo2block.size(); i++)
{
endo2block[i] = unordered2ordered[endo2block[i]];
blocks[endo2block[i]].first++;
get<0>(components_set[endo2block[i]]).insert(i);
}
getVariableLeadLagByBlock(dynamic_jacobian, endo2block, num, equation_lag_lead, variable_lag_lead, equation_reordered, variable_reordered);
vector<int> tmp_equation_reordered(equation_reordered), tmp_variable_reordered(variable_reordered);
int order = prologue;
//Add a loop on vertices which could not be normalized or vertices related to lead variables => force those vertices to belong to the feedback set
if (select_feedback_variable)
{
for (int i = 0; i < n; i++)
if (Equation_Type[equation_reordered[i+prologue]].first == E_SOLVE
|| variable_lag_lead[variable_reordered[i+prologue]].second > 0
|| variable_lag_lead[variable_reordered[i+prologue]].first > 0
|| equation_lag_lead[equation_reordered[i+prologue]].second > 0
|| equation_lag_lead[equation_reordered[i+prologue]].first > 0
|| mfs == 0)
add_edge(vertex(i, G2), vertex(i, G2), G2);
}
else
for (int i = 0; i < n; i++)
if (Equation_Type[equation_reordered[i+prologue]].first == E_SOLVE || mfs == 0)
add_edge(vertex(i, G2), vertex(i, G2), G2);
//Determines the dynamic structure of each equation
n_static = vector<unsigned int>(prologue+num+epilogue, 0);
n_forward = vector<unsigned int>(prologue+num+epilogue, 0);
n_backward = vector<unsigned int>(prologue+num+epilogue, 0);
n_mixed = vector<unsigned int>(prologue+num+epilogue, 0);
for (int i = 0; i < static_cast<int>(prologue); i++)
if (variable_lag_lead[tmp_variable_reordered[i]].first != 0 && variable_lag_lead[tmp_variable_reordered[i]].second != 0)
n_mixed[i]++;
else if (variable_lag_lead[tmp_variable_reordered[i]].first == 0 && variable_lag_lead[tmp_variable_reordered[i]].second != 0)
n_forward[i]++;
else if (variable_lag_lead[tmp_variable_reordered[i]].first != 0 && variable_lag_lead[tmp_variable_reordered[i]].second == 0)
n_backward[i]++;
else if (variable_lag_lead[tmp_variable_reordered[i]].first == 0 && variable_lag_lead[tmp_variable_reordered[i]].second == 0)
n_static[i]++;
//For each block, the minimum set of feedback variable is computed
// and the non-feedback variables are reordered to get
// a sub-recursive block without feedback variables
for (int i = 0; i < num; i++)
{
AdjacencyList_t G = extract_subgraph(G2, get<0>(components_set[i]));
set<int> feed_back_vertices;
AdjacencyList_t G1 = Minimal_set_of_feedback_vertex(feed_back_vertices, G);
auto v_index = get(boost::vertex_index, G);
get<1>(components_set[i]) = feed_back_vertices;
blocks[i].second = feed_back_vertices.size();
vector<int> Reordered_Vertice;
Reorder_the_recursive_variables(G, feed_back_vertices, Reordered_Vertice);
//First we have the recursive equations conditional on feedback variables
for (int j = 0; j < 4; j++)
for (int its : Reordered_Vertice)
{
bool something_done = false;
if (j == 2 && variable_lag_lead[tmp_variable_reordered[its+prologue]].first != 0 && variable_lag_lead[tmp_variable_reordered[its+prologue]].second != 0)
{
n_mixed[prologue+i]++;
something_done = true;
}
else if (j == 3 && variable_lag_lead[tmp_variable_reordered[its+prologue]].first == 0 && variable_lag_lead[tmp_variable_reordered[its+prologue]].second != 0)
{
n_forward[prologue+i]++;
something_done = true;
}
else if (j == 1 && variable_lag_lead[tmp_variable_reordered[its+prologue]].first != 0 && variable_lag_lead[tmp_variable_reordered[its+prologue]].second == 0)
{
n_backward[prologue+i]++;
something_done = true;
}
else if (j == 0 && variable_lag_lead[tmp_variable_reordered[its+prologue]].first == 0 && variable_lag_lead[tmp_variable_reordered[its+prologue]].second == 0)
{
n_static[prologue+i]++;
something_done = true;
}
if (something_done)
{
equation_reordered[order] = tmp_equation_reordered[its+prologue];
variable_reordered[order] = tmp_variable_reordered[its+prologue];
order++;
}
}
get<2>(components_set[i]) = Reordered_Vertice;
//Second we have the equations related to the feedback variables
for (int j = 0; j < 4; j++)
for (int feed_back_vertice : feed_back_vertices)
{
bool something_done = false;
if (j == 2 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(feed_back_vertice, G)]+prologue]].first != 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(feed_back_vertice, G)]+prologue]].second != 0)
{
n_mixed[prologue+i]++;
something_done = true;
}
else if (j == 3 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(feed_back_vertice, G)]+prologue]].first == 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(feed_back_vertice, G)]+prologue]].second != 0)
{
n_forward[prologue+i]++;
something_done = true;
}
else if (j == 1 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(feed_back_vertice, G)]+prologue]].first != 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(feed_back_vertice, G)]+prologue]].second == 0)
{
n_backward[prologue+i]++;
something_done = true;
}
else if (j == 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(feed_back_vertice, G)]+prologue]].first == 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(feed_back_vertice, G)]+prologue]].second == 0)
{
n_static[prologue+i]++;
something_done = true;
}
if (something_done)
{
equation_reordered[order] = tmp_equation_reordered[v_index[vertex(feed_back_vertice, G)]+prologue];
variable_reordered[order] = tmp_variable_reordered[v_index[vertex(feed_back_vertice, G)]+prologue];
order++;
}
}
}
for (int i = 0; i < static_cast<int>(epilogue); i++)
if (variable_lag_lead[tmp_variable_reordered[prologue+n+i]].first != 0 && variable_lag_lead[tmp_variable_reordered[prologue+n+i]].second != 0)
n_mixed[prologue+num+i]++;
else if (variable_lag_lead[tmp_variable_reordered[prologue+n+i]].first == 0 && variable_lag_lead[tmp_variable_reordered[prologue+n+i]].second != 0)
n_forward[prologue+num+i]++;
else if (variable_lag_lead[tmp_variable_reordered[prologue+n+i]].first != 0 && variable_lag_lead[tmp_variable_reordered[prologue+n+i]].second == 0)
n_backward[prologue+num+i]++;
else if (variable_lag_lead[tmp_variable_reordered[prologue+n+i]].first == 0 && variable_lag_lead[tmp_variable_reordered[prologue+n+i]].second == 0)
n_static[prologue+num+i]++;
inv_equation_reordered.resize(nb_var);
inv_variable_reordered.resize(nb_var);
for (int i = 0; i < nb_var; i++)
{
inv_variable_reordered[variable_reordered[i]] = i;
inv_equation_reordered[equation_reordered[i]] = i;
}
}
void
ModelTree::printBlockDecomposition(const vector<pair<int, int>> &blocks) const
{
int largest_block = 0,
Nb_SimulBlocks = 0,
Nb_feedback_variable = 0;
unsigned int Nb_TotalBlocks = getNbBlocks();
for (unsigned int block = 0; block < Nb_TotalBlocks; block++)
{
BlockSimulationType simulation_type = getBlockSimulationType(block);
if (simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE)
{
Nb_SimulBlocks++;
int size = getBlockSize(block);
if (size > largest_block)
{
largest_block = size;
Nb_feedback_variable = getBlockMfs(block);
}
}
}
int Nb_RecursBlocks = Nb_TotalBlocks - Nb_SimulBlocks;
cout << Nb_TotalBlocks << " block(s) found:" << endl
<< " " << Nb_RecursBlocks << " recursive block(s) and " << Nb_SimulBlocks << " simultaneous block(s)." << endl
<< " the largest simultaneous block has " << largest_block << " equation(s)" << endl
<< " and " << Nb_feedback_variable << " feedback variable(s)." << endl;
}
block_type_firstequation_size_mfs_t
ModelTree::reduceBlocksAndTypeDetermination(const dynamic_jacob_map_t &dynamic_jacobian, vector<pair<int, int>> &blocks, const equation_type_and_normalized_equation_t &Equation_Type, const vector<int> &variable_reordered, const vector<int> &equation_reordered, vector<unsigned int> &n_static, vector<unsigned int> &n_forward, vector<unsigned int> &n_backward, vector<unsigned int> &n_mixed, vector<tuple<int, int, int, int>> &block_col_type, bool linear_decomposition)
{
int i = 0;
int count_equ = 0, blck_count_simult = 0;
int Blck_Size, MFS_Size;
int Lead, Lag;
block_type_firstequation_size_mfs_t block_type_size_mfs;
BlockSimulationType Simulation_Type, prev_Type = UNKNOWN;
int eq = 0;
unsigned int l_n_static = 0, l_n_forward = 0, l_n_backward = 0, l_n_mixed = 0;
for (i = 0; i < static_cast<int>(prologue+blocks.size()+epilogue); i++)
{
int first_count_equ = count_equ;
if (i < static_cast<int>(prologue))
{
Blck_Size = 1;
MFS_Size = 1;
}
else if (i < static_cast<int>(prologue+blocks.size()))
{
Blck_Size = blocks[blck_count_simult].first;
MFS_Size = blocks[blck_count_simult].second;
blck_count_simult++;
}
else if (i < static_cast<int>(prologue+blocks.size()+epilogue))
{
Blck_Size = 1;
MFS_Size = 1;
}
Lag = Lead = 0;
set<pair<int, int>> endo;
for (count_equ = first_count_equ; count_equ < Blck_Size+first_count_equ; count_equ++)
{
endo.clear();
equations[equation_reordered[count_equ]]->collectEndogenous(endo);
2019-12-20 16:59:30 +01:00
for (const auto &it : endo)
{
int curr_variable = it.first;
int curr_lag = it.second;
if (linear_decomposition)
{
if (dynamic_jacobian.find({ curr_lag, equation_reordered[count_equ], curr_variable }) != dynamic_jacobian.end())
{
if (curr_lag > Lead)
Lead = curr_lag;
else if (-curr_lag > Lag)
Lag = -curr_lag;
}
}
else
{
if (find(variable_reordered.begin()+first_count_equ, variable_reordered.begin()+(first_count_equ+Blck_Size), curr_variable)
!= variable_reordered.begin()+(first_count_equ+Blck_Size)
&& dynamic_jacobian.find({ curr_lag, equation_reordered[count_equ], curr_variable }) != dynamic_jacobian.end())
{
if (curr_lag > Lead)
Lead = curr_lag;
else if (-curr_lag > Lag)
Lag = -curr_lag;
}
}
}
}
if (Lag > 0 && Lead > 0)
{
if (Blck_Size == 1)
Simulation_Type = SOLVE_TWO_BOUNDARIES_SIMPLE;
else
Simulation_Type = SOLVE_TWO_BOUNDARIES_COMPLETE;
}
else if (Blck_Size > 1)
{
if (Lead > 0)
Simulation_Type = SOLVE_BACKWARD_COMPLETE;
else
Simulation_Type = SOLVE_FORWARD_COMPLETE;
}
else
{
if (Lead > 0)
Simulation_Type = SOLVE_BACKWARD_SIMPLE;
else
Simulation_Type = SOLVE_FORWARD_SIMPLE;
}
l_n_static = n_static[i];
l_n_forward = n_forward[i];
l_n_backward = n_backward[i];
l_n_mixed = n_mixed[i];
if (Blck_Size == 1)
{
if (Equation_Type[equation_reordered[eq]].first == E_EVALUATE || Equation_Type[equation_reordered[eq]].first == E_EVALUATE_S)
{
if (Simulation_Type == SOLVE_BACKWARD_SIMPLE)
Simulation_Type = EVALUATE_BACKWARD;
else if (Simulation_Type == SOLVE_FORWARD_SIMPLE)
Simulation_Type = EVALUATE_FORWARD;
}
if (i > 0)
{
bool is_lead = false, is_lag = false;
int c_Size = get<2>(block_type_size_mfs[block_type_size_mfs.size()-1]);
int first_equation = get<1>(block_type_size_mfs[block_type_size_mfs.size()-1]);
2019-12-20 16:59:30 +01:00
if (c_Size > 0 && ((prev_Type == EVALUATE_FORWARD && Simulation_Type == EVALUATE_FORWARD && !is_lead)
|| (prev_Type == EVALUATE_BACKWARD && Simulation_Type == EVALUATE_BACKWARD && !is_lag)))
{
for (int j = first_equation; j < first_equation+c_Size; j++)
{
auto it = dynamic_jacobian.find({ -1, equation_reordered[eq], variable_reordered[j] });
if (it != dynamic_jacobian.end())
is_lag = true;
it = dynamic_jacobian.find({ +1, equation_reordered[eq], variable_reordered[j] });
if (it != dynamic_jacobian.end())
is_lead = true;
}
}
2019-12-20 16:59:30 +01:00
if ((prev_Type == EVALUATE_FORWARD && Simulation_Type == EVALUATE_FORWARD && !is_lead)
|| (prev_Type == EVALUATE_BACKWARD && Simulation_Type == EVALUATE_BACKWARD && !is_lag))
{
//merge the current block with the previous one
BlockSimulationType c_Type = get<0>(block_type_size_mfs[block_type_size_mfs.size()-1]);
c_Size++;
block_type_size_mfs[block_type_size_mfs.size()-1] = { c_Type, first_equation, c_Size, c_Size };
if (block_lag_lead[block_type_size_mfs.size()-1].first > Lag)
Lag = block_lag_lead[block_type_size_mfs.size()-1].first;
if (block_lag_lead[block_type_size_mfs.size()-1].second > Lead)
Lead = block_lag_lead[block_type_size_mfs.size()-1].second;
block_lag_lead[block_type_size_mfs.size()-1] = { Lag, Lead };
auto tmp = block_col_type[block_col_type.size()-1];
block_col_type[block_col_type.size()-1] = { get<0>(tmp)+l_n_static, get<1>(tmp)+l_n_forward, get<2>(tmp)+l_n_backward, get<3>(tmp)+l_n_mixed };
}
else
{
block_type_size_mfs.emplace_back(Simulation_Type, eq, Blck_Size, MFS_Size);
block_lag_lead.emplace_back(Lag, Lead);
block_col_type.emplace_back(l_n_static, l_n_forward, l_n_backward, l_n_mixed);
}
}
else
{
block_type_size_mfs.emplace_back(Simulation_Type, eq, Blck_Size, MFS_Size);
block_lag_lead.emplace_back(Lag, Lead);
block_col_type.emplace_back(l_n_static, l_n_forward, l_n_backward, l_n_mixed);
}
}
else
{
block_type_size_mfs.emplace_back(Simulation_Type, eq, Blck_Size, MFS_Size);
block_lag_lead.emplace_back(Lag, Lead);
block_col_type.emplace_back(l_n_static, l_n_forward, l_n_backward, l_n_mixed);
}
prev_Type = Simulation_Type;
eq += Blck_Size;
}
return block_type_size_mfs;
}
vector<bool>
ModelTree::equationLinear(map<tuple<int, int, int>, expr_t> first_order_endo_derivatives) const
{
vector<bool> is_linear(symbol_table.endo_nbr(), true);
for (const auto &it : first_order_endo_derivatives)
{
2019-12-20 16:59:30 +01:00
expr_t Id = it.second;
set<pair<int, int>> endogenous;
Id->collectEndogenous(endogenous);
if (endogenous.size() > 0)
{
int eq = get<0>(it.first);
is_linear[eq] = false;
}
}
return is_linear;
}
vector<bool>
ModelTree::BlockLinear(const blocks_derivatives_t &blocks_derivatives, const vector<int> &variable_reordered) const
{
unsigned int nb_blocks = getNbBlocks();
vector<bool> blocks_linear(nb_blocks, true);
for (unsigned int block = 0; block < nb_blocks; block++)
{
BlockSimulationType simulation_type = getBlockSimulationType(block);
int block_size = getBlockSize(block);
block_derivatives_equation_variable_laglead_nodeid_t derivatives_block = blocks_derivatives[block];
int first_variable_position = getBlockFirstEquation(block);
if (simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
for (const auto &[ignore, ignore2, lag, d1] : derivatives_block)
{
if (lag == 0)
{
set<pair<int, int>> endogenous;
d1->collectEndogenous(endogenous);
if (endogenous.size() > 0)
for (int l = 0; l < block_size; l++)
if (endogenous.find({ variable_reordered[first_variable_position+l], 0 }) != endogenous.end())
{
blocks_linear[block] = false;
goto the_end;
}
}
}
else if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
for (const auto &[ignore, ignore2, lag, d1] : derivatives_block)
{
set<pair<int, int>> endogenous;
d1->collectEndogenous(endogenous);
if (endogenous.size() > 0)
for (int l = 0; l < block_size; l++)
if (endogenous.find({ variable_reordered[first_variable_position+l], lag }) != endogenous.end())
{
blocks_linear[block] = false;
goto the_end;
}
}
the_end:
;
}
return blocks_linear;
}
int
ModelTree::equation_number() const
{
return (equations.size());
}
void
ModelTree::writeDerivative(ostream &output, int eq, int symb_id, int lag,
ExprNodeOutputType output_type,
const temporary_terms_t &temporary_terms) const
{
if (auto it = derivatives[1].find({ eq, getDerivID(symb_id, lag) });
it != derivatives[1].end())
it->second->writeOutput(output, output_type, temporary_terms, {});
else
output << 0;
}
void
ModelTree::computeDerivatives(int order, const set<int> &vars)
{
2019-12-20 16:59:30 +01:00
assert(order >= 1);
// Do not shrink the vectors, since they have a minimal size of 4 (see constructor)
derivatives.resize(max(static_cast<size_t>(order+1), derivatives.size()));
NNZDerivatives.resize(max(static_cast<size_t>(order+1), NNZDerivatives.size()), 0);
// First-order derivatives
for (int var : vars)
for (int eq = 0; eq < static_cast<int>(equations.size()); eq++)
{
expr_t d1 = equations[eq]->getDerivative(var);
if (d1 == Zero)
continue;
derivatives[1][{ eq, var }] = d1;
++NNZDerivatives[1];
}
// Higher-order derivatives
for (int o = 2; o <= order; o++)
for (const auto &it : derivatives[o-1])
for (int var : vars)
{
if (it.first.back() > var)
continue;
expr_t d = it.second->getDerivative(var);
if (d == Zero)
continue;
vector<int> indices{it.first};
indices.push_back(var);
// At this point, indices of endogenous variables are sorted in non-decreasing order
derivatives[o][indices] = d;
// We output symmetric elements at order = 2
if (o == 2 && indices[1] != indices[2])
NNZDerivatives[o] += 2;
else
NNZDerivatives[o]++;
}
}
void
ModelTree::computeTemporaryTerms(bool is_matlab, bool no_tmp_terms)
{
/* Collect all model local variables appearing in equations (and only those,
because printing unused model local variables can lead to a crash,
see Dynare/dynare#101).
Then store them in a dedicated structure (temporary_terms_mlv), that will
be treated as the rest of temporary terms. */
temporary_terms_mlv.clear();
set<int> used_local_vars;
2019-12-20 16:59:30 +01:00
for (auto &equation : equations)
equation->collectVariables(SymbolType::modelLocalVariable, used_local_vars);
for (int used_local_var : used_local_vars)
2018-03-27 17:14:30 +02:00
{
VariableNode *v = AddVariable(used_local_var);
temporary_terms_mlv[v] = local_variables_table.find(used_local_var)->second;
2018-03-27 17:14:30 +02:00
}
// Compute the temporary terms in equations and derivatives
map<pair<int, int>, temporary_terms_t> temp_terms_map;
map<expr_t, pair<int, pair<int, int>>> reference_count;
2019-12-20 16:59:30 +01:00
for (auto &equation : equations)
equation->computeTemporaryTerms({ 0, 0 },
temp_terms_map,
reference_count,
is_matlab);
for (int order = 1; order < static_cast<int>(derivatives.size()); order++)
for (const auto &it : derivatives[order])
it.second->computeTemporaryTerms({ 0, order },
temp_terms_map,
reference_count,
is_matlab);
/* If the user has specified the notmpterms option, clear all temporary
terms, except those that correspond to external functions (since they are
not optional) */
if (no_tmp_terms)
for (auto &it : temp_terms_map)
// The following loop can be simplified with std::erase_if() in C++20
2019-12-20 16:59:30 +01:00
for (auto it2 = it.second.begin(); it2 != it.second.end();)
if (!dynamic_cast<AbstractExternalFunctionNode *>(*it2))
it2 = it.second.erase(it2);
else
++it2;
2015-09-03 13:50:02 +02:00
// Fill the (now obsolete) temporary_terms structure
temporary_terms.clear();
for (const auto &it : temp_terms_map)
temporary_terms.insert(it.second.begin(), it.second.end());
2015-09-03 13:50:02 +02:00
// Fill the new structure
temporary_terms_derivatives.clear();
temporary_terms_derivatives.resize(derivatives.size());
for (int order = 0; order < static_cast<int>(derivatives.size()); order++)
temporary_terms_derivatives[order] = move(temp_terms_map[{ 0, order }]);
2018-03-27 17:14:30 +02:00
// Compute indices in MATLAB/Julia vector
int idx = 0;
for (auto &it : temporary_terms_mlv)
temporary_terms_idxs[it.first] = idx++;
for (int order = 0; order < static_cast<int>(derivatives.size()); order++)
for (const auto &it : temporary_terms_derivatives[order])
temporary_terms_idxs[it] = idx++;
2018-03-27 17:14:30 +02:00
}
void
ModelTree::writeModelLocalVariableTemporaryTerms(temporary_terms_t &temp_term_union,
const temporary_terms_idxs_t &tt_idxs,
2018-03-27 17:14:30 +02:00
ostream &output, ExprNodeOutputType output_type,
deriv_node_temp_terms_t &tef_terms) const
{
temporary_terms_t tto;
for (auto it : temporary_terms_mlv)
tto.insert(it.first);
for (auto &it : temporary_terms_mlv)
2018-03-27 17:14:30 +02:00
{
if (isJuliaOutput(output_type))
2018-03-27 17:14:30 +02:00
output << " @inbounds const ";
it.first->writeOutput(output, output_type, tto, tt_idxs, tef_terms);
2018-03-27 17:14:30 +02:00
output << " = ";
it.second->writeOutput(output, output_type, temp_term_union, tt_idxs, tef_terms);
2018-03-27 17:14:30 +02:00
if (isCOutput(output_type) || isMatlabOutput(output_type))
2018-03-27 17:14:30 +02:00
output << ";";
output << endl;
/* We put in temp_term_union the VariableNode corresponding to the MLV,
not its definition, so that when equations use the MLV,
T(XXX) is printed instead of the MLV name */
temp_term_union.insert(it.first);
2018-03-27 17:14:30 +02:00
}
}
void
ModelTree::writeTemporaryTerms(const temporary_terms_t &tt,
temporary_terms_t &temp_term_union,
const temporary_terms_idxs_t &tt_idxs,
2018-03-27 17:14:30 +02:00
ostream &output, ExprNodeOutputType output_type, deriv_node_temp_terms_t &tef_terms) const
{
for (auto it : tt)
2018-03-27 17:14:30 +02:00
{
if (dynamic_cast<AbstractExternalFunctionNode *>(it))
it->writeExternalFunctionOutput(output, output_type, temp_term_union, tt_idxs, tef_terms);
2018-03-27 17:14:30 +02:00
if (isJuliaOutput(output_type))
2018-03-27 17:14:30 +02:00
output << " @inbounds ";
it->writeOutput(output, output_type, tt, tt_idxs, tef_terms);
2018-03-27 17:14:30 +02:00
output << " = ";
it->writeOutput(output, output_type, temp_term_union, tt_idxs, tef_terms);
2018-03-27 17:14:30 +02:00
if (isCOutput(output_type) || isMatlabOutput(output_type))
2018-03-27 17:14:30 +02:00
output << ";";
output << endl;
temp_term_union.insert(it);
2018-03-27 17:14:30 +02:00
}
}
void
ModelTree::writeJsonTemporaryTerms(const temporary_terms_t &tt,
temporary_terms_t &temp_term_union,
ostream &output,
deriv_node_temp_terms_t &tef_terms, const string &concat) const
{
// Local var used to keep track of temp nodes already written
bool wrote_term = false;
temporary_terms_t tt2 = temp_term_union;
output << R"("external_functions_temporary_terms_)" << concat << R"(": [)";
for (auto it : tt)
{
if (dynamic_cast<AbstractExternalFunctionNode *>(it))
{
if (wrote_term)
output << ", ";
vector<string> efout;
it->writeJsonExternalFunctionOutput(efout, tt2, tef_terms);
for (auto it1 = efout.begin(); it1 != efout.end(); ++it1)
{
if (it1 != efout.begin())
output << ", ";
output << *it1;
}
wrote_term = true;
}
tt2.insert(it);
}
wrote_term = false;
output << "]"
<< R"(, "temporary_terms_)" << concat << R"(": [)";
for (const auto &it : tt)
{
if (wrote_term)
output << ", ";
output << R"({"temporary_term": ")";
it->writeJsonOutput(output, tt, tef_terms);
output << R"(")"
<< R"(, "value": ")";
it->writeJsonOutput(output, temp_term_union, tef_terms);
output << R"("})" << endl;
wrote_term = true;
temp_term_union.insert(it);
}
output << "]";
}
void
ModelTree::fixNestedParenthesis(ostringstream &output, map<string, string> &tmp_paren_vars, bool &message_printed) const
{
string str = output.str();
if (!testNestedParenthesis(str))
return;
int open = 0;
int first_open_paren = 0;
int matching_paren = 0;
bool hit_limit = false;
int i1 = 0;
for (size_t i = 0; i < str.length(); i++)
{
if (str.at(i) == '(')
{
if (open == 0)
first_open_paren = i;
open++;
}
else if (str.at(i) == ')')
{
open--;
if (open == 0)
matching_paren = i;
}
if (open > 32)
hit_limit = true;
if (hit_limit && open == 0)
{
if (!message_printed)
{
2019-10-02 11:24:37 +02:00
cerr << "Warning: A .m file created by Dynare will have more than 32 nested parenthesis. MATLAB cannot support this. " << endl
<< " We are going to modify, albeit inefficiently, this output to have fewer than 32 nested parenthesis. " << endl
<< " It would hence behoove you to use the use_dll option of the model block to circumnavigate this problem." << endl
2019-10-02 11:24:37 +02:00
<< " If you have not yet set up a compiler on your system, see the MATLAB documentation for doing so." << endl
<< " For Windows, see: https://www.mathworks.com/help/matlab/matlab_external/install-mingw-support-package.html" << endl << endl;
message_printed = true;
}
string str1 = str.substr(first_open_paren, matching_paren - first_open_paren + 1);
string repstr, varname;
while (testNestedParenthesis(str1))
{
2019-12-20 16:59:30 +01:00
size_t open_paren_idx = string::npos;
size_t match_paren_idx = string::npos;
size_t last_open_paren = string::npos;
for (size_t j = 0; j < str1.length(); j++)
{
if (str1.at(j) == '(')
{
// don't match, e.g. y(1)
if (size_t idx = str1.find_last_of("*/-+", j - 1);
j == 0 || (idx != string::npos && idx == j - 1))
open_paren_idx = j;
last_open_paren = j;
}
else if (str1.at(j) == ')')
{
// don't match, e.g. y(1)
if (size_t idx = str1.find_last_not_of("0123456789", j - 1);
idx != string::npos && idx != last_open_paren)
match_paren_idx = j;
}
if (open_paren_idx != string::npos && match_paren_idx != string::npos)
{
string val = str1.substr(open_paren_idx, match_paren_idx - open_paren_idx + 1);
if (auto it = tmp_paren_vars.find(val);
it == tmp_paren_vars.end())
{
ostringstream ptvstr;
ptvstr << i1++;
varname = "paren32_tmp_var_" + ptvstr.str();
repstr = repstr + varname + " = " + val + ";\n";
tmp_paren_vars[val] = varname;
}
else
varname = it->second;
str1.replace(open_paren_idx, match_paren_idx - open_paren_idx + 1, varname);
break;
}
}
}
if (auto it = tmp_paren_vars.find(str1);
it == tmp_paren_vars.end())
{
ostringstream ptvstr;
ptvstr << i1++;
varname = "paren32_tmp_var_" + ptvstr.str();
repstr = repstr + varname + " = " + str1 + ";\n";
}
else
varname = it->second;
str.replace(first_open_paren, matching_paren - first_open_paren + 1, varname);
size_t insertLoc = str.find_last_of("\n", first_open_paren);
str.insert(insertLoc + 1, repstr);
hit_limit = false;
i = -1;
first_open_paren = matching_paren = open = 0;
}
}
output.str(str);
}
bool
ModelTree::testNestedParenthesis(const string &str) const
{
int open = 0;
for (char i : str)
{
if (i == '(')
open++;
else if (i == ')')
open--;
if (open > 32)
return true;
}
return false;
}
void
ModelTree::compileTemporaryTerms(ostream &code_file, unsigned int &instruction_number, const temporary_terms_t &tt, map_idx_t map_idx, bool dynamic, bool steady_dynamic) const
{
// Local var used to keep track of temp nodes already written
temporary_terms_t tt2;
// To store the functions that have already been written in the form TEF* = ext_fun();
deriv_node_temp_terms_t tef_terms;
for (auto it : tt)
{
if (dynamic_cast<AbstractExternalFunctionNode *>(it))
{
it->compileExternalFunctionOutput(code_file, instruction_number, false, tt2, map_idx, dynamic, steady_dynamic, tef_terms);
}
FNUMEXPR_ fnumexpr(TemporaryTerm, static_cast<int>(map_idx.find(it->idx)->second));
fnumexpr.write(code_file, instruction_number);
it->compile(code_file, instruction_number, false, tt2, map_idx, dynamic, steady_dynamic, tef_terms);
if (dynamic)
{
FSTPT_ fstpt(static_cast<int>(map_idx.find(it->idx)->second));
fstpt.write(code_file, instruction_number);
}
else
{
FSTPST_ fstpst(static_cast<int>(map_idx.find(it->idx)->second));
fstpst.write(code_file, instruction_number);
}
// Insert current node into tt2
tt2.insert(it);
}
}
void
ModelTree::writeJsonModelLocalVariables(ostream &output, deriv_node_temp_terms_t &tef_terms) const
{
/* Collect all model local variables appearing in equations, and print only
them. Printing unused model local variables can lead to a crash (see
ticket #101). */
set<int> used_local_vars;
// Use an empty set for the temporary terms
const temporary_terms_t tt;
for (auto equation : equations)
equation->collectVariables(SymbolType::modelLocalVariable, used_local_vars);
output << R"("model_local_variables": [)";
bool printed = false;
for (int it : local_variables_vector)
if (used_local_vars.find(it) != used_local_vars.end())
{
if (printed)
output << ", ";
else
printed = true;
int id = it;
vector<string> efout;
expr_t value = local_variables_table.find(id)->second;
value->writeJsonExternalFunctionOutput(efout, tt, tef_terms);
for (auto it1 = efout.begin(); it1 != efout.end(); ++it1)
{
if (it1 != efout.begin())
output << ", ";
output << *it1;
}
if (!efout.empty())
output << ", ";
/* We append underscores to avoid name clashes with "g1" or "oo_" (see
also VariableNode::writeOutput) */
output << R"({"variable": ")" << symbol_table.getName(id) << R"(__")"
<< R"(, "value": ")";
value->writeJsonOutput(output, tt, tef_terms);
output << R"("})" << endl;
}
output << "]";
}
void
ModelTree::writeModelEquations(ostream &output, ExprNodeOutputType output_type) const
{
2018-03-27 17:14:30 +02:00
temporary_terms_t tt;
temporary_terms_idxs_t ttidxs;
writeModelEquations(output, output_type, tt);
2018-03-27 17:14:30 +02:00
}
2018-03-27 17:14:30 +02:00
void
ModelTree::writeModelEquations(ostream &output, ExprNodeOutputType output_type,
const temporary_terms_t &temporary_terms) const
2018-03-27 17:14:30 +02:00
{
for (int eq = 0; eq < static_cast<int>(equations.size()); eq++)
{
BinaryOpNode *eq_node = equations[eq];
expr_t lhs = eq_node->arg1;
expr_t rhs = eq_node->arg2;
// Test if the right hand side of the equation is empty.
double vrhs = 1.0;
try
{
vrhs = rhs->eval(eval_context_t());
}
catch (ExprNode::EvalException &e)
{
}
if (vrhs != 0) // The right hand side of the equation is not empty ==> residual=lhs-rhs;
if (isJuliaOutput(output_type))
2018-03-27 17:14:30 +02:00
{
output << " @inbounds residual" << LEFT_ARRAY_SUBSCRIPT(output_type)
<< eq + ARRAY_SUBSCRIPT_OFFSET(output_type)
<< RIGHT_ARRAY_SUBSCRIPT(output_type)
<< " = (";
lhs->writeOutput(output, output_type, temporary_terms, temporary_terms_idxs);
output << ") - (";
rhs->writeOutput(output, output_type, temporary_terms, temporary_terms_idxs);
output << ")" << endl;
}
else
{
output << "lhs = ";
lhs->writeOutput(output, output_type, temporary_terms, temporary_terms_idxs);
output << ";" << endl
<< "rhs = ";
rhs->writeOutput(output, output_type, temporary_terms, temporary_terms_idxs);
output << ";" << endl
<< "residual" << LEFT_ARRAY_SUBSCRIPT(output_type)
<< eq + ARRAY_SUBSCRIPT_OFFSET(output_type)
<< RIGHT_ARRAY_SUBSCRIPT(output_type)
<< " = lhs - rhs;" << endl;
}
else // The right hand side of the equation is empty ==> residual=lhs;
{
if (isJuliaOutput(output_type))
2018-03-27 17:14:30 +02:00
output << " @inbounds ";
output << "residual" << LEFT_ARRAY_SUBSCRIPT(output_type)
<< eq + ARRAY_SUBSCRIPT_OFFSET(output_type)
<< RIGHT_ARRAY_SUBSCRIPT(output_type)
<< " = ";
2018-03-27 17:14:30 +02:00
lhs->writeOutput(output, output_type, temporary_terms, temporary_terms_idxs);
output << ";" << endl;
}
}
}
void
ModelTree::compileModelEquations(ostream &code_file, unsigned int &instruction_number, const temporary_terms_t &tt, const map_idx_t &map_idx, bool dynamic, bool steady_dynamic) const
{
for (int eq = 0; eq < static_cast<int>(equations.size()); eq++)
{
BinaryOpNode *eq_node = equations[eq];
expr_t lhs = eq_node->arg1;
expr_t rhs = eq_node->arg2;
FNUMEXPR_ fnumexpr(ModelEquation, eq);
fnumexpr.write(code_file, instruction_number);
// Test if the right hand side of the equation is empty.
double vrhs = 1.0;
try
{
vrhs = rhs->eval(eval_context_t());
}
catch (ExprNode::EvalException &e)
{
}
if (vrhs != 0) // The right hand side of the equation is not empty ==> residual=lhs-rhs;
{
lhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, dynamic, steady_dynamic);
rhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, dynamic, steady_dynamic);
FBINARY_ fbinary{static_cast<int>(BinaryOpcode::minus)};
fbinary.write(code_file, instruction_number);
FSTPR_ fstpr(eq);
fstpr.write(code_file, instruction_number);
}
else // The right hand side of the equation is empty ==> residual=lhs;
{
lhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, dynamic, steady_dynamic);
FSTPR_ fstpr(eq);
fstpr.write(code_file, instruction_number);
}
}
}
void
ModelTree::Write_Inf_To_Bin_File(const string &filename,
2011-02-04 16:25:38 +01:00
int &u_count_int, bool &file_open, bool is_two_boundaries, int block_mfs) const
{
int j;
std::ofstream SaveCode;
if (file_open)
SaveCode.open(filename, ios::out | ios::in | ios::binary | ios::ate);
else
SaveCode.open(filename, ios::out | ios::binary);
if (!SaveCode.is_open())
{
cerr << R"(Error : Can't open file ")" << filename << R"(" for writing)" << endl;
exit(EXIT_FAILURE);
}
u_count_int = 0;
for (const auto & [indices, d1] : derivatives[1])
{
int deriv_id = indices[1];
if (getTypeByDerivID(deriv_id) == SymbolType::endogenous)
{
int eq = indices[0];
int symb = getSymbIDByDerivID(deriv_id);
int var = symbol_table.getTypeSpecificID(symb);
int lag = getLagByDerivID(deriv_id);
SaveCode.write(reinterpret_cast<char *>(&eq), sizeof(eq));
int varr = var + lag * block_mfs;
SaveCode.write(reinterpret_cast<char *>(&varr), sizeof(varr));
SaveCode.write(reinterpret_cast<char *>(&lag), sizeof(lag));
int u = u_count_int + block_mfs;
SaveCode.write(reinterpret_cast<char *>(&u), sizeof(u));
u_count_int++;
}
}
if (is_two_boundaries)
2019-12-20 16:59:30 +01:00
u_count_int += symbol_table.endo_nbr();
for (j = 0; j < static_cast<int>(symbol_table.endo_nbr()); j++)
SaveCode.write(reinterpret_cast<char *>(&j), sizeof(j));
for (j = 0; j < static_cast<int>(symbol_table.endo_nbr()); j++)
SaveCode.write(reinterpret_cast<char *>(&j), sizeof(j));
SaveCode.close();
}
void
ModelTree::writeLatexModelFile(const string &mod_basename, const string &latex_basename, ExprNodeOutputType output_type, bool write_equation_tags) const
{
filesystem::create_directories(mod_basename + "/latex");
ofstream output, content_output;
string filename = mod_basename + "/latex/" + latex_basename + ".tex";
string content_filename = mod_basename + "/latex/" + latex_basename + "_content" + ".tex";
output.open(filename, ios::out | ios::binary);
if (!output.is_open())
{
cerr << "ERROR: Can't open file " << filename << " for writing" << endl;
exit(EXIT_FAILURE);
}
content_output.open(content_filename, ios::out | ios::binary);
if (!content_output.is_open())
{
cerr << "ERROR: Can't open file " << content_filename << " for writing" << endl;
exit(EXIT_FAILURE);
}
output << R"(\documentclass[10pt,a4paper]{article})" << endl
<< R"(\usepackage[landscape]{geometry})" << endl
<< R"(\usepackage{fullpage})" << endl
<< R"(\usepackage{amsfonts})" << endl
<< R"(\usepackage{breqn})" << endl
<< R"(\begin{document})" << endl
<< R"(\footnotesize)" << endl;
// Write model local variables
for (int id : local_variables_vector)
{
expr_t value = local_variables_table.find(id)->second;
content_output << R"(\begin{dmath*})" << endl
<< symbol_table.getTeXName(id) << " = ";
// Use an empty set for the temporary terms
value->writeOutput(content_output, output_type);
content_output << endl << R"(\end{dmath*})" << endl;
}
for (int eq = 0; eq < static_cast<int>(equations.size()); eq++)
{
content_output << "% Equation " << eq + 1 << endl;
if (write_equation_tags)
{
auto escape_special_latex_symbols
= [](string str)
{
const regex special_latex_chars (R"([&%$#_{}])");
const regex backslash (R"(\\)");
const regex tilde (R"(~)");
const regex carrot (R"(\^)");
const regex textbackslash (R"(\\textbackslash)");
str = regex_replace(str, backslash, R"(\textbackslash)");
str = regex_replace(str, special_latex_chars, R"(\$&)");
str = regex_replace(str, carrot, R"(\^{})");
str = regex_replace(str, tilde, R"(\textasciitilde{})");
return regex_replace(str, textbackslash, R"(\textbackslash{})");
};
bool wrote_eq_tag = false;
for (const auto & [tagged_eq, tag_pair] : equation_tags)
if (tagged_eq == eq)
{
if (!wrote_eq_tag)
content_output << R"(\noindent[)";
else
content_output << ", ";
content_output << escape_special_latex_symbols(tag_pair.first);
if (!(tag_pair.second.empty()))
content_output << "= `" << escape_special_latex_symbols(tag_pair.second) << "'";
wrote_eq_tag = true;
}
if (wrote_eq_tag)
content_output << "]" << endl;
}
content_output << R"(\begin{dmath})" << endl;
// Here it is necessary to cast to superclass ExprNode, otherwise the overloaded writeOutput() method is not found
dynamic_cast<ExprNode *>(equations[eq])->writeOutput(content_output, output_type);
content_output << endl << R"(\end{dmath})" << endl;
}
output << R"(\include{)" << latex_basename + "_content" << "}" << endl
<< R"(\end{document})" << endl;
output.close();
content_output.close();
}
void
ModelTree::addEquation(expr_t eq, int lineno)
{
auto beq = dynamic_cast<BinaryOpNode *>(eq);
assert(beq && beq->op_code == BinaryOpcode::equal);
equations.push_back(beq);
equations_lineno.push_back(lineno);
}
vector<int>
ModelTree::includeExcludeEquations(set<pair<string, string>> &eqs, bool exclude_eqs,
vector<BinaryOpNode *> &equations, vector<int> &equations_lineno,
vector<pair<int, pair<string, string>>> &equation_tags,
multimap<pair<string, string>, int> &equation_tags_xref, bool static_equations) const
{
vector<int> excluded_vars;
if (equations.empty())
return excluded_vars;
// Get equation numbers of tags
set<int> tag_eqns;
2019-12-20 16:59:30 +01:00
for (auto &it : eqs)
if (equation_tags_xref.find(it) != equation_tags_xref.end())
{
auto range = equation_tags_xref.equal_range(it);
2019-12-20 16:59:30 +01:00
for_each(range.first, range.second, [&tag_eqns](auto &x) { tag_eqns.insert(x.second); });
eqs.erase(it);
}
if (tag_eqns.empty())
return excluded_vars;
set<int> eqns;
if (exclude_eqs)
eqns = tag_eqns;
else
for (size_t i = 0; i < equations.size(); i++)
if (tag_eqns.find(i) == tag_eqns.end())
eqns.insert(i);
// remove from equations, equations_lineno, equation_tags, equation_tags_xref
vector<BinaryOpNode *> new_eqns;
vector<int> new_equations_lineno;
map<int, int> old_eqn_num_2_new;
for (size_t i = 0; i < equations.size(); i++)
if (eqns.find(i) != eqns.end())
{
bool found = false;
for (const auto & [tagged_eq, tag_pair] : equation_tags)
if (tagged_eq == static_cast<int>(i) && tag_pair.first == "endogenous")
{
found = true;
excluded_vars.push_back(symbol_table.getID(tag_pair.second));
break;
}
if (!found)
{
set<pair<int, int>> result;
equations[i]->arg1->collectDynamicVariables(SymbolType::endogenous, result);
if (result.size() == 1)
excluded_vars.push_back(result.begin()->first);
else
{
cerr << "ERROR: Equation " << i
<< " has been excluded but does not have a single variable on LHS or `endogenous` tag" << endl;
exit(EXIT_FAILURE);
}
}
}
else
{
new_eqns.emplace_back(equations[i]);
old_eqn_num_2_new[i] = new_eqns.size() - 1;
new_equations_lineno.emplace_back(equations_lineno[i]);
}
int n_excl = equations.size() - new_eqns.size();
equations = new_eqns;
equations_lineno = new_equations_lineno;
equation_tags.erase(remove_if(equation_tags.begin(), equation_tags.end(),
2019-12-20 16:59:30 +01:00
[&](const auto &it) { return eqns.find(it.first) != eqns.end(); }),
equation_tags.end());
2019-12-20 16:59:30 +01:00
for (auto &it : old_eqn_num_2_new)
for (auto &it1 : equation_tags)
if (it1.first == it.first)
it1.first = it.second;
equation_tags_xref.clear();
2019-12-20 16:59:30 +01:00
for (const auto &it : equation_tags)
equation_tags_xref.emplace(it.second, it.first);
if (!static_equations)
for (size_t i = 0; i < excluded_vars.size(); i++)
for (size_t j = i+1; j < excluded_vars.size(); j++)
if (excluded_vars[i] == excluded_vars[j])
{
cerr << "Error: Variable " << symbol_table.getName(i) << " was excluded twice"
<< " via in/exclude_eqs option" << endl;
exit(EXIT_FAILURE);
}
cout << "Excluded " << n_excl << (static_equations ? " static " : " dynamic ")
2019-12-20 16:59:30 +01:00
<< "equation" << (n_excl > 1 ? "s" : "") << " via in/exclude_eqs option" << endl;
return excluded_vars;
}
void
ModelTree::simplifyEquations()
{
size_t last_subst_table_size = 0;
2019-01-29 17:29:24 +01:00
map<VariableNode *, NumConstNode *> subst_table;
findConstantEquations(subst_table);
while (subst_table.size() != last_subst_table_size)
{
last_subst_table_size = subst_table.size();
2019-12-20 16:59:30 +01:00
for (auto &equation : equations)
equation = dynamic_cast<BinaryOpNode *>(equation->replaceVarsInEquation(subst_table));
subst_table.clear();
findConstantEquations(subst_table);
}
}
void
2019-01-29 17:29:24 +01:00
ModelTree::findConstantEquations(map<VariableNode *, NumConstNode *> &subst_table) const
{
2019-12-20 16:59:30 +01:00
for (auto &equation : equations)
equation->findConstantEquations(subst_table);
}
void
ModelTree::addEquation(expr_t eq, int lineno, const vector<pair<string, string>> &eq_tags)
{
int n = equations.size();
2019-12-20 16:59:30 +01:00
for (const auto &eq_tag : eq_tags)
2019-10-29 12:56:53 +01:00
{
equation_tags.emplace_back(n, eq_tag);
equation_tags_xref.emplace(eq_tag, n);
}
addEquation(eq, lineno);
}
void
ModelTree::addAuxEquation(expr_t eq)
{
auto beq = dynamic_cast<BinaryOpNode *>(eq);
assert(beq && beq->op_code == BinaryOpcode::equal);
aux_equations.push_back(beq);
}
void
ModelTree::addTrendVariables(const vector<int> &trend_vars, expr_t growth_factor) noexcept(false)
{
for (int id : trend_vars)
if (trend_symbols_map.find(id) != trend_symbols_map.end())
throw TrendException(symbol_table.getName(id));
else
trend_symbols_map[id] = growth_factor;
}
void
ModelTree::addNonstationaryVariables(const vector<int> &nonstationary_vars, bool log_deflator, expr_t deflator) noexcept(false)
{
for (int id : nonstationary_vars)
if (nonstationary_symbols_map.find(id) != nonstationary_symbols_map.end())
throw TrendException(symbol_table.getName(id));
else
nonstationary_symbols_map[id] = { log_deflator, deflator };
}
void
ModelTree::initializeVariablesAndEquations()
{
for (size_t j = 0; j < equations.size(); j++)
equation_reordered.push_back(j);
for (int j = 0; j < symbol_table.endo_nbr(); j++)
variable_reordered.push_back(j);
}
void
ModelTree::set_cutoff_to_zero()
{
cutoff = 0;
}
void
ModelTree::jacobianHelper(ostream &output, int eq_nb, int col_nb, ExprNodeOutputType output_type) const
{
if (isJuliaOutput(output_type))
2018-03-27 17:14:30 +02:00
output << " @inbounds ";
output << "g1" << LEFT_ARRAY_SUBSCRIPT(output_type);
if (isMatlabOutput(output_type) || isJuliaOutput(output_type))
output << eq_nb + 1 << "," << col_nb + 1;
else
output << eq_nb + col_nb *equations.size();
output << RIGHT_ARRAY_SUBSCRIPT(output_type);
}
void
ModelTree::sparseHelper(int order, ostream &output, int row_nb, int col_nb, ExprNodeOutputType output_type) const
{
2018-03-27 17:14:30 +02:00
output << "v" << order << LEFT_ARRAY_SUBSCRIPT(output_type);
if (isMatlabOutput(output_type) || isJuliaOutput(output_type))
output << row_nb + 1 << "," << col_nb + 1;
else
output << row_nb + col_nb * NNZDerivatives[order];
output << RIGHT_ARRAY_SUBSCRIPT(output_type);
}
void
ModelTree::computeParamsDerivatives(int paramsDerivsOrder)
{
assert(paramsDerivsOrder >= 1);
set<int> deriv_id_set;
addAllParamDerivId(deriv_id_set);
// First-order derivatives w.r.t. params
for (int param : deriv_id_set)
{
for (int eq = 0; eq < static_cast<int>(equations.size()); eq++)
{
expr_t d = equations[eq]->getDerivative(param);
if (d == Zero)
continue;
params_derivatives[{ 0, 1 }][{ eq, param }] = d;
}
for (int endoOrd = 1; endoOrd < static_cast<int>(derivatives.size()); endoOrd++)
for (const auto &[indices, dprev] : derivatives[endoOrd])
{
expr_t d = dprev->getDerivative(param);
if (d == Zero)
continue;
vector<int> new_indices = indices;
new_indices.push_back(param);
params_derivatives[{ endoOrd, 1 }][new_indices] = d;
}
}
// Higher-order derivatives w.r.t. parameters
for (int endoOrd = 0; endoOrd < static_cast<int>(derivatives.size()); endoOrd++)
for (int paramOrd = 2; paramOrd <= paramsDerivsOrder; paramOrd++)
for (const auto &[indices, dprev] : params_derivatives[{ endoOrd, paramOrd-1 }])
for (int param : deriv_id_set)
{
if (indices.back() > param)
continue;
expr_t d = dprev->getDerivative(param);
if (d == Zero)
continue;
vector<int> new_indices = indices;
new_indices.push_back(param);
// At this point, indices of both endogenous and parameters are sorted in non-decreasing order
params_derivatives[{ endoOrd, paramOrd }][new_indices] = d;
}
}
void
ModelTree::computeParamsDerivativesTemporaryTerms()
{
map<expr_t, pair<int, pair<int, int>>> reference_count;
/* The temp terms should be constructed in the same order as the for loops in
{Static,Dynamic}Model::write{Json,}ParamsDerivativesFile() */
params_derivs_temporary_terms.clear();
for (const auto &[order, derivs] : params_derivatives)
for (const auto &[indices, d] : derivs)
d->computeTemporaryTerms(order, params_derivs_temporary_terms,
reference_count, true);
int idx = 0;
for (auto &[mlv, value] : temporary_terms_mlv)
params_derivs_temporary_terms_idxs[mlv] = idx++;
for (const auto &[order, tts] : params_derivs_temporary_terms)
for (const auto &tt : tts)
params_derivs_temporary_terms_idxs[tt] = idx++;
}
2017-06-14 07:01:31 +02:00
bool
ModelTree::isNonstationary(int symb_id) const
{
return nonstationary_symbols_map.find(symb_id) != nonstationary_symbols_map.end();
}
2017-02-02 15:09:43 +01:00
void
ModelTree::writeJsonModelEquations(ostream &output, bool residuals) const
2017-02-02 15:09:43 +01:00
{
if (residuals)
output << endl << R"("residuals":[)" << endl;
else
output << endl << R"("model":[)" << endl;
for (int eq = 0; eq < static_cast<int>(equations.size()); eq++)
2017-02-02 15:09:43 +01:00
{
if (eq > 0)
output << ", ";
BinaryOpNode *eq_node = equations[eq];
expr_t lhs = eq_node->arg1;
expr_t rhs = eq_node->arg2;
if (residuals)
2017-02-02 15:09:43 +01:00
{
output << R"({"residual": {)"
<< R"("lhs": ")";
lhs->writeJsonOutput(output, temporary_terms, {});
output << R"(")";
output << R"(, "rhs": ")";
rhs->writeJsonOutput(output, temporary_terms, {});
output << R"(")";
try
{
// Test if the right hand side of the equation is empty.
if (rhs->eval(eval_context_t()) != 0)
{
output << R"(, "rhs": ")";
rhs->writeJsonOutput(output, temporary_terms, {});
output << R"(")";
}
}
catch (ExprNode::EvalException &e)
2017-02-02 15:09:43 +01:00
{
}
output << "}";
}
else
{
output << R"({"lhs": ")";
lhs->writeJsonOutput(output, {}, {});
output << R"(", "rhs": ")";
rhs->writeJsonOutput(output, {}, {});
output << R"(")"
<< R"(, "line": )" << equations_lineno[eq];
if (auto eqtags = getEquationTags(eq);
!eqtags.empty())
{
output << R"(, "tags": {)";
int i = 0;
for (const auto &[name, value] : eqtags)
{
if (i != 0)
output << ", ";
output << R"(")" << name << R"(": ")" << value << R"(")";
i++;
}
output << "}";
eqtags.clear();
}
}
output << "}" << endl;
2017-02-02 15:09:43 +01:00
}
output << endl << "]" << endl;
}
string
ModelTree::matlab_arch(const string &mexext)
{
if (mexext == "mexglx")
return "glnx86";
else if (mexext == "mexa64")
return "glnxa64";
if (mexext == "mexw32")
return "win32";
else if (mexext == "mexw64")
return "win64";
else if (mexext == "mexmaci")
{
cerr << "32-bit MATLAB not supported on macOS" << endl;
exit(EXIT_FAILURE);
}
else if (mexext == "mexmaci64")
return "maci64";
else
{
cerr << "ERROR: 'mexext' option to preprocessor incorrectly set, needed with 'use_dll'" << endl;
exit(EXIT_FAILURE);
}
}
void
ModelTree::compileDll(const string &basename, const string &static_or_dynamic, const string &mexext, const filesystem::path &matlabroot, const filesystem::path &dynareroot) const
{
const string opt_flags = "-O3 -g0 --param ira-max-conflict-table-size=1 -fno-forward-propagate -fno-gcse -fno-dce -fno-dse -fno-tree-fre -fno-tree-pre -fno-tree-cselim -fno-tree-dse -fno-tree-dce -fno-tree-pta -fno-gcse-after-reload";
filesystem::path compiler;
ostringstream flags;
string libs;
if (mexext == "mex")
{
// Octave
compiler = matlabroot / "bin" / "mkoctfile";
flags << "--mex";
}
else
{
// MATLAB
compiler = "gcc";
string arch = matlab_arch(mexext);
auto include_dir = matlabroot / "extern" / "include";
flags << "-I " << include_dir;
auto bin_dir = matlabroot / "bin" / arch;
flags << " -L " << bin_dir;
flags << " -fexceptions -DNDEBUG";
libs = "-lmex -lmx";
if (mexext == "mexglx" || mexext == "mexa64")
{
// GNU/Linux
flags << " -D_GNU_SOURCE -fPIC -pthread"
<< " -shared -Wl,--no-undefined -Wl,-rpath-link," << bin_dir;
libs += " -lm -lstdc++";
if (mexext == "mexglx")
flags << " -D_FILE_OFFSET_BITS=64 -m32";
else
flags << " -fno-omit-frame-pointer";
}
else if (mexext == "mexw32" || mexext == "mexw64")
{
// Windows
flags << " -static-libgcc -static-libstdc++ -shared";
// Put the MinGW environment shipped with Dynare in the path
auto mingwpath = dynareroot / (string{"mingw"} + (mexext == "mexw32" ? "32" : "64")) / "bin";
string newpath = "PATH=" + mingwpath.string() + ';' + string{getenv("PATH")};
if (putenv(const_cast<char *>(newpath.c_str())) != 0)
{
cerr << "Can't set PATH" << endl;
exit(EXIT_FAILURE);
}
2019-12-20 16:59:30 +01:00
}
else
{
// macOS
#ifdef __APPLE__
char dynare_m_path[PATH_MAX];
uint32_t size = PATH_MAX;
string gcc_relative_path = "";
if (_NSGetExecutablePath(dynare_m_path, &size) == 0)
{
string str = dynare_m_path;
gcc_relative_path = str.substr(0, str.find_last_of("/")) + "/../../.brew/bin/gcc-9";
}
if (filesystem::exists(gcc_relative_path))
compiler = gcc_relative_path;
else if (filesystem::exists("/usr/local/bin/gcc-9"))
compiler = "/usr/local/bin/gcc-9";
else
{
cerr << "ERROR: You must install gcc-9 on your system before using the `use_dll` option of Dynare. "
<< "You can do this via the Dynare installation package." << endl;
exit(EXIT_FAILURE);
}
#endif
flags << " -fno-common -arch x86_64 -mmacosx-version-min=10.9 -Wl,-twolevel_namespace -undefined error -bundle";
libs += " -lm -lstdc++";
}
}
auto model_dir = filesystem::path{basename} / "model" / "src";
filesystem::path main_src{model_dir / (static_or_dynamic + ".c")},
mex_src{model_dir / (static_or_dynamic + "_mex.c")};
filesystem::path mex_dir{"+" + basename};
filesystem::path binary{mex_dir / (static_or_dynamic + "." + mexext)};
ostringstream cmd;
#ifdef _WIN32
/* On Windows, system() hands the command over to "cmd.exe /C". We need to
enclose the whole command line within double quotes if we want the inner
quotes to be correctly handled. See "cmd /?" for more details. */
cmd << '"';
#endif
if (user_set_compiler.empty())
cmd << compiler << " ";
else
if (!filesystem::exists(user_set_compiler))
{
cerr << "Error: The specified compiler '" << user_set_compiler << "' cannot be found on your system" << endl;
exit(EXIT_FAILURE);
}
else
cmd << user_set_compiler << " ";
if (user_set_subst_flags.empty())
cmd << opt_flags << " " << flags.str() << " ";
else
cmd << user_set_subst_flags << " ";
if (!user_set_add_flags.empty())
cmd << user_set_add_flags << " ";
cmd << main_src << " " << mex_src << " -o " << binary << " ";
if (user_set_subst_libs.empty())
cmd << libs;
else
cmd << user_set_subst_libs;
if (!user_set_add_libs.empty())
cmd << " " << user_set_add_libs;
#ifdef _WIN32
cmd << '"';
#endif
cout << "Compiling " << static_or_dynamic << " MEX..." << endl << cmd.str() << endl;
if (system(cmd.str().c_str()))
{
cerr << "Compilation failed" << endl;
exit(EXIT_FAILURE);
}
}
void
ModelTree::reorderAuxiliaryEquations()
{
using namespace boost;
// Create the mapping between auxiliary variables and auxiliary equations
int n = static_cast<int>(aux_equations.size());
map<int, int> auxEndoToEq;
for (int i = 0; i < n; i++)
{
auto varexpr = dynamic_cast<VariableNode *>(aux_equations[i]->arg1);
assert(varexpr && symbol_table.getType(varexpr->symb_id) == SymbolType::endogenous);
auxEndoToEq[varexpr->symb_id] = i;
}
assert(static_cast<int>(auxEndoToEq.size()) == n);
/* Construct the directed acyclic graph where auxiliary equations are
vertices and edges represent dependency relationships. */
using Graph = adjacency_list<vecS, vecS, directedS>;
Graph g(n);
for (int i = 0; i < n; i++)
{
set<int> endos;
aux_equations[i]->collectVariables(SymbolType::endogenous, endos);
for (int endo : endos)
if (auto it = auxEndoToEq.find(endo);
it != auxEndoToEq.end() && it->second != i)
add_edge(i, it->second, g);
}
// Topological sort of the graph
using Vertex = graph_traits<Graph>::vertex_descriptor;
vector<Vertex> ordered;
topological_sort(g, back_inserter(ordered));
// Reorder auxiliary equations accordingly
auto aux_equations_old = aux_equations;
auto index = get(vertex_index, g); // Maps vertex descriptors to their index
for (int i = 0; i < n; i++)
aux_equations[i] = aux_equations_old[index[ordered[i]]];
}