preprocessor + bytecode DLL: various enhancements to block and bytecode options (changes by Ferhat)

git-svn-id: https://www.dynare.org/svn/dynare/trunk@3244 ac1d8469-bf42-47a9-8791-bf33cf982152
issue#70
sebastien 2009-12-16 13:21:31 +00:00
parent 04aa1dbdb3
commit 160ec5d7ca
20 changed files with 3446 additions and 4887 deletions

File diff suppressed because it is too large Load Diff

View File

@ -1,200 +0,0 @@
/*
* Copyright (C) 2007-2008 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _BLOCKTRIANGULAR_HH
#define _BLOCKTRIANGULAR_HH
#include <string>
#include "CodeInterpreter.hh"
#include "ExprNode.hh"
#include "SymbolTable.hh"
//#include "ModelNormalization.hh"
//#include "ModelBlocks.hh"
#include "IncidenceMatrix.hh"
#include "ModelTree.hh"
//! Sparse matrix of double to store the values of the Jacobian
typedef map<pair<int ,int >,double> jacob_map;
typedef vector<pair<BlockSimulationType, pair<int, int> > > t_type;
//! Vector describing equations: BlockSimulationType, if BlockSimulationType == EVALUATE_s then a NodeID on the new normalized equation
typedef vector<pair<EquationType, NodeID > > t_etype;
//! Vector describing variables: max_lag in the block, max_lead in the block
typedef vector<pair< int, int> > t_vtype;
typedef set<int> temporary_terms_inuse_type;
typedef vector<pair< pair<int, pair<int, int> >, pair<int, int> > > chain_rule_derivatives_type;
//! For one lead/lag of one block, stores mapping of information between original model and block-decomposed model
struct IM_compact
{
int size, u_init, u_finish, nb_endo, nb_other_endo, size_exo, size_other_endo;
int *u, *us, *Var, *Equ, *Var_Index, *Equ_Index, *Exogenous, *Exogenous_Index, *Equ_X, *Equ_X_Index;
int *u_other_endo, *Var_other_endo, *Equ_other_endo, *Var_Index_other_endo, *Equ_Index_other_endo;
};
//! One block of the model
struct Block
{
int Size, Sized, nb_exo, nb_exo_det, nb_other_endo, Nb_Recursives;
BlockType Type;
BlockSimulationType Simulation_Type;
int Max_Lead, Max_Lag, Nb_Lead_Lag_Endo;
int Max_Lag_Endo, Max_Lead_Endo;
int Max_Lag_Other_Endo, Max_Lead_Other_Endo;
int Max_Lag_Exo, Max_Lead_Exo;
bool is_linear;
int *Equation, *Own_Derivative;
EquationType *Equation_Type;
NodeID *Equation_Normalized;
int *Variable, *Other_Endogenous, *Exogenous;
temporary_terms_type **Temporary_Terms_in_Equation;
//temporary_terms_type *Temporary_terms;
temporary_terms_inuse_type *Temporary_InUse;
IM_compact *IM_lead_lag;
chain_rule_derivatives_type *Chain_Rule_Derivatives;
int Code_Start, Code_Length;
};
//! The set of all blocks of the model
struct Model_Block
{
int Size, Periods;
Block* Block_List;
//int *in_Block_Equ, *in_Block_Var, *in_Equ_of_Block, *in_Var_of_Block;
};
//! Creates the incidence matrix, computes prologue & epilogue, normalizes the model and computes the block decomposition
class BlockTriangular
{
private:
//! Find equations and endogenous variables belonging to the prologue and epilogue of the model
void Prologue_Epilogue(bool* IM, int &prologue, int &epilogue, int n, vector<int> &Index_Var_IM, vector<int> &Index_Equ_IM, bool* IM0);
//! Allocates and fills the Model structure describing the content of each block
void Allocate_Block(int size, int *count_Equ, int count_Block, BlockType type, BlockSimulationType SimType, Model_Block *ModelBlock, t_etype &Equation_Type, int recurs_Size, vector<int> &Index_Var_IM, vector<int> &Index_Equ_IM);
//! Finds a matching between equations and endogenous variables
bool Compute_Normalization(bool *IM, int equation_number, int prologue, int epilogue, int verbose, bool *IM0, vector<int> &Index_Var_IM) const;
//! Decomposes into recurive blocks the non purely recursive equations and determines for each block the minimum feedback variables
void Compute_Block_Decomposition_and_Feedback_Variables_For_Each_Block(bool *IM, int nb_var, int prologue, int epilogue, vector<int> &Index_Equ_IM, vector<int> &Index_Var_IM, vector<pair<int, int> > &blocks, t_etype &Equation_Type, bool verbose_, bool select_feedback_variable, int mfs) const;
//! determines the type of each equation of the model (could be evaluated or need to be solved)
t_etype Equation_Type_determination(vector<BinaryOpNode *> &equations, map<pair<int, pair<int, int> >, NodeID> &first_order_endo_derivatives, vector<int> &Index_Var_IM, vector<int> &Index_Equ_IM, int mfs);
//! Tries to merge the consecutive blocks in a single block and determine the type of each block: recursive, simultaneous, ...
t_type Reduce_Blocks_and_type_determination(int prologue, int epilogue, vector<pair<int, int> > &blocks, vector<BinaryOpNode *> &equations, t_etype &Equation_Type, vector<int> &Index_Var_IM, vector<int> &Index_Equ_IM);
//! Compute for each variable its maximum lead and lag in its block
t_vtype Get_Variable_LeadLag_By_Block(vector<int > &components_set, int nb_blck_sim, int prologue, int epilogue, t_vtype &equation_lead_lag) const;
public:
SymbolTable &symbol_table;
/*Blocks blocks;
Normalization normalization;*/
IncidenceMatrix incidencematrix;
NumericalConstants &num_const;
DataTree *Normalized_Equation;
BlockTriangular(SymbolTable &symbol_table_arg, NumericalConstants &num_const_arg);
~BlockTriangular();
//! Frees the Model structure describing the content of each block
void Free_Block(Model_Block* ModelBlock) const;
map<pair<pair<int, pair<int, int> >, pair<int, int> >, int> get_Derivatives(Model_Block *ModelBlock, int Blck);
void Normalize_and_BlockDecompose_Static_0_Model(jacob_map &j_m, vector<BinaryOpNode *> &equations, t_etype &V_Equation_Type, map<pair<int, pair<int, int> >, NodeID> &first_order_endo_derivatives, int mfs, double cutoff);
void Normalize_and_BlockDecompose(bool* IM, Model_Block* ModelBlock, int n, int &prologue, int &epilogue, vector<int> &Index_Var_IM, vector<int> &Index_Equ_IM, bool* IM_0 , jacob_map &j_m, vector<BinaryOpNode *> &equations, t_etype &equation_simulation_type, map<pair<int, pair<int, int> >, NodeID> &first_order_endo_derivatives, bool dynamic, int mfs, double cutoff);
vector<int> Index_Equ_IM;
vector<int> Index_Var_IM;
int prologue, epilogue;
bool bt_verbose;
Model_Block* ModelBlock;
int periods;
inline static std::string BlockType0(int type)
{
switch (type)
{
case 0:
return ("SIMULTANEOUS TIME SEPARABLE ");
break;
case 1:
return ("PROLOGUE ");
break;
case 2:
return ("EPILOGUE ");
break;
case 3:
return ("SIMULTANEOUS TIME UNSEPARABLE");
break;
default:
return ("UNKNOWN ");
break;
}
};
inline static std::string BlockSim(int type)
{
switch (type)
{
case EVALUATE_FORWARD:
//case EVALUATE_FORWARD_R:
return ("EVALUATE FORWARD ");
break;
case EVALUATE_BACKWARD:
//case EVALUATE_BACKWARD_R:
return ("EVALUATE BACKWARD ");
break;
case SOLVE_FORWARD_SIMPLE:
return ("SOLVE FORWARD SIMPLE ");
break;
case SOLVE_BACKWARD_SIMPLE:
return ("SOLVE BACKWARD SIMPLE ");
break;
case SOLVE_TWO_BOUNDARIES_SIMPLE:
return ("SOLVE TWO BOUNDARIES SIMPLE ");
break;
case SOLVE_FORWARD_COMPLETE:
return ("SOLVE FORWARD COMPLETE ");
break;
case SOLVE_BACKWARD_COMPLETE:
return ("SOLVE BACKWARD COMPLETE ");
break;
case SOLVE_TWO_BOUNDARIES_COMPLETE:
return ("SOLVE TWO BOUNDARIES COMPLETE");
break;
default:
return ("UNKNOWN ");
break;
}
};
inline static std::string c_Equation_Type(int type)
{
char c_Equation_Type[4][13]=
{
"E_UNKNOWN ",
"E_EVALUATE ",
"E_EVALUATE_S",
"E_SOLVE "
};
return(c_Equation_Type[type]);
};
};
#endif

View File

@ -100,10 +100,10 @@ enum Tags
enum BlockType
{
SIMULTANS = 0, //!< Simultaneous time separable block
PROLOGUE = 1, //!< Prologue block (one equation at the beginning, later merged)
EPILOGUE = 2, //!< Epilogue block (one equation at the beginning, later merged)
SIMULTAN = 3 //!< Simultaneous time unseparable block
SIMULTANS, //!< Simultaneous time separable block
PROLOGUE, //!< Prologue block (one equation at the beginning, later merged)
EPILOGUE, //!< Epilogue block (one equation at the beginning, later merged)
SIMULTAN //!< Simultaneous time unseparable block
};
enum EquationType
@ -126,7 +126,7 @@ enum BlockSimulationType
SOLVE_TWO_BOUNDARIES_SIMPLE, //!< Block of one equation, newton solver needed, forward & ackward
SOLVE_FORWARD_COMPLETE, //!< Block of several equations, newton solver needed, forward
SOLVE_BACKWARD_COMPLETE, //!< Block of several equations, newton solver needed, backward
SOLVE_TWO_BOUNDARIES_COMPLETE,//!< Block of several equations, newton solver needed, forward and backwar
SOLVE_TWO_BOUNDARIES_COMPLETE //!< Block of several equations, newton solver needed, forward and backwar
};
//! Enumeration of possible symbol types
@ -475,9 +475,8 @@ private:
uint8_t op_code;
int size;
uint8_t type;
int *variable;
int *equation;
int *own_derivatives;
vector<int> variable;
vector<int> equation;
bool is_linear;
vector<Block_contain_type> Block_Contain_;
int endo_nbr;
@ -485,11 +484,14 @@ private:
int Max_Lead;
int u_count_int;
public:
inline FBEGINBLOCK_(){ op_code = FBEGINBLOCK; size = 0; type = UNKNOWN; variable = NULL; equation = NULL; own_derivatives = NULL;
inline FBEGINBLOCK_(){ op_code = FBEGINBLOCK; size = 0; type = UNKNOWN; /*variable = NULL; equation = NULL;*/
is_linear = false; endo_nbr = 0; Max_Lag = 0; Max_Lead = 0; u_count_int = 0;};
inline FBEGINBLOCK_(const int size_arg, const BlockSimulationType type_arg, int *variable_arg, int *equation_arg, int *own_derivatives_arg,
bool is_linear_arg, int endo_nbr_arg, int Max_Lag_arg, int Max_Lead_arg, int u_count_int_arg)
{ op_code = FBEGINBLOCK; size = size_arg; type = type_arg; variable = variable_arg; equation = equation_arg; own_derivatives = own_derivatives_arg;
inline FBEGINBLOCK_(unsigned int &size_arg, BlockSimulationType &type_arg, int unsigned first_element, int unsigned &block_size,
const vector<int> &variable_arg, const vector<int> &equation_arg,
bool is_linear_arg, int endo_nbr_arg, int Max_Lag_arg, int Max_Lead_arg, int &u_count_int_arg)
{ op_code = FBEGINBLOCK; size = size_arg; type = type_arg;
variable = vector<int>(variable_arg.begin()+first_element, variable_arg.begin()+(first_element+block_size));
equation = vector<int>(equation_arg.begin()+first_element, equation_arg.begin()+(first_element+block_size));
is_linear = is_linear_arg; endo_nbr = endo_nbr_arg; Max_Lag = Max_Lag_arg; Max_Lead = Max_Lead_arg; u_count_int = u_count_int_arg;/*Block_Contain.clear();*/};
inline unsigned int get_size() { return size;};
inline uint8_t get_type() { return type;};
@ -508,7 +510,6 @@ public:
{
CompileCode.write(reinterpret_cast<char *>(&variable[i]), sizeof(variable[0]));
CompileCode.write(reinterpret_cast<char *>(&equation[i]), sizeof(equation[0]));
CompileCode.write(reinterpret_cast<char *>(&own_derivatives[i]), sizeof(own_derivatives[0]));
}
if (type==SOLVE_TWO_BOUNDARIES_SIMPLE || type==SOLVE_TWO_BOUNDARIES_COMPLETE ||
type==SOLVE_BACKWARD_COMPLETE || type==SOLVE_FORWARD_COMPLETE)
@ -532,7 +533,6 @@ public:
Block_contain_type bc;
memcpy(&bc.Variable, code, sizeof(bc.Variable)); code += sizeof(bc.Variable);
memcpy(&bc.Equation, code, sizeof(bc.Equation)); code += sizeof(bc.Equation);
memcpy(&bc.Own_Derivative, code, sizeof(bc.Own_Derivative)); code += sizeof(bc.Own_Derivative);
Block_Contain_.push_back(bc);
}
if (type==SOLVE_TWO_BOUNDARIES_SIMPLE || type==SOLVE_TWO_BOUNDARIES_COMPLETE ||

View File

@ -876,13 +876,13 @@ PlannerObjectiveStatement::checkPass(ModFileStructure &mod_file_struct)
void
PlannerObjectiveStatement::computingPass()
{
model_tree->computingPass(false, true, false);
model_tree->computingPass(eval_context_type(), false, true, false);
}
void
PlannerObjectiveStatement::writeOutput(ostream &output, const string &basename) const
{
model_tree->writeStaticFile(basename + "_objective", false);
model_tree->writeStaticFile(basename + "_objective", false, false);
}
BVARDensityStatement::BVARDensityStatement(int maxnlags_arg, const OptionsList &options_list_arg) :

File diff suppressed because it is too large Load Diff

View File

@ -25,8 +25,6 @@ using namespace std;
#include <fstream>
#include "StaticModel.hh"
#include "StaticDllModel.hh"
#include "BlockTriangular.hh"
//! Stores a dynamic model
class DynamicModel : public ModelTree
@ -76,10 +74,15 @@ private:
//! Temporary terms for the file containing parameters dervicatives
temporary_terms_type params_derivs_temporary_terms;
//! Temporary terms for block decomposed models
vector< vector<temporary_terms_type> > v_temporary_terms;
vector<temporary_terms_inuse_type> v_temporary_terms_inuse;
//! Store the derivatives or the chainrule derivatives:map<pair< equation, pair< variable, lead_lag >, NodeID>
typedef map< pair< int, pair< int, int> >, NodeID> first_chain_rule_derivatives_type;
first_chain_rule_derivatives_type first_chain_rule_derivatives;
//! Writes dynamic model file (Matlab version)
void writeDynamicMFile(const string &dynamic_basename) const;
//! Writes dynamic model file (C version)
@ -91,37 +94,38 @@ private:
/*! \todo add third derivatives handling in C output */
void writeDynamicModel(ostream &DynamicOutput, bool use_dll) const;
//! Writes the Block reordred structure of the model in M output
void writeModelEquationsOrdered_M(Model_Block *ModelBlock, const string &dynamic_basename) const;
void writeModelEquationsOrdered_M(const string &dynamic_basename) const;
//! Writes the code of the Block reordred structure of the model in virtual machine bytecode
void writeModelEquationsCodeOrdered(const string file_name, const Model_Block *ModelBlock, const string bin_basename, map_idx_type map_idx) const;
void writeModelEquationsCodeOrdered(const string file_name, const string bin_basename, map_idx_type map_idx) const;
//! Computes jacobian and prepares for equation normalization
/*! Using values from initval/endval blocks and parameter initializations:
- computes the jacobian for the model w.r. to contemporaneous variables
- removes edges of the incidence matrix when derivative w.r. to the corresponding variable is too close to zero (below the cutoff)
*/
void evaluateJacobian(const eval_context_type &eval_context, jacob_map *j_m, bool dynamic);
void BlockLinear(Model_Block *ModelBlock);
//void evaluateJacobian(const eval_context_type &eval_context, jacob_map *j_m, bool dynamic);
//! return a map on the block jacobian
map<pair<pair<int, pair<int, int> >, pair<int, int> >, int> get_Derivatives(int block);
//! Computes chain rule derivatives of the Jacobian w.r. to endogenous variables
void computeChainRuleJacobian(t_blocks_derivatives &blocks_derivatives);
string reform(string name) const;
map_idx_type map_idx;
//! Build The incidence matrix form the modeltree
void BuildIncidenceMatrix();
void computeTemporaryTermsOrdered(Model_Block *ModelBlock);
void computeTemporaryTermsOrdered();
//! Write derivative code of an equation w.r. to a variable
void compileDerivative(ofstream &code_file, int eq, int symb_id, int lag, map_idx_type &map_idx) const;
//! Write chain rule derivative code of an equation w.r. to a variable
void compileChainRuleDerivative(ofstream &code_file, int eq, int var, int lag, map_idx_type &map_idx) const;
//! Get the type corresponding to a derivation ID
SymbolType getTypeByDerivID(int deriv_id) const throw (UnknownDerivIDException);
virtual SymbolType getTypeByDerivID(int deriv_id) const throw (UnknownDerivIDException);
//! Get the lag corresponding to a derivation ID
int getLagByDerivID(int deriv_id) const throw (UnknownDerivIDException);
virtual int getLagByDerivID(int deriv_id) const throw (UnknownDerivIDException);
//! Get the symbol ID corresponding to a derivation ID
int getSymbIDByDerivID(int deriv_id) const throw (UnknownDerivIDException);
virtual int getSymbIDByDerivID(int deriv_id) const throw (UnknownDerivIDException);
//! Compute the column indices of the dynamic Jacobian
void computeDynJacobianCols(bool jacobianExo);
//! Computes chain rule derivatives of the Jacobian w.r. to endogenous variables
void computeChainRuleJacobian(Model_Block *ModelBlock);
//! Computes derivatives of the Jacobian w.r. to parameters
void computeParamsDerivatives();
//! Computes temporary terms for the file containing parameters derivatives
@ -145,10 +149,50 @@ private:
//! Write chain rule derivative of a recursive equation w.r. to a variable
void writeChainRuleDerivative(ostream &output, int eq, int var, int lag, ExprNodeOutputType output_type, const temporary_terms_type &temporary_terms) const;
//! Collecte the derivatives w.r. to endogenous of the block, to endogenous of previouys blocks and to exogenous
void collect_block_first_order_derivatives();
//! Factorized code for substitutions of leads/lags
/*! \param[in] type determines which type of variables is concerned */
void substituteLeadLagInternal(aux_var_t type);
private:
//! Indicate if the temporary terms are computed for the overall model (true) or not (false). Default value true
bool global_temporary_terms;
//! vector of block reordered variables and equations
vector<int> equation_reordered, variable_reordered, inv_equation_reordered, inv_variable_reordered;
//! Vector describing equations: BlockSimulationType, if BlockSimulationType == EVALUATE_s then a NodeID on the new normalized equation
t_equation_type_and_normalized_equation equation_type_and_normalized_equation;
//! for each block contains pair< Simulation_Type, pair < Block_Size, Recursive_part_Size > >
t_block_type_firstequation_size_mfs block_type_firstequation_size_mfs;
//! for all blocks derivatives description
t_blocks_derivatives blocks_derivatives;
//! The jacobian without the elements below the cutoff
dynamic_jacob_map dynamic_jacobian;
//! Vector indicating if the block is linear in endogenous variable (true) or not (false)
vector<bool> blocks_linear;
//! Map the derivatives for a block pair<lag, make_pair(make_pair(eq, var)), NodeID>
typedef map<pair< int, pair<int, int> >, NodeID> t_derivative;
//! Vector of derivative for each blocks
vector<t_derivative> derivative_endo, derivative_other_endo, derivative_exo, derivative_exo_det;
//!List for each block and for each lag-leag all the other endogenous variables and exogenous variables
typedef set<int> t_var;
typedef map<int, t_var> t_lag_var;
vector<t_lag_var> other_endo_block, exo_block, exo_det_block;
//!Maximum lead and lag for each block on endogenous of the block, endogenous of the previous blocks, exogenous and deterministic exogenous
vector<pair<int, int> > endo_max_leadlag_block, other_endo_max_leadlag_block, exo_max_leadlag_block, exo_det_max_leadlag_block, max_leadlag_block;
public:
DynamicModel(SymbolTable &symbol_table_arg, NumericalConstants &num_constants);
//! Adds a variable node
@ -179,8 +223,6 @@ public:
//! Writes model initialization and lead/lag incidence matrix to output
void writeOutput(ostream &output, const string &basename, bool block, bool byte_code, bool use_dll) const;
//! Complete set to block decompose the model
BlockTriangular block_triangular;
//! Adds informations for simulation in a binary file
void Write_Inf_To_Bin_File(const string &dynamic_basename, const string &bin_basename,
const int &num, int &u_count_int, bool &file_open, bool is_two_boundaries) const;
@ -192,14 +234,12 @@ public:
/*! It assumes that the static model given in argument has just been allocated */
void toStatic(StaticModel &static_model) const;
void toStaticDll(StaticDllModel &static_model) const;
//! Writes LaTeX file with the equations of the dynamic model
void writeLatexFile(const string &basename) const;
virtual int getDerivID(int symb_id, int lag) const throw (UnknownDerivIDException);
virtual int getDynJacobianCol(int deriv_id) const throw (UnknownDerivIDException);
//! Returns true indicating that this is a dynamic model
virtual bool isDynamic() const { return true; };
@ -225,6 +265,40 @@ public:
//! Fills eval context with values of model local variables and auxiliary variables
void fillEvalContext(eval_context_type &eval_context) const;
//! Return the number of blocks
virtual unsigned int getNbBlocks() const {return(block_type_firstequation_size_mfs.size());};
//! Determine the simulation type of each block
virtual BlockSimulationType getBlockSimulationType(int block_number) const {return(block_type_firstequation_size_mfs[block_number].first.first);};
//! Return the first equation number of a block
virtual unsigned int getBlockFirstEquation(int block_number) const {return(block_type_firstequation_size_mfs[block_number].first.second);};
//! Return the size of the block block_number
virtual unsigned int getBlockSize(int block_number) const {return(block_type_firstequation_size_mfs[block_number].second.first);};
//! Return the number of feedback variable of the block block_number
virtual unsigned int getBlockMfs(int block_number) const {return(block_type_firstequation_size_mfs[block_number].second.second);};
//! Return the maximum lag in a block
virtual unsigned int getBlockMaxLag(int block_number) const {return(block_lag_lead[block_number].first);};
//! Return the maximum lead in a block
virtual unsigned int getBlockMaxLead(int block_number) const {return(block_lag_lead[block_number].second);};
//! Return the type of equation (equation_number) belonging to the block block_number
virtual EquationType getBlockEquationType(int block_number, int equation_number) const {return( equation_type_and_normalized_equation[equation_reordered[block_type_firstequation_size_mfs[block_number].first.second+equation_number]].first);};
//! Return true if the equation has been normalized
virtual bool isBlockEquationRenormalized(int block_number, int equation_number) const {return( equation_type_and_normalized_equation[equation_reordered[block_type_firstequation_size_mfs[block_number].first.second+equation_number]].first == E_EVALUATE_S);};
//! Return the NodeID of the equation equation_number belonging to the block block_number
virtual NodeID getBlockEquationNodeID(int block_number, int equation_number) const {return( equations[equation_reordered[block_type_firstequation_size_mfs[block_number].first.second+equation_number]]);};
//! Return the NodeID of the renormalized equation equation_number belonging to the block block_number
virtual NodeID getBlockEquationRenormalizedNodeID(int block_number, int equation_number) const {return( equation_type_and_normalized_equation[equation_reordered[block_type_firstequation_size_mfs[block_number].first.second+equation_number]].second);};
//! Return the original number of equation equation_number belonging to the block block_number
virtual int getBlockEquationID(int block_number, int equation_number) const {return( equation_reordered[block_type_firstequation_size_mfs[block_number].first.second+equation_number]);};
//! Return the original number of variable variable_number belonging to the block block_number
virtual int getBlockVariableID(int block_number, int variable_number) const {return( variable_reordered[block_type_firstequation_size_mfs[block_number].first.second+variable_number]);};
//! Return the position of equation_number in the block number belonging to the block block_number
virtual int getBlockInitialEquationID(int block_number, int equation_number) const {return((int)inv_equation_reordered[equation_number] - (int)block_type_firstequation_size_mfs[block_number].first.second);};
//! Return the position of variable_number in the block number belonging to the block block_number
virtual int getBlockInitialVariableID(int block_number, int variable_number) const {return((int)inv_variable_reordered[variable_number] - (int)block_type_firstequation_size_mfs[block_number].first.second);};
};
#endif

View File

@ -32,7 +32,6 @@ using namespace __gnu_cxx;
#include "ExprNode.hh"
#include "DataTree.hh"
#include "BlockTriangular.hh"
#include "ModFile.hh"
ExprNode::ExprNode(DataTree &datatree_arg) : datatree(datatree_arg), preparedForDerivation(false)
@ -127,9 +126,8 @@ ExprNode::computeTemporaryTerms(map<NodeID, int> &reference_count,
temporary_terms_type &temporary_terms,
map<NodeID, pair<int, int> > &first_occurence,
int Curr_block,
Model_Block *ModelBlock,
int equation,
map_idx_type &map_idx) const
vector<vector<temporary_terms_type> > &v_temporary_terms,
int equation) const
{
// Nothing to do for a terminal node
}
@ -242,18 +240,17 @@ NumConstNode::computeDerivative(int deriv_id)
}
void
NumConstNode::collectTemporary_terms(const temporary_terms_type &temporary_terms, Model_Block *ModelBlock, int Curr_Block) const
NumConstNode::collectTemporary_terms(const temporary_terms_type &temporary_terms, temporary_terms_inuse_type &temporary_terms_inuse, int Curr_Block) const
{
temporary_terms_type::const_iterator it = temporary_terms.find(const_cast<NumConstNode *>(this));
if (it != temporary_terms.end())
ModelBlock->Block_List[Curr_Block].Temporary_InUse->insert(idx);
temporary_terms_inuse.insert(idx);
}
void
NumConstNode::writeOutput(ostream &output, ExprNodeOutputType output_type,
const temporary_terms_type &temporary_terms) const
{
//cout << "writeOutput constante\n";
temporary_terms_type::const_iterator it = temporary_terms.find(const_cast<NumConstNode *>(this));
if (it != temporary_terms.end())
if (output_type == oMatlabDynamicModelSparse)
@ -427,13 +424,13 @@ VariableNode::computeDerivative(int deriv_id)
}
void
VariableNode::collectTemporary_terms(const temporary_terms_type &temporary_terms, Model_Block *ModelBlock, int Curr_Block) const
VariableNode::collectTemporary_terms(const temporary_terms_type &temporary_terms, temporary_terms_inuse_type &temporary_terms_inuse, int Curr_Block) const
{
temporary_terms_type::const_iterator it = temporary_terms.find(const_cast<VariableNode *>(this));
if (it != temporary_terms.end())
ModelBlock->Block_List[Curr_Block].Temporary_InUse->insert(idx);
temporary_terms_inuse.insert(idx);
if (type== eModelLocalVariable)
datatree.local_variables_table[symb_id]->collectTemporary_terms(temporary_terms, ModelBlock, Curr_Block);
datatree.local_variables_table[symb_id]->collectTemporary_terms(temporary_terms, temporary_terms_inuse, Curr_Block);
}
void
@ -486,7 +483,7 @@ VariableNode::writeOutput(ostream &output, ExprNodeOutputType output_type,
case eModelLocalVariable:
case eModFileLocalVariable:
if (output_type==oMatlabDynamicModelSparse || output_type==oMatlabStaticModelSparse)
if (output_type==oMatlabDynamicModelSparse || output_type==oMatlabStaticModelSparse || output_type == oMatlabDynamicModelSparseLocalTemporaryTerms)
{
output << "(";
datatree.local_variables_table[symb_id]->writeOutput(output, output_type,temporary_terms);
@ -510,6 +507,7 @@ VariableNode::writeOutput(ostream &output, ExprNodeOutputType output_type,
output << "y" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << RIGHT_ARRAY_SUBSCRIPT(output_type);
break;
case oMatlabDynamicModelSparse:
case oMatlabDynamicModelSparseLocalTemporaryTerms:
i = tsid + ARRAY_SUBSCRIPT_OFFSET(output_type);
if (lag > 0)
output << "y" << LEFT_ARRAY_SUBSCRIPT(output_type) << "it_+" << lag << ", " << i << RIGHT_ARRAY_SUBSCRIPT(output_type);
@ -535,6 +533,7 @@ VariableNode::writeOutput(ostream &output, ExprNodeOutputType output_type,
{
case oMatlabDynamicModel:
case oMatlabDynamicModelSparse:
case oMatlabDynamicModelSparseLocalTemporaryTerms:
if (lag > 0)
output << "x(it_+" << lag << ", " << i << ")";
else if (lag < 0)
@ -572,6 +571,7 @@ VariableNode::writeOutput(ostream &output, ExprNodeOutputType output_type,
{
case oMatlabDynamicModel:
case oMatlabDynamicModelSparse:
case oMatlabDynamicModelSparseLocalTemporaryTerms:
if (lag > 0)
output << "x(it_+" << lag << ", " << i << ")";
else if (lag < 0)
@ -695,12 +695,11 @@ VariableNode::computeTemporaryTerms(map<NodeID, int> &reference_count,
temporary_terms_type &temporary_terms,
map<NodeID, pair<int, int> > &first_occurence,
int Curr_block,
Model_Block *ModelBlock,
int equation,
map_idx_type &map_idx) const
vector<vector<temporary_terms_type> > &v_temporary_terms,
int equation) const
{
if (type== eModelLocalVariable)
datatree.local_variables_table[symb_id]->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, Curr_block, ModelBlock, equation, map_idx);
datatree.local_variables_table[symb_id]->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, Curr_block, v_temporary_terms, equation);
}
void
@ -1204,9 +1203,8 @@ UnaryOpNode::computeTemporaryTerms(map<NodeID, int> &reference_count,
temporary_terms_type &temporary_terms,
map<NodeID, pair<int, int> > &first_occurence,
int Curr_block,
Model_Block *ModelBlock,
int equation,
map_idx_type &map_idx) const
vector< vector<temporary_terms_type> > &v_temporary_terms,
int equation) const
{
NodeID this2 = const_cast<UnaryOpNode *>(this);
map<NodeID, int>::iterator it = reference_count.find(this2);
@ -1214,7 +1212,7 @@ UnaryOpNode::computeTemporaryTerms(map<NodeID, int> &reference_count,
{
reference_count[this2] = 1;
first_occurence[this2] = make_pair(Curr_block,equation);
arg->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, Curr_block, ModelBlock, equation, map_idx);
arg->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, Curr_block, v_temporary_terms, equation);
}
else
{
@ -1222,19 +1220,19 @@ UnaryOpNode::computeTemporaryTerms(map<NodeID, int> &reference_count,
if (reference_count[this2] * cost(temporary_terms, false) > MIN_COST_C)
{
temporary_terms.insert(this2);
ModelBlock->Block_List[first_occurence[this2].first].Temporary_Terms_in_Equation[first_occurence[this2].second]->insert(this2);
v_temporary_terms[first_occurence[this2].first][first_occurence[this2].second].insert(this2);
}
}
}
void
UnaryOpNode::collectTemporary_terms(const temporary_terms_type &temporary_terms, Model_Block *ModelBlock, int Curr_Block) const
UnaryOpNode::collectTemporary_terms(const temporary_terms_type &temporary_terms, temporary_terms_inuse_type &temporary_terms_inuse, int Curr_Block) const
{
temporary_terms_type::const_iterator it = temporary_terms.find(const_cast<UnaryOpNode*>(this));
if (it != temporary_terms.end())
ModelBlock->Block_List[Curr_Block].Temporary_InUse->insert(idx);
temporary_terms_inuse.insert(idx);
else
arg->collectTemporary_terms(temporary_terms, ModelBlock, Curr_Block);
arg->collectTemporary_terms(temporary_terms, temporary_terms_inuse, Curr_Block);
}
void
@ -1326,6 +1324,7 @@ UnaryOpNode::writeOutput(ostream &output, ExprNodeOutputType output_type,
cerr << "Steady State Operator not implemented for oCDynamicModel." << endl;
exit(EXIT_FAILURE);
case oMatlabDynamicModelSparse:
case oMatlabDynamicModelSparseLocalTemporaryTerms:
cerr << "Steady State Operator not implemented for oMatlabDynamicModelSparse." << endl;
exit(EXIT_FAILURE);
default:
@ -1989,9 +1988,8 @@ BinaryOpNode::computeTemporaryTerms(map<NodeID, int> &reference_count,
temporary_terms_type &temporary_terms,
map<NodeID, pair<int, int> > &first_occurence,
int Curr_block,
Model_Block *ModelBlock,
int equation,
map_idx_type &map_idx) const
vector<vector<temporary_terms_type> > &v_temporary_terms,
int equation) const
{
NodeID this2 = const_cast<BinaryOpNode *>(this);
map<NodeID, int>::iterator it = reference_count.find(this2);
@ -1999,8 +1997,8 @@ BinaryOpNode::computeTemporaryTerms(map<NodeID, int> &reference_count,
{
reference_count[this2] = 1;
first_occurence[this2] = make_pair(Curr_block, equation);
arg1->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, Curr_block, ModelBlock, equation, map_idx);
arg2->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, Curr_block, ModelBlock, equation, map_idx);
arg1->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, Curr_block, v_temporary_terms, equation);
arg2->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, Curr_block, v_temporary_terms, equation);
}
else
{
@ -2008,7 +2006,7 @@ BinaryOpNode::computeTemporaryTerms(map<NodeID, int> &reference_count,
if (reference_count[this2] * cost(temporary_terms, false) > MIN_COST_C)
{
temporary_terms.insert(this2);
ModelBlock->Block_List[first_occurence[this2].first].Temporary_Terms_in_Equation[first_occurence[this2].second]->insert(this2);
v_temporary_terms[first_occurence[this2].first][first_occurence[this2].second].insert(this2);
}
}
}
@ -2092,15 +2090,15 @@ BinaryOpNode::compile(ostream &CompileCode, bool lhs_rhs, const temporary_terms_
}
void
BinaryOpNode::collectTemporary_terms(const temporary_terms_type &temporary_terms, Model_Block *ModelBlock, int Curr_Block) const
BinaryOpNode::collectTemporary_terms(const temporary_terms_type &temporary_terms, temporary_terms_inuse_type &temporary_terms_inuse, int Curr_Block) const
{
temporary_terms_type::const_iterator it = temporary_terms.find(const_cast<BinaryOpNode *>(this));
if (it != temporary_terms.end())
ModelBlock->Block_List[Curr_Block].Temporary_InUse->insert(idx);
temporary_terms_inuse.insert(idx);
else
{
arg1->collectTemporary_terms(temporary_terms, ModelBlock, Curr_Block);
arg2->collectTemporary_terms(temporary_terms, ModelBlock, Curr_Block);
arg1->collectTemporary_terms(temporary_terms, temporary_terms_inuse, Curr_Block);
arg2->collectTemporary_terms(temporary_terms, temporary_terms_inuse, Curr_Block);
}
}
@ -2109,7 +2107,6 @@ void
BinaryOpNode::writeOutput(ostream &output, ExprNodeOutputType output_type,
const temporary_terms_type &temporary_terms) const
{
//cout << "writeOutput binary\n";
// If current node is a temporary term
temporary_terms_type::const_iterator it = temporary_terms.find(const_cast<BinaryOpNode *>(this));
if (it != temporary_terms.end())
@ -2897,9 +2894,8 @@ TrinaryOpNode::computeTemporaryTerms(map<NodeID, int> &reference_count,
temporary_terms_type &temporary_terms,
map<NodeID, pair<int, int> > &first_occurence,
int Curr_block,
Model_Block *ModelBlock,
int equation,
map_idx_type &map_idx) const
vector<vector<temporary_terms_type> > &v_temporary_terms,
int equation) const
{
NodeID this2 = const_cast<TrinaryOpNode *>(this);
map<NodeID, int>::iterator it = reference_count.find(this2);
@ -2907,9 +2903,9 @@ TrinaryOpNode::computeTemporaryTerms(map<NodeID, int> &reference_count,
{
reference_count[this2] = 1;
first_occurence[this2] = make_pair(Curr_block,equation);
arg1->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, Curr_block, ModelBlock, equation, map_idx);
arg2->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, Curr_block, ModelBlock, equation, map_idx);
arg3->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, Curr_block, ModelBlock, equation, map_idx);
arg1->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, Curr_block, v_temporary_terms, equation);
arg2->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, Curr_block, v_temporary_terms, equation);
arg3->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, Curr_block, v_temporary_terms, equation);
}
else
{
@ -2917,7 +2913,7 @@ TrinaryOpNode::computeTemporaryTerms(map<NodeID, int> &reference_count,
if (reference_count[this2] * cost(temporary_terms, false) > MIN_COST_C)
{
temporary_terms.insert(this2);
ModelBlock->Block_List[first_occurence[this2].first].Temporary_Terms_in_Equation[first_occurence[this2].second]->insert(this2);
v_temporary_terms[first_occurence[this2].first][first_occurence[this2].second].insert(this2);
}
}
}
@ -2972,16 +2968,16 @@ TrinaryOpNode::compile(ostream &CompileCode, bool lhs_rhs, const temporary_terms
}
void
TrinaryOpNode::collectTemporary_terms(const temporary_terms_type &temporary_terms, Model_Block *ModelBlock, int Curr_Block) const
TrinaryOpNode::collectTemporary_terms(const temporary_terms_type &temporary_terms, temporary_terms_inuse_type &temporary_terms_inuse, int Curr_Block) const
{
temporary_terms_type::const_iterator it = temporary_terms.find(const_cast<TrinaryOpNode *>(this));
if (it != temporary_terms.end())
ModelBlock->Block_List[Curr_Block].Temporary_InUse->insert(idx);
temporary_terms_inuse.insert(idx);
else
{
arg1->collectTemporary_terms(temporary_terms, ModelBlock, Curr_Block);
arg2->collectTemporary_terms(temporary_terms, ModelBlock, Curr_Block);
arg3->collectTemporary_terms(temporary_terms, ModelBlock, Curr_Block);
arg1->collectTemporary_terms(temporary_terms, temporary_terms_inuse, Curr_Block);
arg2->collectTemporary_terms(temporary_terms, temporary_terms_inuse, Curr_Block);
arg3->collectTemporary_terms(temporary_terms, temporary_terms_inuse, Curr_Block);
}
}
@ -3206,9 +3202,8 @@ UnknownFunctionNode::computeTemporaryTerms(map<NodeID, int> &reference_count,
temporary_terms_type &temporary_terms,
map<NodeID, pair<int, int> > &first_occurence,
int Curr_block,
Model_Block *ModelBlock,
int equation,
map_idx_type &map_idx) const
vector< vector<temporary_terms_type> > &v_temporary_terms,
int equation) const
{
cerr << "UnknownFunctionNode::computeTemporaryTerms: not implemented" << endl;
exit(EXIT_FAILURE);
@ -3223,11 +3218,11 @@ UnknownFunctionNode::collectVariables(SymbolType type_arg, set<pair<int, int> >
}
void
UnknownFunctionNode::collectTemporary_terms(const temporary_terms_type &temporary_terms, Model_Block *ModelBlock, int Curr_Block) const
UnknownFunctionNode::collectTemporary_terms(const temporary_terms_type &temporary_terms, temporary_terms_inuse_type &temporary_terms_inuse, int Curr_Block) const
{
temporary_terms_type::const_iterator it = temporary_terms.find(const_cast<UnknownFunctionNode *>(this));
if (it != temporary_terms.end())
ModelBlock->Block_List[Curr_Block].Temporary_InUse->insert(idx);
temporary_terms_inuse.insert(idx);
else
{
//arg->collectTemporary_terms(temporary_terms, result);

View File

@ -44,6 +44,9 @@ struct ExprNodeLess;
/*! They are ordered by index number thanks to ExprNodeLess */
typedef set<NodeID, ExprNodeLess> temporary_terms_type;
//! set of temporary terms used in a block
typedef set<int> temporary_terms_inuse_type;
typedef map<int,int> map_idx_type;
//! Type for evaluation contexts
@ -63,7 +66,8 @@ enum ExprNodeOutputType
oLatexDynamicModel, //!< LaTeX code, dynamic model declarations
oLatexDynamicSteadyStateOperator, //!< LaTeX code, dynamic model steady state declarations
oMatlabDynamicSteadyStateOperator, //!< Matlab code, dynamic model steady state declarations
oMatlabDynamicModelSparseSteadyStateOperator //!< Matlab code, dynamic block decomposed mode steady state declarations
oMatlabDynamicModelSparseSteadyStateOperator, //!< Matlab code, dynamic block decomposed model steady state declarations
oMatlabDynamicModelSparseLocalTemporaryTerms //!< Matlab code, dynamic block decomposed model local temporary_terms
};
#define IS_MATLAB(output_type) ((output_type) == oMatlabStaticModel \
@ -71,6 +75,7 @@ enum ExprNodeOutputType
|| (output_type) == oMatlabOutsideModel \
|| (output_type) == oMatlabStaticModelSparse \
|| (output_type) == oMatlabDynamicModelSparse \
|| (output_type) == oMatlabDynamicModelSparseLocalTemporaryTerms \
|| (output_type) == oMatlabDynamicSteadyStateOperator \
|| (output_type) == oMatlabDynamicModelSparseSteadyStateOperator)
@ -102,7 +107,7 @@ class ExprNode
{
friend class DataTree;
friend class DynamicModel;
friend class StaticDllModel;
friend class StaticModel;
friend class ExprNodeLess;
friend class NumConstNode;
friend class VariableNode;
@ -200,14 +205,13 @@ public:
*/
virtual void collectModelLocalVariables(set<int> &result) const;
virtual void collectTemporary_terms(const temporary_terms_type &temporary_terms, Model_Block *ModelBlock, int Curr_Block) const = 0;
virtual void collectTemporary_terms(const temporary_terms_type &temporary_terms, temporary_terms_inuse_type &temporary_terms_inuse, int Curr_Block) const = 0;
virtual void computeTemporaryTerms(map<NodeID, int> &reference_count,
temporary_terms_type &temporary_terms,
map<NodeID, pair<int, int> > &first_occurence,
int Curr_block,
Model_Block *ModelBlock,
int equation,
map_idx_type &map_idx) const;
vector< vector<temporary_terms_type> > &v_temporary_terms,
int equation) const;
class EvalException
@ -245,7 +249,7 @@ public:
typedef map<const ExprNode *, const VariableNode *> subst_table_t;
//! Creates auxiliary endo lead variables corresponding to this expression
/*!
/*!
If maximum endogenous lead >= 3, this method will also create intermediary auxiliary var, and will add the equations of the form aux1 = aux2(+1) to the substitution table.
\pre This expression is assumed to have maximum endogenous lead >= 2
\param[in,out] subst_table The table to which new auxiliary variables and their correspondance will be added
@ -255,7 +259,7 @@ public:
VariableNode *createEndoLeadAuxiliaryVarForMyself(subst_table_t &subst_table, vector<BinaryOpNode *> &neweqs) const;
//! Creates auxiliary exo lead variables corresponding to this expression
/*!
/*!
If maximum exogenous lead >= 2, this method will also create intermediary auxiliary var, and will add the equations of the form aux1 = aux2(+1) to the substitution table.
\pre This expression is assumed to have maximum exogenous lead >= 1
\param[in,out] subst_table The table to which new auxiliary variables and their correspondance will be added
@ -332,7 +336,7 @@ public:
virtual void prepareForDerivation();
virtual void writeOutput(ostream &output, ExprNodeOutputType output_type, const temporary_terms_type &temporary_terms) const;
virtual void collectVariables(SymbolType type_arg, set<pair<int, int> > &result) const;
virtual void collectTemporary_terms(const temporary_terms_type &temporary_terms, Model_Block *ModelBlock, int Curr_Block) const;
virtual void collectTemporary_terms(const temporary_terms_type &temporary_terms, temporary_terms_inuse_type &temporary_terms_inuse, int Curr_Block) const;
virtual double eval(const eval_context_type &eval_context) const throw (EvalException);
virtual void compile(ostream &CompileCode, bool lhs_rhs, const temporary_terms_type &temporary_terms, map_idx_type &map_idx, bool dynamic, bool steady_dynamic) const;
virtual NodeID toStatic(DataTree &static_datatree) const;
@ -367,10 +371,9 @@ public:
temporary_terms_type &temporary_terms,
map<NodeID, pair<int, int> > &first_occurence,
int Curr_block,
Model_Block *ModelBlock,
int equation,
map_idx_type &map_idx) const;
virtual void collectTemporary_terms(const temporary_terms_type &temporary_terms, Model_Block *ModelBlock, int Curr_Block) const;
vector< vector<temporary_terms_type> > &v_temporary_terms,
int equation) const;
virtual void collectTemporary_terms(const temporary_terms_type &temporary_terms, temporary_terms_inuse_type &temporary_terms_inuse, int Curr_Block) const;
virtual double eval(const eval_context_type &eval_context) const throw (EvalException);
virtual void compile(ostream &CompileCode, bool lhs_rhs, const temporary_terms_type &temporary_terms, map_idx_type &map_idx, bool dynamic, bool steady_dynamic) const;
virtual NodeID toStatic(DataTree &static_datatree) const;
@ -409,11 +412,10 @@ public:
temporary_terms_type &temporary_terms,
map<NodeID, pair<int, int> > &first_occurence,
int Curr_block,
Model_Block *ModelBlock,
int equation,
map_idx_type &map_idx) const;
vector< vector<temporary_terms_type> > &v_temporary_terms,
int equation) const;
virtual void collectVariables(SymbolType type_arg, set<pair<int, int> > &result) const;
virtual void collectTemporary_terms(const temporary_terms_type &temporary_terms, Model_Block *ModelBlock, int Curr_Block) const;
virtual void collectTemporary_terms(const temporary_terms_type &temporary_terms, temporary_terms_inuse_type &temporary_terms_inuse, int Curr_Block) const;
static double eval_opcode(UnaryOpcode op_code, double v) throw (EvalException);
virtual double eval(const eval_context_type &eval_context) const throw (EvalException);
virtual void compile(ostream &CompileCode, bool lhs_rhs, const temporary_terms_type &temporary_terms, map_idx_type &map_idx, bool dynamic, bool steady_dynamic) const;
@ -458,11 +460,10 @@ public:
temporary_terms_type &temporary_terms,
map<NodeID, pair<int, int> > &first_occurence,
int Curr_block,
Model_Block *ModelBlock,
int equation,
map_idx_type &map_idx) const;
vector< vector<temporary_terms_type> > &v_temporary_terms,
int equation) const;
virtual void collectVariables(SymbolType type_arg, set<pair<int, int> > &result) const;
virtual void collectTemporary_terms(const temporary_terms_type &temporary_terms, Model_Block *ModelBlock, int Curr_Block) const;
virtual void collectTemporary_terms(const temporary_terms_type &temporary_terms, temporary_terms_inuse_type &temporary_terms_inuse, int Curr_Block) const;
static double eval_opcode(double v1, BinaryOpcode op_code, double v2) throw (EvalException);
virtual double eval(const eval_context_type &eval_context) const throw (EvalException);
virtual void compile(ostream &CompileCode, bool lhs_rhs, const temporary_terms_type &temporary_terms, map_idx_type &map_idx, bool dynamic, bool steady_dynamic) const;
@ -511,11 +512,10 @@ public:
temporary_terms_type &temporary_terms,
map<NodeID, pair<int, int> > &first_occurence,
int Curr_block,
Model_Block *ModelBlock,
int equation,
map_idx_type &map_idx) const;
vector< vector<temporary_terms_type> > &v_temporary_terms,
int equation) const;
virtual void collectVariables(SymbolType type_arg, set<pair<int, int> > &result) const;
virtual void collectTemporary_terms(const temporary_terms_type &temporary_terms, Model_Block *ModelBlock, int Curr_Block) const;
virtual void collectTemporary_terms(const temporary_terms_type &temporary_terms, temporary_terms_inuse_type &temporary_terms_inuse, int Curr_Block) const;
static double eval_opcode(double v1, TrinaryOpcode op_code, double v2, double v3) throw (EvalException);
virtual double eval(const eval_context_type &eval_context) const throw (EvalException);
virtual void compile(ostream &CompileCode, bool lhs_rhs, const temporary_terms_type &temporary_terms, map_idx_type &map_idx, bool dynamic, bool steady_dynamic) const;
@ -552,11 +552,10 @@ public:
temporary_terms_type &temporary_terms,
map<NodeID, pair<int, int> > &first_occurence,
int Curr_block,
Model_Block *ModelBlock,
int equation,
map_idx_type &map_idx) const;
vector< vector<temporary_terms_type> > &v_temporary_terms,
int equation) const;
virtual void collectVariables(SymbolType type_arg, set<pair<int, int> > &result) const;
virtual void collectTemporary_terms(const temporary_terms_type &temporary_terms, Model_Block *ModelBlock, int Curr_Block) const;
virtual void collectTemporary_terms(const temporary_terms_type &temporary_terms, temporary_terms_inuse_type &temporary_terms_inuse, int Curr_Block) const;
virtual double eval(const eval_context_type &eval_context) const throw (EvalException);
virtual void compile(ostream &CompileCode, bool lhs_rhs, const temporary_terms_type &temporary_terms, map_idx_type &map_idx, bool dynamic, bool steady_dynamic) const;
virtual NodeID toStatic(DataTree &static_datatree) const;

View File

@ -1,245 +0,0 @@
/*
* Copyright (C) 2007-2009 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <http://www.gnu.org/licenses/>.
*/
#include <iostream>
#include <cstdlib>
#include <cstring>
#include "IncidenceMatrix.hh"
IncidenceMatrix::IncidenceMatrix(const SymbolTable &symbol_table_arg) :
symbol_table(symbol_table_arg)
{
Model_Max_Lead = Model_Max_Lead_Endo = Model_Max_Lead_Exo = 0;
Model_Max_Lag = Model_Max_Lag_Endo = Model_Max_Lag_Exo = 0;
}
//------------------------------------------------------------------------------
//For a lead or a lag build the Incidence Matrix structures
bool*
IncidenceMatrix::Build_IM(int lead_lag, SymbolType type)
{
int size;
bool *IM;
if(type==eEndogenous)
{
size = symbol_table.endo_nbr() * symbol_table.endo_nbr() * sizeof(IM[0]);
List_IM[lead_lag] = IM = (bool*)malloc(size);
for(int i = 0; i< symbol_table.endo_nbr() * symbol_table.endo_nbr(); i++) IM[i] = 0;
if(lead_lag > 0)
{
if(lead_lag > Model_Max_Lead_Endo)
{
Model_Max_Lead_Endo = lead_lag;
if(lead_lag > Model_Max_Lead)
Model_Max_Lead = lead_lag;
}
}
else
{
if( -lead_lag > Model_Max_Lag_Endo)
{
Model_Max_Lag_Endo = -lead_lag;
if(-lead_lag > Model_Max_Lag)
Model_Max_Lag = -lead_lag;
}
}
}
else
{ //eExogenous
size = symbol_table.endo_nbr() * symbol_table.exo_nbr() * sizeof(IM[0]);
List_IM_X[lead_lag] = IM = (bool*)malloc(size);
for(int i = 0; i< symbol_table.endo_nbr() * symbol_table.exo_nbr(); i++) IM[i] = 0;
if(lead_lag > 0)
{
if(lead_lag > Model_Max_Lead_Exo)
{
Model_Max_Lead_Exo = lead_lag;
if(lead_lag > Model_Max_Lead)
Model_Max_Lead = lead_lag;
}
}
else
{
if( -lead_lag > Model_Max_Lag_Exo)
{
Model_Max_Lag_Exo = -lead_lag;
if(-lead_lag > Model_Max_Lag)
Model_Max_Lag = -lead_lag;
}
}
}
return (IM);
}
void
IncidenceMatrix::Free_IM() const
{
IncidenceList::const_iterator it = List_IM.begin();
for(it = List_IM.begin(); it != List_IM.end(); it++)
free(it->second);
for(it = List_IM_X.begin(); it != List_IM_X.end(); it++)
free(it->second);
}
//------------------------------------------------------------------------------
// Return the incidence matrix related to a lead or a lag
bool*
IncidenceMatrix::Get_IM(int lead_lag, SymbolType type) const
{
IncidenceList::const_iterator it;
if(type==eEndogenous)
{
it = List_IM.find(lead_lag);
if(it!=List_IM.end())
return(it->second);
else
return(NULL);
}
else //eExogenous
{
it = List_IM_X.find(lead_lag);
if(it!=List_IM_X.end())
return(it->second);
else
return(NULL);
}
}
//------------------------------------------------------------------------------
// Fill the incidence matrix related to a lead or a lag
void
IncidenceMatrix::fill_IM(int equation, int variable, int lead_lag, SymbolType type)
{
bool* Cur_IM;
Cur_IM = Get_IM(lead_lag, type);
if(equation >= symbol_table.endo_nbr())
{
cout << "Error : The model has more equations (at least " << equation + 1 << ") than declared endogenous variables (" << symbol_table.endo_nbr() << ")\n";
exit(EXIT_FAILURE);
}
if (!Cur_IM)
Cur_IM = Build_IM(lead_lag, type);
if(type==eEndogenous)
Cur_IM[equation*symbol_table.endo_nbr() + variable] = 1;
else
Cur_IM[equation*symbol_table.exo_nbr() + variable] = 1;
}
//------------------------------------------------------------------------------
// unFill the incidence matrix related to a lead or a lag
void
IncidenceMatrix::unfill_IM(int equation, int variable, int lead_lag, SymbolType type)
{
bool* Cur_IM;
Cur_IM = Get_IM(lead_lag, type);
if (!Cur_IM)
Cur_IM = Build_IM(lead_lag, type);
if(type==eEndogenous)
Cur_IM[equation*symbol_table.endo_nbr() + variable] = 0;
else
Cur_IM[equation*symbol_table.exo_nbr() + variable] = 0;
}
//------------------------------------------------------------------------------
//Print azn incidence matrix
void
IncidenceMatrix::Print_SIM(bool* IM, SymbolType type) const
{
int i, j, n;
if(type == eEndogenous)
n = symbol_table.endo_nbr();
else
n = symbol_table.exo_nbr();
for(i = 0;i < symbol_table.endo_nbr();i++)
{
cout << " ";
for(j = 0;j < n;j++)
cout << IM[i*n + j] << " ";
cout << "\n";
}
}
//------------------------------------------------------------------------------
//Print all incidence matrix
void
IncidenceMatrix::Print_IM(SymbolType type) const
{
IncidenceList::const_iterator it;
cout << "-------------------------------------------------------------------\n";
if(type == eEndogenous)
for(int k=-Model_Max_Lag_Endo; k <= Model_Max_Lead_Endo; k++)
{
it = List_IM.find(k);
if(it!=List_IM.end())
{
cout << "Incidence matrix for lead_lag = " << k << "\n";
Print_SIM(it->second, type);
}
}
else // eExogenous
for(int k=-Model_Max_Lag_Exo; k <= Model_Max_Lead_Exo; k++)
{
it = List_IM_X.find(k);
if(it!=List_IM_X.end())
{
cout << "Incidence matrix for lead_lag = " << k << "\n";
Print_SIM(it->second, type);
}
}
}
//------------------------------------------------------------------------------
// Swap rows and columns of the incidence matrix
void
IncidenceMatrix::swap_IM_c(bool *SIM, int pos1, int pos2, int pos3, vector<int> &Index_Var_IM, vector<int> &Index_Equ_IM, int n) const
{
int tmp_i, j;
bool tmp_b;
/* We exchange equation (row)...*/
if(pos1 != pos2)
{
tmp_i = Index_Equ_IM[pos1];
Index_Equ_IM[pos1] = Index_Equ_IM[pos2];
Index_Equ_IM[pos2] = tmp_i;
for(j = 0;j < n;j++)
{
tmp_b = SIM[pos1 * n + j];
SIM[pos1*n + j] = SIM[pos2 * n + j];
SIM[pos2*n + j] = tmp_b;
}
}
/* ...and variables (column)*/
if(pos1 != pos3)
{
tmp_i = Index_Var_IM[pos1];
Index_Var_IM[pos1] = Index_Var_IM[pos3];
Index_Var_IM[pos3] = tmp_i;
for(j = 0;j < n;j++)
{
tmp_b = SIM[j * n + pos1];
SIM[j*n + pos1] = SIM[j * n + pos3];
SIM[j*n + pos3] = tmp_b;
}
}
}

View File

@ -1,57 +0,0 @@
/*
* Copyright (C) 2007-2008 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _INCIDENCEMATRIX_HH
#define _INCIDENCEMATRIX_HH
#include <map>
#include "ExprNode.hh"
#include "SymbolTable.hh"
//! List of incidence matrix (one matrix per lead/lag)
typedef bool* pbool;
typedef map<int,pbool> IncidenceList;
//! create and manage the incidence matrix
class IncidenceMatrix
{
public:
const SymbolTable &symbol_table;
IncidenceMatrix(const SymbolTable &symbol_table_arg);
bool* Build_IM(int lead_lag, SymbolType type);
bool* Get_IM(int lead_lag, SymbolType type) const;
void fill_IM(int equation, int variable_endo, int lead_lag, SymbolType type);
void unfill_IM(int equation, int variable_endo, int lead_lag, SymbolType type);
void Free_IM() const;
void Print_IM(SymbolType type) const;
void Print_SIM(bool* IM, SymbolType type) const;
void swap_IM_c(bool *SIM, int pos1, int pos2, int pos3, vector<int> &Index_Var_IM, vector<int> &Index_Equ_IM, int n) const;
int Model_Max_Lead, Model_Max_Lag;
int Model_Max_Lead_Endo, Model_Max_Lag_Endo, Model_Max_Lead_Exo, Model_Max_Lag_Exo;
private:
IncidenceList List_IM, List_IM_X;
};
#endif

View File

@ -16,8 +16,6 @@ dynare_m_SOURCES = \
ModelTree.hh \
StaticModel.cc \
StaticModel.hh \
StaticDllModel.cc \
StaticDllModel.hh \
DynamicModel.cc \
DynamicModel.hh \
NumericalConstants.cc \
@ -44,10 +42,6 @@ dynare_m_SOURCES = \
ExprNode.hh \
MinimumFeedbackSet.cc \
MinimumFeedbackSet.hh \
IncidenceMatrix.cc \
IncidenceMatrix.hh \
BlockTriangular.cc \
BlockTriangular.hh \
DynareMain.cc \
DynareMain2.cc \
CodeInterpreter.hh \

View File

@ -25,7 +25,6 @@
ModFile::ModFile() : expressions_tree(symbol_table, num_constants),
static_model(symbol_table, num_constants),
static_dll_model(symbol_table, num_constants),
dynamic_model(symbol_table, num_constants),
linear(false), block(false), byte_code(false),
use_dll(false)
@ -187,16 +186,8 @@ ModFile::computingPass(bool no_tmp_terms)
if (dynamic_model.equation_number() > 0)
{
// Compute static model and its derivatives
if(byte_code)
{
dynamic_model.toStaticDll(static_dll_model);
static_dll_model.computingPass(global_eval_context, no_tmp_terms, block);
}
else
{
dynamic_model.toStatic(static_model);
static_model.computingPass(block, false, no_tmp_terms);
}
dynamic_model.toStatic(static_model);
static_model.computingPass(global_eval_context, no_tmp_terms, false, block);
// Set things to compute for dynamic model
if (dynamic_model_needed)
{
@ -356,22 +347,14 @@ ModFile::writeOutputFiles(const string &basename, bool clear_all
InitValStatement *ivs = dynamic_cast<InitValStatement *>(*it);
if (ivs != NULL)
{
if (!byte_code)
static_model.writeAuxVarInitval(mOutputFile);
else
static_dll_model.writeAuxVarInitval(mOutputFile);
static_model.writeAuxVarInitval(mOutputFile);
ivs->writeOutputPostInit(mOutputFile);
}
// Special treatment for load params and steady state statement: insert initial values for the auxiliary variables
LoadParamsAndSteadyStateStatement *lpass = dynamic_cast<LoadParamsAndSteadyStateStatement *>(*it);
if (lpass)
{
if (!byte_code)
static_model.writeAuxVarInitval(mOutputFile);
else
static_dll_model.writeAuxVarInitval(mOutputFile);
}
static_model.writeAuxVarInitval(mOutputFile);
}
// Remove path for block option with M-files
@ -387,10 +370,8 @@ ModFile::writeOutputFiles(const string &basename, bool clear_all
// Create static and dynamic files
if (dynamic_model.equation_number() > 0)
{
if(byte_code)
static_dll_model.writeStaticFile(basename, block);
else
static_model.writeStaticFile(basename, block);
static_model.writeStaticFile(basename, block, byte_code);
if(dynamic_model_needed)
{
dynamic_model.writeDynamicFile(basename, block, byte_code, use_dll);

View File

@ -29,7 +29,6 @@ using namespace std;
#include "NumericalConstants.hh"
#include "NumericalInitialization.hh"
#include "StaticModel.hh"
#include "StaticDllModel.hh"
#include "DynamicModel.hh"
#include "Statement.hh"
@ -45,10 +44,8 @@ public:
NumericalConstants num_constants;
//! Expressions outside model block
DataTree expressions_tree;
//! Static model
StaticModel static_model;
//! Static Dll model
StaticDllModel static_dll_model;
StaticModel static_model;
//! Dynamic model
DynamicModel dynamic_model;
//! Option linear

View File

@ -23,6 +23,812 @@
#include <fstream>
#include "ModelTree.hh"
#include "MinimumFeedbackSet.hh"
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/max_cardinality_matching.hpp>
#include <boost/graph/strong_components.hpp>
#include <boost/graph/topological_sort.hpp>
using namespace boost;
using namespace MFS;
void
ModelTree::computeNormalization(const set<pair<int, int> > &endo_eqs_incidence) throw (NormalizationException)
{
const int n = equation_number();
assert(n == symbol_table.endo_nbr());
typedef adjacency_list<vecS, vecS, undirectedS> BipartiteGraph;
/*
Vertices 0 to n-1 are for endogenous (using type specific ID)
Vertices n to 2*n-1 are for equations (using equation no.)
*/
BipartiteGraph g(2 * n);
// Fill in the graph
set<pair<int, int> > endo;
for(set<pair<int, int> >::const_iterator it = endo_eqs_incidence.begin(); it != endo_eqs_incidence.end(); it++)
add_edge(it->first + n, it->second, g);
// Compute maximum cardinality matching
vector<int> mate_map(2*n);
#if 1
bool check = checked_edmonds_maximum_cardinality_matching(g, &mate_map[0]);
#else // Alternative way to compute normalization, by giving an initial matching using natural normalizations
fill(mate_map.begin(), mate_map.end(), graph_traits<BipartiteGraph>::null_vertex());
multimap<int, int> natural_endo2eqs;
computeNormalizedEquations(natural_endo2eqs);
for(int i = 0; i < symbol_table.endo_nbr(); i++)
{
if (natural_endo2eqs.count(i) == 0)
continue;
int j = natural_endo2eqs.find(i)->second;
put(&mate_map[0], i, n+j);
put(&mate_map[0], n+j, i);
}
edmonds_augmenting_path_finder<BipartiteGraph, size_t *, property_map<BipartiteGraph, vertex_index_t>::type> augmentor(g, &mate_map[0], get(vertex_index, g));
bool not_maximum_yet = true;
while(not_maximum_yet)
{
not_maximum_yet = augmentor.augment_matching();
}
augmentor.get_current_matching(&mate_map[0]);
bool check = maximum_cardinality_matching_verifier<BipartiteGraph, size_t *, property_map<BipartiteGraph, vertex_index_t>::type>::verify_matching(g, &mate_map[0], get(vertex_index, g));
#endif
assert(check);
#ifdef DEBUG
for(int i = 0; i < n; i++)
cout << "Endogenous " << symbol_table.getName(symbol_table.getID(eEndogenous, i))
<< " matched with equation " << (mate_map[i]-n+1) << endl;
#endif
// Create the resulting map, by copying the n first elements of mate_map, and substracting n to them
endo2eq.resize(equation_number());
transform(mate_map.begin(), mate_map.begin() + n, endo2eq.begin(), bind2nd(minus<int>(), n));
#ifdef DEBUG
multimap<int, int> natural_endo2eqs;
computeNormalizedEquations(natural_endo2eqs);
int n1 = 0, n2 = 0;
for(int i = 0; i < symbol_table.endo_nbr(); i++)
{
if (natural_endo2eqs.count(i) == 0)
continue;
n1++;
pair<multimap<int, int>::const_iterator, multimap<int, int>::const_iterator> x = natural_endo2eqs.equal_range(i);
if (find_if(x.first, x.second, compose1(bind2nd(equal_to<int>(), endo2eq[i]), select2nd<multimap<int, int>::value_type>())) == x.second)
cout << "Natural normalization of variable " << symbol_table.getName(symbol_table.getID(eEndogenous, i))
<< " not used." << endl;
else
n2++;
}
cout << "Used " << n2 << " natural normalizations out of " << n1 << ", for a total of " << n << " equations." << endl;
#endif
// Check if all variables are normalized
vector<int>::const_iterator it = find(mate_map.begin(), mate_map.begin() + n, graph_traits<BipartiteGraph>::null_vertex());
if (it != mate_map.begin() + n)
throw NormalizationException(symbol_table.getID(eEndogenous, it - mate_map.begin()));
}
void
ModelTree::computePossiblySingularNormalization(const jacob_map &contemporaneous_jacobian, bool try_symbolic)
{
cout << "Normalizing the model..." << endl;
set<pair<int, int> > endo_eqs_incidence;
for(jacob_map::const_iterator it = contemporaneous_jacobian.begin();
it != contemporaneous_jacobian.end(); it++)
endo_eqs_incidence.insert(make_pair(it->first.first, it->first.second));
try
{
computeNormalization(endo_eqs_incidence);
return;
}
catch(NormalizationException &e)
{
if (try_symbolic)
cout << "Normalization failed with cutoff, trying symbolic normalization..." << endl;
else
{
cerr << "ERROR: Could not normalize the model. Variable "
<< symbol_table.getName(e.symb_id)
<< " is not in the maximum cardinality matching. Try to decrease the cutoff." << endl;
exit(EXIT_FAILURE);
}
}
// If no non-singular normalization can be found, try to find a normalization even with a potential singularity
if (try_symbolic)
{
endo_eqs_incidence.clear();
set<pair<int, int> > endo;
for(int i = 0; i < equation_number(); i++)
{
endo.clear();
equations[i]->collectEndogenous(endo);
for(set<pair<int, int> >::const_iterator it = endo.begin(); it != endo.end(); it++)
endo_eqs_incidence.insert(make_pair(i, it->first));
}
try
{
computeNormalization(endo_eqs_incidence);
}
catch(NormalizationException &e)
{
cerr << "ERROR: Could not normalize the model even with zero cutoff. Variable "
<< symbol_table.getName(e.symb_id)
<< " is not in the maximum cardinality matching." << endl;
exit(EXIT_FAILURE);
}
}
}
void
ModelTree::computeNormalizedEquations(multimap<int, int> &endo2eqs) const
{
for(int i = 0; i < equation_number(); i++)
{
VariableNode *lhs = dynamic_cast<VariableNode *>(equations[i]->get_arg1());
if (lhs == NULL)
continue;
int symb_id = lhs->get_symb_id();
if (symbol_table.getType(symb_id) != eEndogenous)
continue;
set<pair<int, int> > endo;
equations[i]->get_arg2()->collectEndogenous(endo);
if (endo.find(make_pair(symbol_table.getTypeSpecificID(symb_id), 0)) != endo.end())
continue;
endo2eqs.insert(make_pair(symbol_table.getTypeSpecificID(symb_id), i));
cout << "Endogenous " << symbol_table.getName(symb_id) << " normalized in equation " << (i+1) << endl;
}
}
void
ModelTree::evaluateAndReduceJacobian(const eval_context_type &eval_context, jacob_map &contemporaneous_jacobian, jacob_map &static_jacobian, dynamic_jacob_map &dynamic_jacobian, double cutoff, bool verbose)
{
int nb_elements_contemparenous_Jacobian = 0;
set<pair<int, int> > jacobian_elements_to_delete;
for (first_derivatives_type::iterator it = first_derivatives.begin();
it != first_derivatives.end(); it++)
{
int deriv_id = it->first.second;
if (getTypeByDerivID(deriv_id) == eEndogenous)
{
NodeID Id = it->second;
int eq = it->first.first;
int symb = getSymbIDByDerivID(deriv_id);
int var = symbol_table.getTypeSpecificID(symb);
int lag = getLagByDerivID(deriv_id);
double val = 0;
try
{
val = Id->eval(eval_context);
}
catch (ExprNode::EvalException &e)
{
cerr << "ERROR: evaluation of Jacobian failed for equation " << eq+1 << " and variable " << symbol_table.getName(symb) << "(" << lag << ") [" << symb << "] !" << endl;
Id->writeOutput(cerr, oMatlabDynamicModelSparse, temporary_terms);
cerr << endl;
exit(EXIT_FAILURE);
}
if (fabs(val) < cutoff)
{
if (verbose)
cout << "the coefficient related to variable " << var << " with lag " << lag << " in equation " << eq << " is equal to " << val << " and is set to 0 in the incidence matrix (size=" << symbol_table.endo_nbr() << ")" << endl;
jacobian_elements_to_delete.insert(make_pair(eq, deriv_id));
}
else
{
if (lag == 0)
{
nb_elements_contemparenous_Jacobian++;
contemporaneous_jacobian[make_pair(eq,var)] = val;
}
if (static_jacobian.find(make_pair(eq, var)) != static_jacobian.end())
static_jacobian[make_pair(eq, var)] += val;
else
static_jacobian[make_pair(eq, var)] = val;
dynamic_jacobian[make_pair(lag, make_pair(eq, var))] = Id;
}
}
}
// Get rid of the elements of the Jacobian matrix below the cutoff
for(set<pair<int, int> >::const_iterator it = jacobian_elements_to_delete.begin(); it != jacobian_elements_to_delete.end(); it++)
first_derivatives.erase(*it);
if (jacobian_elements_to_delete.size()>0)
{
cout << jacobian_elements_to_delete.size() << " elements among " << first_derivatives.size() << " in the incidence matrices are below the cutoff (" << cutoff << ") and are discarded" << endl
<< "The contemporaneous incidence matrix has " << nb_elements_contemparenous_Jacobian << " elements" << endl;
}
}
void
ModelTree::computePrologueAndEpilogue(jacob_map &static_jacobian_arg, vector<int> &equation_reordered, vector<int> &variable_reordered, unsigned int &prologue, unsigned int &epilogue)
{
vector<int> eq2endo(equation_number(),0);
equation_reordered.resize(equation_number());
variable_reordered.resize(equation_number());
bool *IM;
int n = equation_number();
IM = (bool*)calloc(n*n,sizeof(bool));
int i = 0;
for(vector<int>::const_iterator it=endo2eq.begin(); it != endo2eq.end(); it++, i++)
{
eq2endo[*it] = i;
equation_reordered[i] = i;
variable_reordered[*it] = i;
}
for (jacob_map::const_iterator it = static_jacobian_arg.begin(); it != static_jacobian_arg.end(); it ++)
IM[it->first.first * n + endo2eq[it->first.second]] = true;
bool something_has_been_done = true;
prologue = 0;
int k = 0;
// Find the prologue equations and place first the AR(1) shock equations first
while (something_has_been_done)
{
int tmp_prologue = prologue;
something_has_been_done = false;
for(int i = prologue;i < n; i++)
{
int nze = 0;
for(int j = tmp_prologue; j < n; j++)
if(IM[i * n + j])
{
nze ++;
k = j;
}
if(nze == 1)
{
for(int j = 0; j < n; j++)
{
bool tmp_bool = IM[tmp_prologue * n + j];
IM[tmp_prologue * n + j] = IM[i * n + j];
IM[i * n + j] = tmp_bool;
}
int tmp = equation_reordered[tmp_prologue];
equation_reordered[tmp_prologue] = equation_reordered[i];
equation_reordered[i] = tmp;
for(int j = 0; j < n; j++)
{
bool tmp_bool = IM[j * n + tmp_prologue];
IM[j * n + tmp_prologue] = IM[j * n + k];
IM[j * n + k] = tmp_bool;
}
tmp = variable_reordered[tmp_prologue];
variable_reordered[tmp_prologue] = variable_reordered[k];
variable_reordered[k] = tmp;
tmp_prologue++;
something_has_been_done = true;
}
}
prologue = tmp_prologue;
}
something_has_been_done = true;
epilogue = 0;
// Find the epilogue equations
while (something_has_been_done)
{
int tmp_epilogue = epilogue;
something_has_been_done = false;
for(int i = prologue;i < n - (int) epilogue; i++)
{
int nze = 0;
for(int j = prologue; j < n - tmp_epilogue; j++)
if(IM[j * n + i])
{
nze ++;
k = j;
}
if(nze == 1)
{
for(int j = 0; j < n; j++)
{
bool tmp_bool = IM[(n - 1 - tmp_epilogue) * n + j];
IM[(n - 1 - tmp_epilogue) * n + j] = IM[k * n + j];
IM[k * n + j] = tmp_bool;
}
int tmp = equation_reordered[n - 1 - tmp_epilogue];
equation_reordered[n - 1 - tmp_epilogue] = equation_reordered[k];
equation_reordered[k] = tmp;
for(int j = 0; j < n; j++)
{
bool tmp_bool = IM[j * n + n - 1 - tmp_epilogue];
IM[j * n + n - 1 - tmp_epilogue] = IM[j * n + i];
IM[j * n + i] = tmp_bool;
}
tmp = variable_reordered[n - 1 - tmp_epilogue];
variable_reordered[n - 1 - tmp_epilogue] = variable_reordered[i];
variable_reordered[i] = tmp;
tmp_epilogue++;
something_has_been_done = true;
}
}
epilogue = tmp_epilogue;
}
free(IM);
}
t_equation_type_and_normalized_equation
ModelTree::equationTypeDetermination(vector<BinaryOpNode *> &equations, map<pair<int, pair<int, int> >, NodeID> &first_order_endo_derivatives, vector<int> &Index_Var_IM, vector<int> &Index_Equ_IM, int mfs)
{
NodeID lhs, rhs;
ostringstream tmp_output;
BinaryOpNode *eq_node;
ostringstream tmp_s;
temporary_terms_type temporary_terms;
EquationType Equation_Simulation_Type;
t_equation_type_and_normalized_equation V_Equation_Simulation_Type(equations.size());
for (unsigned int i = 0; i < equations.size(); i++)
{
temporary_terms.clear();
int eq = Index_Equ_IM[i];
int var = Index_Var_IM[i];
eq_node = equations[eq];
lhs = eq_node->get_arg1();
rhs = eq_node->get_arg2();
Equation_Simulation_Type = E_SOLVE;
tmp_s.str("");
tmp_output.str("");
lhs->writeOutput(tmp_output, oMatlabDynamicModelSparse, temporary_terms);
tmp_s << "y(it_, " << Index_Var_IM[i]+1 << ")";
map<pair<int, pair<int, int> >, NodeID>::iterator derivative = first_order_endo_derivatives.find(make_pair(eq, make_pair(var, 0)));
pair<bool, NodeID> res;
if(derivative != first_order_endo_derivatives.end())
{
set<pair<int, int> > result;
derivative->second->collectEndogenous(result);
set<pair<int, int> >::const_iterator d_endo_variable = result.find(make_pair(var, 0));
//Determine whether the equation could be evaluated rather than to be solved
ostringstream tt("");
derivative->second->writeOutput(tt, oMatlabDynamicModelSparse, temporary_terms);
if (tmp_output.str() == tmp_s.str() and tt.str()=="1")
{
Equation_Simulation_Type = E_EVALUATE;
}
else
{
vector<pair<int, pair<NodeID, NodeID> > > List_of_Op_RHS;
res = equations[eq]->normalizeEquation(var, List_of_Op_RHS);
if(mfs==2)
{
if(d_endo_variable == result.end() && res.second)
Equation_Simulation_Type = E_EVALUATE_S;
}
else if(mfs==3)
{
if(res.second) // The equation could be solved analytically
Equation_Simulation_Type = E_EVALUATE_S;
}
}
}
V_Equation_Simulation_Type[eq] = make_pair(Equation_Simulation_Type, dynamic_cast<BinaryOpNode *>(res.second));
}
return (V_Equation_Simulation_Type);
}
void
ModelTree::getVariableLeadLagByBlock(dynamic_jacob_map &dynamic_jacobian, vector<int > &components_set, int nb_blck_sim, int prologue, int epilogue, t_lag_lead_vector &equation_lead_lag, t_lag_lead_vector &variable_lead_lag, vector<int> equation_reordered, vector<int> variable_reordered) const
{
int nb_endo = symbol_table.endo_nbr();
variable_lead_lag = t_lag_lead_vector(nb_endo , make_pair(0,0));
equation_lead_lag = t_lag_lead_vector(nb_endo , make_pair(0,0));
vector<int> variable_blck(nb_endo), equation_blck(nb_endo);
for (int i = 0; i < nb_endo; i++)
{
if (i < prologue)
{
variable_blck[variable_reordered[i]] = i;
equation_blck[equation_reordered[i]] = i;
}
else if (i < (int)components_set.size() + prologue)
{
variable_blck[variable_reordered[i]] = components_set[i-prologue] + prologue;
equation_blck[equation_reordered[i]] = components_set[i-prologue] + prologue;
}
else
{
variable_blck[variable_reordered[i]] = i- (nb_endo - nb_blck_sim - prologue - epilogue);
equation_blck[equation_reordered[i]] = i- (nb_endo - nb_blck_sim - prologue - epilogue);
}
}
for (dynamic_jacob_map::const_iterator it = dynamic_jacobian.begin(); it != dynamic_jacobian.end(); it++)
{
int lag = it->first.first;
int j_1 = it->first.second.second;
int i_1 = it->first.second.second;
if (variable_blck[i_1] == equation_blck[j_1])
{
if (lag > variable_lead_lag[i_1].second)
variable_lead_lag[i_1] = make_pair(variable_lead_lag[i_1].first, lag);
if (lag < -variable_lead_lag[i_1].first)
variable_lead_lag[i_1] = make_pair(-lag, variable_lead_lag[i_1].second);
if (lag > equation_lead_lag[j_1].second)
equation_lead_lag[j_1] = make_pair(equation_lead_lag[j_1].first, lag);
if (lag < -equation_lead_lag[j_1].first)
equation_lead_lag[j_1] = make_pair(-lag, equation_lead_lag[j_1].second);
}
}
}
void
ModelTree::computeBlockDecompositionAndFeedbackVariablesForEachBlock(jacob_map &static_jacobian, dynamic_jacob_map &dynamic_jacobian, int prologue, int epilogue, vector<int> &equation_reordered, vector<int> &variable_reordered, vector<pair<int, int> > &blocks, t_equation_type_and_normalized_equation &Equation_Type, bool verbose_, bool select_feedback_variable, int mfs, vector<int> &inv_equation_reordered, vector<int> &inv_variable_reordered) const
{
int nb_var = variable_reordered.size();
int n = nb_var - prologue - epilogue;
typedef adjacency_list<vecS, vecS, directedS> DirectedGraph;
GraphvizDigraph G2(n);
vector<int> reverse_equation_reordered(nb_var), reverse_variable_reordered(nb_var);
for(int i=0; i<nb_var; i++)
{
reverse_equation_reordered[equation_reordered[i]] = i;
reverse_variable_reordered[variable_reordered[i]] = i;
}
for(jacob_map::const_iterator it = static_jacobian.begin(); it != static_jacobian.end(); it++)
if( reverse_equation_reordered[it->first.first]>=prologue && reverse_equation_reordered[it->first.first]<nb_var - epilogue
&& reverse_variable_reordered[it->first.second]>=prologue && reverse_variable_reordered[it->first.second]<nb_var - epilogue
&& it->first.first != endo2eq[it->first.second])
add_edge(reverse_equation_reordered[it->first.first]-prologue, reverse_equation_reordered[endo2eq[it->first.second]]-prologue, G2);
vector<int> endo2block(num_vertices(G2)), discover_time(num_vertices(G2));
// Compute strongly connected components
int num = strong_components(G2, &endo2block[0]);
blocks = vector<pair<int, int> >(num, make_pair(0, 0));
// Create directed acyclic graph associated to the strongly connected components
typedef adjacency_list<vecS, vecS, directedS> DirectedGraph;
DirectedGraph dag(num);
for (unsigned int i = 0;i < num_vertices(G2);i++)
{
GraphvizDigraph::out_edge_iterator it_out, out_end;
GraphvizDigraph::vertex_descriptor vi = vertex(i, G2);
for (tie(it_out, out_end) = out_edges(vi, G2); it_out != out_end; ++it_out)
{
int t_b = endo2block[target(*it_out, G2)];
int s_b = endo2block[source(*it_out, G2)];
if (s_b != t_b)
add_edge(s_b, t_b, dag);
}
}
// Compute topological sort of DAG (ordered list of unordered SCC)
deque<int> ordered2unordered;
topological_sort(dag, front_inserter(ordered2unordered)); // We use a front inserter because topological_sort returns the inverse order
// Construct mapping from unordered SCC to ordered SCC
vector<int> unordered2ordered(num);
for(int i = 0; i < num; i++)
unordered2ordered[ordered2unordered[i]] = i;
//This vector contains for each block:
// - first set = equations belonging to the block,
// - second set = the feeback variables,
// - third vector = the reordered non-feedback variables.
vector<pair<set<int>, pair<set<int>, vector<int> > > > components_set(num);
for (unsigned int i = 0; i < endo2block.size(); i++)
{
endo2block[i] = unordered2ordered[endo2block[i]];
blocks[endo2block[i]].first++;
components_set[endo2block[i]].first.insert(i);
}
t_lag_lead_vector equation_lag_lead, variable_lag_lead;
getVariableLeadLagByBlock(dynamic_jacobian, endo2block, num, prologue, epilogue, equation_lag_lead, variable_lag_lead, equation_reordered, variable_reordered);
vector<int> tmp_equation_reordered(equation_reordered), tmp_variable_reordered(variable_reordered);
int order = prologue;
//Add a loop on vertices which could not be normalized or vertices related to lead variables => force those vertices to belong to the feedback set
if(select_feedback_variable)
{
for (int i = 0; i < n; i++)
if (Equation_Type[equation_reordered[i+prologue]].first == E_SOLVE
or variable_lag_lead[variable_reordered[i+prologue]].second > 0 or variable_lag_lead[variable_reordered[i+prologue]].first > 0
or equation_lag_lead[equation_reordered[i+prologue]].second > 0 or equation_lag_lead[equation_reordered[i+prologue]].first > 0
or mfs == 0)
add_edge(i, i, G2);
}
else
{
for (int i = 0; i < n; i++)
if (Equation_Type[equation_reordered[i+prologue]].first == E_SOLVE || mfs == 0)
add_edge(i, i, G2);
}
//For each block, the minimum set of feedback variable is computed
// and the non-feedback variables are reordered to get
// a sub-recursive block without feedback variables
for (int i = 0; i < num; i++)
{
AdjacencyList_type G = GraphvizDigraph_2_AdjacencyList(G2, components_set[i].first);
set<int> feed_back_vertices;
//Print(G);
AdjacencyList_type G1 = Minimal_set_of_feedback_vertex(feed_back_vertices, G);
property_map<AdjacencyList_type, vertex_index_t>::type v_index = get(vertex_index, G);
components_set[i].second.first = feed_back_vertices;
blocks[i].second = feed_back_vertices.size();
vector<int> Reordered_Vertice;
Reorder_the_recursive_variables(G, feed_back_vertices, Reordered_Vertice);
//First we have the recursive equations conditional on feedback variables
for (vector<int>::iterator its = Reordered_Vertice.begin(); its != Reordered_Vertice.end(); its++)
{
equation_reordered[order] = tmp_equation_reordered[*its+prologue];
variable_reordered[order] = tmp_variable_reordered[*its+prologue];
order++;
}
components_set[i].second.second = Reordered_Vertice;
//Second we have the equations related to the feedback variables
for (set<int>::iterator its = feed_back_vertices.begin(); its != feed_back_vertices.end(); its++)
{
equation_reordered[order] = tmp_equation_reordered[v_index[vertex(*its, G)]+prologue];
variable_reordered[order] = tmp_variable_reordered[v_index[vertex(*its, G)]+prologue];
order++;
}
}
inv_equation_reordered = vector<int>(nb_var);
inv_variable_reordered = vector<int>(nb_var);
for(int i = 0; i < nb_var ; i++)
{
inv_variable_reordered[variable_reordered[i]] = i;
inv_equation_reordered[equation_reordered[i]] = i;
}
}
void ModelTree::printBlockDecomposition(vector<pair<int, int> > blocks)
{
int largest_block = 0;
int Nb_SimulBlocks = 0;
int Nb_feedback_variable = 0;
unsigned int Nb_TotalBlocks = getNbBlocks();
for (unsigned int block = 0; block < Nb_TotalBlocks; block++)
{
BlockSimulationType simulation_type = getBlockSimulationType(block);
if (simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE)
{
Nb_SimulBlocks++;
int size = getBlockSize(block);
if (size > largest_block)
{
largest_block = size;
Nb_feedback_variable = blocks[Nb_SimulBlocks-1].second;
}
}
}
int Nb_RecursBlocks = Nb_TotalBlocks - Nb_SimulBlocks;
cout << Nb_TotalBlocks << " block(s) found:" << endl
<< " " << Nb_RecursBlocks << " recursive block(s) and " << Nb_SimulBlocks << " simultaneous block(s)." << endl
<< " the largest simultaneous block has " << largest_block << " equation(s)" << endl
<< " and " << Nb_feedback_variable << " feedback variable(s)." << endl;
}
t_block_type_firstequation_size_mfs
ModelTree::reduceBlocksAndTypeDetermination(dynamic_jacob_map &dynamic_jacobian, int prologue, int epilogue, vector<pair<int, int> > &blocks, vector<BinaryOpNode *> &equations, t_equation_type_and_normalized_equation &Equation_Type, vector<int> &variable_reordered, vector<int> &equation_reordered)
{
int i = 0;
int count_equ = 0, blck_count_simult = 0;
int Blck_Size, MFS_Size;
int Lead, Lag;
t_block_type_firstequation_size_mfs block_type_size_mfs;
BlockSimulationType Simulation_Type, prev_Type = UNKNOWN;
int eq = 0;
for (i = 0; i < prologue+(int) blocks.size()+epilogue; i++)
{
int first_count_equ = count_equ;
if (i < prologue)
{
Blck_Size = 1;
MFS_Size = 1;
}
else if (i < prologue+(int) blocks.size())
{
Blck_Size = blocks[blck_count_simult].first;
MFS_Size = blocks[blck_count_simult].second;
blck_count_simult++;
}
else if (i < prologue+(int) blocks.size()+epilogue)
{
Blck_Size = 1;
MFS_Size = 1;
}
Lag = Lead = 0;
set<pair<int, int> > endo;
for(count_equ = first_count_equ; count_equ < Blck_Size+first_count_equ; count_equ++)
{
endo.clear();
equations[equation_reordered[count_equ]]->collectEndogenous(endo);
for (set<pair<int, int> >::const_iterator it = endo.begin(); it != endo.end(); it++)
{
int curr_variable = it->first;
int curr_lag = it->second;
vector<int>::const_iterator it = find(variable_reordered.begin()+first_count_equ, variable_reordered.begin()+(first_count_equ+Blck_Size), curr_variable);
if(it != variable_reordered.begin()+(first_count_equ+Blck_Size))
if (dynamic_jacobian.find(make_pair(curr_lag, make_pair(equation_reordered[count_equ], curr_variable))) != dynamic_jacobian.end())
{
if (curr_lag > Lead)
Lead = curr_lag;
else if (-curr_lag > Lag)
Lag = -curr_lag;
}
}
}
if ((Lag > 0) && (Lead > 0))
{
if (Blck_Size == 1)
Simulation_Type = SOLVE_TWO_BOUNDARIES_SIMPLE;
else
Simulation_Type = SOLVE_TWO_BOUNDARIES_COMPLETE;
}
else if (Blck_Size > 1)
{
if (Lead > 0)
Simulation_Type = SOLVE_BACKWARD_COMPLETE;
else
Simulation_Type = SOLVE_FORWARD_COMPLETE;
}
else
{
if (Lead > 0)
Simulation_Type = SOLVE_BACKWARD_SIMPLE;
else
Simulation_Type = SOLVE_FORWARD_SIMPLE;
}
if (Blck_Size == 1)
{
if (Equation_Type[equation_reordered[eq]].first == E_EVALUATE or Equation_Type[equation_reordered[eq]].first == E_EVALUATE_S)
{
if (Simulation_Type == SOLVE_BACKWARD_SIMPLE)
Simulation_Type = EVALUATE_BACKWARD;
else if (Simulation_Type == SOLVE_FORWARD_SIMPLE)
Simulation_Type = EVALUATE_FORWARD;
}
if (i > 0)
{
if ((prev_Type == EVALUATE_FORWARD and Simulation_Type == EVALUATE_FORWARD)
or (prev_Type == EVALUATE_BACKWARD and Simulation_Type == EVALUATE_BACKWARD))
{
//merge the current block with the previous one
BlockSimulationType c_Type = (block_type_size_mfs[block_type_size_mfs.size()-1]).first.first;
int c_Size = (block_type_size_mfs[block_type_size_mfs.size()-1]).second.first;
int first_equation = (block_type_size_mfs[block_type_size_mfs.size()-1]).first.second;
block_type_size_mfs[block_type_size_mfs.size()-1] = make_pair(make_pair(c_Type, first_equation), make_pair(++c_Size, block_type_size_mfs[block_type_size_mfs.size()-1].second.second));
if(block_lag_lead[block_type_size_mfs.size()-1].first > Lag)
Lag = block_lag_lead[block_type_size_mfs.size()-1].first;
if(block_lag_lead[block_type_size_mfs.size()-1].second > Lead)
Lead = block_lag_lead[block_type_size_mfs.size()-1].second;
block_lag_lead[block_type_size_mfs.size()-1] = make_pair(Lag, Lead);
}
else
{
block_type_size_mfs.push_back(make_pair(make_pair(Simulation_Type, eq), make_pair(Blck_Size, MFS_Size)));
block_lag_lead.push_back(make_pair(Lag, Lead));
}
}
else
{
block_type_size_mfs.push_back(make_pair(make_pair(Simulation_Type, eq), make_pair(Blck_Size, MFS_Size)));
block_lag_lead.push_back(make_pair(Lag, Lead));
}
}
else
{
block_type_size_mfs.push_back(make_pair(make_pair(Simulation_Type, eq), make_pair(Blck_Size, MFS_Size)));
block_lag_lead.push_back(make_pair(Lag, Lead));
}
prev_Type = Simulation_Type;
eq += Blck_Size;
}
return (block_type_size_mfs);
}
vector<bool>
ModelTree::BlockLinear(t_blocks_derivatives &blocks_derivatives, vector<int> &variable_reordered)
{
unsigned int nb_blocks = getNbBlocks();
vector<bool> blocks_linear(nb_blocks, true);
for (unsigned int block = 0;block < nb_blocks; block++)
{
BlockSimulationType simulation_type = getBlockSimulationType(block);
int block_size = getBlockSize(block);
t_block_derivatives_equation_variable_laglead_nodeid derivatives_block = blocks_derivatives[block];
int first_variable_position = getBlockFirstEquation(block);
if (simulation_type==SOLVE_BACKWARD_COMPLETE || simulation_type==SOLVE_FORWARD_COMPLETE)
{
for (t_block_derivatives_equation_variable_laglead_nodeid::const_iterator it = derivatives_block.begin(); it != derivatives_block.end(); it++)
{
int lag = it->second.first;
if (lag == 0)
{
NodeID Id = it->second.second;
set<pair<int, int> > endogenous;
Id->collectEndogenous(endogenous);
if (endogenous.size() > 0)
{
for (int l=0;l<block_size;l++)
{
if (endogenous.find(make_pair(variable_reordered[first_variable_position+l], 0)) != endogenous.end())
{
blocks_linear[block] = false;
goto the_end;
}
}
}
}
}
}
else if (simulation_type==SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type==SOLVE_TWO_BOUNDARIES_SIMPLE)
{
for (t_block_derivatives_equation_variable_laglead_nodeid::const_iterator it = derivatives_block.begin(); it != derivatives_block.end(); it++)
{
int lag = it->second.first;
NodeID Id = it->second.second;//
set<pair<int, int> > endogenous;
Id->collectEndogenous(endogenous);
if (endogenous.size() > 0)
{
for (int l=0;l<block_size;l++)
{
if (endogenous.find(make_pair(variable_reordered[first_variable_position+l], lag)) != endogenous.end())
{
blocks_linear[block] = false;
goto the_end;
}
}
}
}
}
the_end:;
}
return(blocks_linear);
}
ModelTree::ModelTree(SymbolTable &symbol_table_arg,
NumericalConstants &num_constants_arg) :

View File

@ -30,9 +30,28 @@ using namespace std;
#include "DataTree.hh"
//! Vector describing equations: BlockSimulationType, if BlockSimulationType == EVALUATE_s then a NodeID on the new normalized equation
typedef vector<pair<EquationType, NodeID > > t_equation_type_and_normalized_equation;
//! Vector describing variables: max_lag in the block, max_lead in the block
typedef vector<pair< int, int> > t_lag_lead_vector;
//! for each block contains pair< pair<Simulation_Type, first_equation>, pair < Block_Size, Recursive_part_Size > >
typedef vector<pair< pair< BlockSimulationType, int> , pair<int, int> > > t_block_type_firstequation_size_mfs;
//! for a block contains derivatives pair< pair<block_equation_number, block_variable_number> , pair<lead_lag, NodeID> >
typedef vector< pair<pair<int, int> , pair< int, NodeID > > > t_block_derivatives_equation_variable_laglead_nodeid;
//! for all blocks derivatives description
typedef vector<t_block_derivatives_equation_variable_laglead_nodeid> t_blocks_derivatives;
//! Shared code for static and dynamic models
class ModelTree : public DataTree
{
friend class DynamicModel;
friend class StaticModel;
protected:
//! Stores declared and generated auxiliary equations
vector<BinaryOpNode *> equations;
@ -100,6 +119,96 @@ protected:
//! Writes LaTeX model file
void writeLatexModelFile(const string &filename, ExprNodeOutputType output_type) const;
//! Sparse matrix of double to store the values of the Jacobian
/*! First index is equation number, second index is endogenous type specific ID */
typedef map<pair<int, int>, double> jacob_map;
//! Sparse matrix of double to store the values of the Jacobian
/*! First index is lag, second index is equation number, third index is endogenous type specific ID */
typedef map<pair<int, pair<int, int> >, NodeID> dynamic_jacob_map;
//! Normalization of equations
/*! Maps endogenous type specific IDs to equation numbers */
vector<int> endo2eq;
//! number of equation in the prologue and in the epilogue
unsigned int epilogue, prologue;
//! for each block contains pair< max_lag, max_lead>
t_lag_lead_vector block_lag_lead;
//! Exception thrown when normalization fails
class NormalizationException
{
public:
//! A variable missing from the maximum cardinal matching
int symb_id;
NormalizationException(int symb_id_arg) : symb_id(symb_id_arg) { }
};
//! Compute the matching between endogenous and variable using the jacobian contemporaneous_jacobian
/*! \param endo_eqs_incidence A set indicating which endogenous appear in which equation. First element of pairs is equation number, second is type specific endo ID */
void computeNormalization(const set<pair<int, int> > &endo_eqs_incidence) throw (NormalizationException);
//! Try to compute the matching between endogenous and variable using a decreasing cutoff
/*! applied to the jacobian contemporaneous_jacobian and stop when a matching is found.*/
/*! if no matching is found with a cutoff close to zero an error message is printout */
void computePossiblySingularNormalization(const jacob_map &contemporaneous_jacobian, bool try_symbolic);
//! Try to normalized each unnormalized equation (matched endogenous variable only on the LHS)
void computeNormalizedEquations(multimap<int, int> &endo2eqs) const;
//! Evaluate the jacobian and suppress all the elements below the cutoff
void evaluateAndReduceJacobian(const eval_context_type &eval_context, jacob_map &contemporaneous_jacobian, jacob_map &static_jacobian, dynamic_jacob_map &dynamic_jacobian, double cutoff, bool verbose);
//! Search the equations and variables belonging to the prologue and the epilogue of the model
void computePrologueAndEpilogue(jacob_map &static_jacobian, vector<int> &equation_reordered, vector<int> &variable_reordered, unsigned int &prologue, unsigned int &epilogue);
//! Determine the type of each equation of model and try to normalized the unnormalized equation using computeNormalizedEquations
t_equation_type_and_normalized_equation equationTypeDetermination(vector<BinaryOpNode *> &equations, map<pair<int, pair<int, int> >, NodeID> &first_order_endo_derivatives, vector<int> &Index_Var_IM, vector<int> &Index_Equ_IM, int mfs);
//! Compute the block decomposition and for a non-recusive block find the minimum feedback set
void computeBlockDecompositionAndFeedbackVariablesForEachBlock(jacob_map &static_jacobian, dynamic_jacob_map &dynamic_jacobian, int prologue, int epilogue, vector<int> &Index_Equ_IM, vector<int> &Index_Var_IM, vector<pair<int, int> > &blocks, t_equation_type_and_normalized_equation &Equation_Type, bool verbose_, bool select_feedback_variable, int mfs, vector<int> &inv_equation_reordered, vector<int> &inv_variable_reordered) const;
//! Reduce the number of block merging the same type equation in the prologue and the epilogue and determine the type of each block
t_block_type_firstequation_size_mfs reduceBlocksAndTypeDetermination(dynamic_jacob_map &dynamic_jacobian, int prologue, int epilogue, vector<pair<int, int> > &blocks, vector<BinaryOpNode *> &equations, t_equation_type_and_normalized_equation &Equation_Type, vector<int> &Index_Var_IM, vector<int> &Index_Equ_IM);
//! Determine the maximum number of lead and lag for the endogenous variable in a bloc
void getVariableLeadLagByBlock(dynamic_jacob_map &dynamic_jacobian, vector<int > &components_set, int nb_blck_sim, int prologue, int epilogue, t_lag_lead_vector &equation_lead_lag, t_lag_lead_vector &variable_lead_lag, vector<int> equation_reordered, vector<int> variable_reordered) const;
//! Print an abstract of the block structure of the model
void printBlockDecomposition(vector<pair<int, int> > blocks);
//! Determine for each block if it is linear or not
vector<bool> BlockLinear(t_blocks_derivatives &blocks_derivatives, vector<int> &variable_reordered);
virtual SymbolType getTypeByDerivID(int deriv_id) const throw (UnknownDerivIDException) = 0;
virtual int getLagByDerivID(int deriv_id) const throw (UnknownDerivIDException) = 0;
virtual int getSymbIDByDerivID(int deriv_id) const throw (UnknownDerivIDException) = 0;
//! Determine the simulation type of each block
virtual BlockSimulationType getBlockSimulationType(int block_number) const = 0;
//! Return the number of blocks
virtual unsigned int getNbBlocks() const = 0;
//! Return the first equation number of a block
virtual unsigned int getBlockFirstEquation(int block_number) const = 0;
//! Return the size of the block block_number
virtual unsigned int getBlockSize(int block_number) const = 0;
//! Return the number of feedback variable of the block block_number
virtual unsigned int getBlockMfs(int block_number) const = 0;
//! Return the maximum lag in a block
virtual unsigned int getBlockMaxLag(int block_number) const = 0;
//! Return the maximum lead in a block
virtual unsigned int getBlockMaxLead(int block_number) const = 0;
//! Return the type of equation (equation_number) belonging to the block block_number
virtual EquationType getBlockEquationType(int block_number, int equation_number) const = 0;
//! Return true if the equation has been normalized
virtual bool isBlockEquationRenormalized(int block_number, int equation_number) const = 0;
//! Return the NodeID of the equation equation_number belonging to the block block_number
virtual NodeID getBlockEquationNodeID(int block_number, int equation_number) const = 0;
//! Return the NodeID of the renormalized equation equation_number belonging to the block block_number
virtual NodeID getBlockEquationRenormalizedNodeID(int block_number, int equation_number) const = 0;
//! Return the original number of equation equation_number belonging to the block block_number
virtual int getBlockEquationID(int block_number, int equation_number) const = 0;
//! Return the original number of variable variable_number belonging to the block block_number
virtual int getBlockVariableID(int block_number, int variable_number) const = 0;
//! Return the position of equation_number in the block number belonging to the block block_number
virtual int getBlockInitialEquationID(int block_number, int equation_number) const = 0;
//! Return the position of variable_number in the block number belonging to the block block_number
virtual int getBlockInitialVariableID(int block_number, int variable_number) const = 0;
public:
ModelTree(SymbolTable &symbol_table_arg, NumericalConstants &num_constants);
//! Declare a node as an equation of the model
@ -110,6 +219,74 @@ public:
void addAuxEquation(NodeID eq);
//! Returns the number of equations in the model
int equation_number() const;
inline static std::string c_Equation_Type(int type)
{
char c_Equation_Type[4][13]=
{
"E_UNKNOWN ",
"E_EVALUATE ",
"E_EVALUATE_S",
"E_SOLVE "
};
return(c_Equation_Type[type]);
};
inline static std::string BlockType0(BlockType type)
{
switch (type)
{
case SIMULTANS:
return ("SIMULTANEOUS TIME SEPARABLE ");
break;
case PROLOGUE:
return ("PROLOGUE ");
break;
case EPILOGUE:
return ("EPILOGUE ");
break;
case SIMULTAN:
return ("SIMULTANEOUS TIME UNSEPARABLE");
break;
default:
return ("UNKNOWN ");
break;
}
};
inline static std::string BlockSim(int type)
{
switch (type)
{
case EVALUATE_FORWARD:
return ("EVALUATE FORWARD ");
break;
case EVALUATE_BACKWARD:
return ("EVALUATE BACKWARD ");
break;
case SOLVE_FORWARD_SIMPLE:
return ("SOLVE FORWARD SIMPLE ");
break;
case SOLVE_BACKWARD_SIMPLE:
return ("SOLVE BACKWARD SIMPLE ");
break;
case SOLVE_TWO_BOUNDARIES_SIMPLE:
return ("SOLVE TWO BOUNDARIES SIMPLE ");
break;
case SOLVE_FORWARD_COMPLETE:
return ("SOLVE FORWARD COMPLETE ");
break;
case SOLVE_BACKWARD_COMPLETE:
return ("SOLVE BACKWARD COMPLETE ");
break;
case SOLVE_TWO_BOUNDARIES_COMPLETE:
return ("SOLVE TWO BOUNDARIES COMPLETE");
break;
default:
return ("UNKNOWN ");
break;
}
};
};
#endif

View File

@ -377,7 +377,7 @@ ParsingDriver::cutoff(string *value)
{
double val = atof(value->c_str());
mod_file->dynamic_model.cutoff = val;
mod_file->static_dll_model.cutoff = val;
mod_file->static_model.cutoff = val;
delete value;
}
@ -386,7 +386,7 @@ ParsingDriver::mfs(string *value)
{
int val = atoi(value->c_str());
mod_file->dynamic_model.mfs = val;
mod_file->static_dll_model.mfs = val;
mod_file->static_model.mfs = val;
delete value;
}
@ -731,9 +731,6 @@ ParsingDriver::option_num(const string &name_option, const string &opt)
if (options_list.num_options.find(name_option) != options_list.num_options.end())
error("option " + name_option + " declared twice");
if ((name_option == "periods") && mod_file->block)
mod_file->dynamic_model.block_triangular.periods = atoi(opt.c_str());
options_list.num_options[name_option] = opt;
}

File diff suppressed because it is too large Load Diff

View File

@ -1,137 +0,0 @@
/*
* Copyright (C) 2003-2009 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _STATICDLLMODEL_HH
#define _STATICDLLMODEL_HH
using namespace std;
#include <fstream>
#include "StaticModel.hh"
#include "BlockTriangular.hh"
//! Stores a static model
class StaticDllModel : public ModelTree
{
private:
typedef map<pair<int, int>, int> deriv_id_table_t;
//! Maps a pair (symbol_id, lag) to a deriv ID
deriv_id_table_t deriv_id_table;
//! Maps a deriv ID to a pair (symbol_id, lag)
vector<pair<int, int> > inv_deriv_id_table;
//! Temporary terms for the file containing parameters dervicatives
temporary_terms_type params_derivs_temporary_terms;
typedef map< pair< int, pair< int, int> >, NodeID> first_chain_rule_derivatives_type;
first_chain_rule_derivatives_type first_chain_rule_derivatives;
//! Writes static model file (Matlab version)
void writeStaticMFile(const string &static_basename) const;
//! Writes static model file (C version)
/*! \todo add third derivatives handling */
void writeStaticCFile(const string &static_basename) const;
//! Writes the Block reordred structure of the model in M output
void writeModelEquationsOrdered_M(Model_Block *ModelBlock, const string &static_basename) const;
//! Writes the code of the Block reordred structure of the model in virtual machine bytecode
void writeModelEquationsCodeOrdered(const string file_name, const Model_Block *ModelBlock, const string bin_basename, map_idx_type map_idx) const;
//! Computes jacobian and prepares for equation normalization
/*! Using values from initval/endval blocks and parameter initializations:
- computes the jacobian for the model w.r. to contemporaneous variables
- removes edges of the incidence matrix when derivative w.r. to the corresponding variable is too close to zero (below the cutoff)
*/
void evaluateJacobian(const eval_context_type &eval_context, jacob_map *j_m, bool dynamic);
void BlockLinear(Model_Block *ModelBlock);
map_idx_type map_idx;
//! Build The incidence matrix form the modeltree
void BuildIncidenceMatrix();
void computeTemporaryTermsOrdered(Model_Block *ModelBlock);
//! Write derivative code of an equation w.r. to a variable
void compileDerivative(ofstream &code_file, int eq, int symb_id, int lag, map_idx_type &map_idx) const;
//! Write chain rule derivative code of an equation w.r. to a variable
void compileChainRuleDerivative(ofstream &code_file, int eq, int var, int lag, map_idx_type &map_idx) const;
//! Get the type corresponding to a derivation ID
SymbolType getTypeByDerivID(int deriv_id) const throw (UnknownDerivIDException);
//! Get the lag corresponding to a derivation ID
int getLagByDerivID(int deriv_id) const throw (UnknownDerivIDException);
//! Get the symbol ID corresponding to a derivation ID
int getSymbIDByDerivID(int deriv_id) const throw (UnknownDerivIDException);
//! Compute the column indices of the static Jacobian
void computeStatJacobianCols();
//! Computes chain rule derivatives of the Jacobian w.r. to endogenous variables
void computeChainRuleJacobian(Model_Block *ModelBlock);
//! Collect only the first derivatives
map<pair<int, pair<int, int> >, NodeID> collect_first_order_derivatives_endogenous();
//! Helper for writing the Jacobian elements in MATLAB and C
/*! Writes either (i+1,j+1) or [i+j*no_eq] */
void jacobianHelper(ostream &output, int eq_nb, int col_nb, ExprNodeOutputType output_type) const;
//! Helper for writing the sparse Hessian elements in MATLAB and C
/*! Writes either (i+1,j+1) or [i+j*NNZDerivatives[1]] */
void hessianHelper(ostream &output, int row_nb, int col_nb, ExprNodeOutputType output_type) const;
//! Write chain rule derivative of a recursive equation w.r. to a variable
void writeChainRuleDerivative(ostream &output, int eq, int var, int lag, ExprNodeOutputType output_type, const temporary_terms_type &temporary_terms) const;
public:
StaticDllModel(SymbolTable &symbol_table_arg, NumericalConstants &num_constants);
//! Absolute value under which a number is considered to be zero
double cutoff;
//! Compute the minimum feedback set in the static model:
/*! 0 : all endogenous variables are considered as feedback variables
1 : the variables belonging to a non linear equation are considered as feedback variables
2 : the variables belonging to a non normalizable non linear equation are considered as feedback variables
default value = 0 */
int mfs;
//! the file containing the model and the derivatives code
ofstream code_file;
//! Execute computations (variable sorting + derivation)
/*!
\param jacobianExo whether derivatives w.r. to exo and exo_det should be in the Jacobian (derivatives w.r. to endo are always computed)
\param hessian whether 2nd derivatives w.r. to exo, exo_det and endo should be computed (implies jacobianExo = true)
\param thirdDerivatives whether 3rd derivatives w.r. to endo/exo/exo_det should be computed (implies jacobianExo = true)
\param paramsDerivatives whether 2nd derivatives w.r. to a pair (endo/exo/exo_det, parameter) should be computed (implies jacobianExo = true)
\param eval_context evaluation context for normalization
\param no_tmp_terms if true, no temporary terms will be computed in the static files
*/
void computingPass(const eval_context_type &eval_context, bool no_tmp_terms, bool block);
//! Complete set to block decompose the model
BlockTriangular block_triangular;
//! Adds informations for simulation in a binary file
void Write_Inf_To_Bin_File(const string &static_basename, const string &bin_basename,
const int &num, int &u_count_int, bool &file_open) const;
//! Writes static model file
void writeStaticFile(const string &basename, bool block) const;
//! Writes LaTeX file with the equations of the static model
void writeLatexFile(const string &basename) const;
//! Writes initializations in oo_.steady_state for the auxiliary variables
void writeAuxVarInitval(ostream &output) const;
virtual int getDerivID(int symb_id, int lag) const throw (UnknownDerivIDException);
};
#endif

File diff suppressed because it is too large Load Diff

View File

@ -17,86 +17,166 @@
* along with Dynare. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _STATICMODEL_HH
#define _STATICMODEL_HH
#ifndef _STATIC_MODEL_HH
#define _STATIC_MODEL_HH
using namespace std;
#include <fstream>
#include "ModelTree.hh"
//! Stores a static model
/*! Derivation IDs are allocated only for endogenous, and are equal to symbol ID in that case */
class StaticModel : public ModelTree
{
private:
//! Normalization of equations
/*! Maps endogenous type specific IDs to equation numbers */
vector<int> endo2eq;
typedef map<pair<int, int>, int> deriv_id_table_t;
//! Maps a pair (symbol_id, lag) to a deriv ID
deriv_id_table_t deriv_id_table;
//! Maps a deriv ID to a pair (symbol_id, lag)
vector<pair<int, int> > inv_deriv_id_table;
//! Block decomposition of the model
/*! List of blocks in topological order. Lists the set of endogenous type specific IDs for each block. */
vector<set<int> > blocks;
//! Temporary terms for the file containing parameters dervicatives
temporary_terms_type params_derivs_temporary_terms;
//! Minimum feedback set for each block
/*! Elements of blocksMFS are subset of elements of blocks */
vector<set<int> > blocksMFS;
//! Temporary terms for block decomposed models
vector<vector<temporary_terms_type> > v_temporary_terms;
//! Variables not in minimum feedback set for each block, sorted in topological order
/*! This is the set difference blocks - blocksMFS. The variables are sorted in topological order. */
vector<vector<int> > blocksRecursive;
vector<temporary_terms_inuse_type> v_temporary_terms_inuse;
//! Jacobian for matrix restricted to MFS
/*! Maps a pair (equation ID, endogenous type specific ID) to the derivative expression. Stores only non-null derivatives. */
map<pair<int, int>, NodeID> blocksMFSJacobian;
typedef map< pair< int, pair< int, int> >, NodeID> first_chain_rule_derivatives_type;
first_chain_rule_derivatives_type first_chain_rule_derivatives;
//! Writes static model file (standard Matlab version)
void writeStaticMFile(ostream &output, const string &func_name) const;
void writeStaticMFile(const string &static_basename) const;
//! Writes static model file (block+MFS version)
void writeStaticBlockMFSFile(ostream &output, const string &func_name) const;
//! Writes the static function calling the block to solve (Matlab version)
void writeStaticBlockMFSFile(const string &basename) const;
//! Computes normalization of the static model
void computeNormalization();
//! Computes blocks of the static model, sorted in topological order
/*! Must be called after computeNormalization() */
void computeSortedBlockDecomposition();
//! Writes static model file (C version)
/*! \todo add third derivatives handling */
void writeStaticCFile(const string &static_basename) const;
//! For each block of the static model, computes minimum feedback set (MFS)
/*! Must be called after computeSortedBlockDecomposition() */
void computeMFS();
//! Writes the Block reordred structure of the model in M output
void writeModelEquationsOrdered_M(const string &dynamic_basename) const;
//! For each block of the static model, computes resursive variables (those not in minimum feedback set), and sort them in topological order
/*! Must be called after computeMFS() */
void computeSortedRecursive();
//! Writes the code of the Block reordred structure of the model in virtual machine bytecode
void writeModelEquationsCodeOrdered(const string file_name, const string bin_basename, map_idx_type map_idx) const;
//! Computes derivatives of each MFS
/*! Must be called after computeSortedRecursive() */
void computeBlockMFSJacobian();
//! Computes the list of equations which are already in normalized form
/*! Returns a multimap mapping endogenous which are normalized (represented by their type specific ID) to the equation(s) which define it */
void computeNormalizedEquations(multimap<int, int> &endo2eqs) const;
//! Helper for writing model local variables in block+MFS mode
/*!
Write the definition of model local variables which are used in expr, except those in local_var_written.
Add these variables to local_var_written at the end.
//! Computes jacobian and prepares for equation normalization
/*! Using values from initval/endval blocks and parameter initializations:
- computes the jacobian for the model w.r. to contemporaneous variables
- removes edges of the incidence matrix when derivative w.r. to the corresponding variable is too close to zero (below the cutoff)
*/
void writeLocalVars(ostream &output, NodeID expr, set<int> &local_var_written) const;
void evaluateJacobian(const eval_context_type &eval_context, jacob_map *j_m, bool dynamic);
map_idx_type map_idx;
void computeTemporaryTermsOrdered();
//! Write derivative code of an equation w.r. to a variable
void compileDerivative(ofstream &code_file, int eq, int symb_id, int lag, map_idx_type &map_idx) const;
//! Write chain rule derivative code of an equation w.r. to a variable
void compileChainRuleDerivative(ofstream &code_file, int eq, int var, int lag, map_idx_type &map_idx) const;
//! Get the type corresponding to a derivation ID
virtual SymbolType getTypeByDerivID(int deriv_id) const throw (UnknownDerivIDException);
//! Get the lag corresponding to a derivation ID
virtual int getLagByDerivID(int deriv_id) const throw (UnknownDerivIDException);
//! Get the symbol ID corresponding to a derivation ID
virtual int getSymbIDByDerivID(int deriv_id) const throw (UnknownDerivIDException);
//! Compute the column indices of the static Jacobian
void computeStatJacobianCols();
//! return a map on the block jacobian
map<pair<pair<int, pair<int, int> >, pair<int, int> >, int> get_Derivatives(int block);
//! Computes chain rule derivatives of the Jacobian w.r. to endogenous variables
void computeChainRuleJacobian(t_blocks_derivatives &blocks_derivatives);
//! Collect only the first derivatives
map<pair<int, pair<int, int> >, NodeID> collect_first_order_derivatives_endogenous();
//! Helper for writing the Jacobian elements in MATLAB and C
/*! Writes either (i+1,j+1) or [i+j*no_eq] */
void jacobianHelper(ostream &output, int eq_nb, int col_nb, ExprNodeOutputType output_type) const;
//! Helper for writing the sparse Hessian elements in MATLAB and C
/*! Writes either (i+1,j+1) or [i+j*NNZDerivatives[1]] */
void hessianHelper(ostream &output, int row_nb, int col_nb, ExprNodeOutputType output_type) const;
//! Write chain rule derivative of a recursive equation w.r. to a variable
void writeChainRuleDerivative(ostream &output, int eq, int var, int lag, ExprNodeOutputType output_type, const temporary_terms_type &temporary_terms) const;
//! Collecte the derivatives w.r. to endogenous of the block, to endogenous of previouys blocks and to exogenous
void collect_block_first_order_derivatives();
protected:
//! Indicate if the temporary terms are computed for the overall model (true) or not (false). Default value true
bool global_temporary_terms;
//! vector of block reordered variables and equations
vector<int> equation_reordered, variable_reordered, inv_equation_reordered, inv_variable_reordered;
//! Vector describing equations: BlockSimulationType, if BlockSimulationType == EVALUATE_s then a NodeID on the new normalized equation
t_equation_type_and_normalized_equation equation_type_and_normalized_equation;
//! for each block contains pair< Simulation_Type, pair < Block_Size, Recursive_part_Size > >
t_block_type_firstequation_size_mfs block_type_firstequation_size_mfs;
//! for all blocks derivatives description
t_blocks_derivatives blocks_derivatives;
//! The jacobian without the elements below the cutoff
dynamic_jacob_map dynamic_jacobian;
//! Vector indicating if the block is linear in endogenous variable (true) or not (false)
vector<bool> blocks_linear;
//! Map the derivatives for a block pair<lag, make_pair(make_pair(eq, var)), NodeID>
typedef map<pair< int, pair<int, int> >, NodeID> t_derivative;
//! Vector of derivative for each blocks
vector<t_derivative> derivative_endo, derivative_other_endo, derivative_exo, derivative_exo_det;
//!List for each block and for each lag-leag all the other endogenous variables and exogenous variables
typedef set<int> t_var;
typedef map<int, t_var> t_lag_var;
vector<t_lag_var> other_endo_block, exo_block, exo_det_block;
//!Maximum lead and lag for each block on endogenous of the block, endogenous of the previous blocks, exogenous and deterministic exogenous
vector<pair<int, int> > endo_max_leadlag_block, other_endo_max_leadlag_block, exo_max_leadlag_block, exo_det_max_leadlag_block, max_leadlag_block;
public:
StaticModel(SymbolTable &symbol_table_arg, NumericalConstants &num_constants);
//! Execute computations (derivation)
/*!
\param block whether block decomposition and minimum feedback set should be computed
\param hessian whether Hessian (w.r. to endogenous only) should be computed
\param no_tmp_terms if true, no temporary terms will be computed in the static and dynamic files */
void computingPass(bool block, bool hessian, bool no_tmp_terms);
//! Writes information on block decomposition when relevant
void writeOutput(ostream &output, bool block) const;
//! Absolute value under which a number is considered to be zero
double cutoff;
//! Compute the minimum feedback set in the static model:
/*! 0 : all endogenous variables are considered as feedback variables
1 : the variables belonging to a non linear equation are considered as feedback variables
2 : the variables belonging to a non normalizable non linear equation are considered as feedback variables
default value = 0 */
int mfs;
//! the file containing the model and the derivatives code
ofstream code_file;
//! Execute computations (variable sorting + derivation)
/*!
\param jacobianExo whether derivatives w.r. to exo and exo_det should be in the Jacobian (derivatives w.r. to endo are always computed)
\param hessian whether 2nd derivatives w.r. to exo, exo_det and endo should be computed (implies jacobianExo = true)
\param thirdDerivatives whether 3rd derivatives w.r. to endo/exo/exo_det should be computed (implies jacobianExo = true)
\param paramsDerivatives whether 2nd derivatives w.r. to a pair (endo/exo/exo_det, parameter) should be computed (implies jacobianExo = true)
\param eval_context evaluation context for normalization
\param no_tmp_terms if true, no temporary terms will be computed in the static files
*/
void computingPass(const eval_context_type &eval_context, bool no_tmp_terms, bool hessian, bool block);
//! Adds informations for simulation in a binary file
void Write_Inf_To_Bin_File(const string &static_basename, const string &bin_basename, const int &num,
int &u_count_int, bool &file_open) const;
//! Writes static model file
void writeStaticFile(const string &basename, bool block) const;
void writeStaticFile(const string &basename, bool block, bool bytecode) const;
//! Writes LaTeX file with the equations of the static model
void writeLatexFile(const string &basename) const;
@ -105,6 +185,39 @@ public:
void writeAuxVarInitval(ostream &output) const;
virtual int getDerivID(int symb_id, int lag) const throw (UnknownDerivIDException);
//! Return the number of blocks
virtual unsigned int getNbBlocks() const {return(block_type_firstequation_size_mfs.size());};
//! Determine the simulation type of each block
virtual BlockSimulationType getBlockSimulationType(int block_number) const {return(block_type_firstequation_size_mfs[block_number].first.first);};
//! Return the first equation number of a block
virtual unsigned int getBlockFirstEquation(int block_number) const {return(block_type_firstequation_size_mfs[block_number].first.second);};
//! Return the size of the block block_number
virtual unsigned int getBlockSize(int block_number) const {return(block_type_firstequation_size_mfs[block_number].second.first);};
//! Return the number of feedback variable of the block block_number
virtual unsigned int getBlockMfs(int block_number) const {return(block_type_firstequation_size_mfs[block_number].second.second);};
//! Return the maximum lag in a block
virtual unsigned int getBlockMaxLag(int block_number) const {return(block_lag_lead[block_number].first);};
//! Return the maximum lead in a block
virtual unsigned int getBlockMaxLead(int block_number) const {return(block_lag_lead[block_number].second);};
//! Return the type of equation (equation_number) belonging to the block block_number
virtual EquationType getBlockEquationType(int block_number, int equation_number) const {return( equation_type_and_normalized_equation[equation_reordered[block_type_firstequation_size_mfs[block_number].first.second+equation_number]].first);};
//! Return true if the equation has been normalized
virtual bool isBlockEquationRenormalized(int block_number, int equation_number) const {return( equation_type_and_normalized_equation[equation_reordered[block_type_firstequation_size_mfs[block_number].first.second+equation_number]].first == E_EVALUATE_S);};
//! Return the NodeID of the equation equation_number belonging to the block block_number
virtual NodeID getBlockEquationNodeID(int block_number, int equation_number) const {return( equations[equation_reordered[block_type_firstequation_size_mfs[block_number].first.second+equation_number]]);};
//! Return the NodeID of the renormalized equation equation_number belonging to the block block_number
virtual NodeID getBlockEquationRenormalizedNodeID(int block_number, int equation_number) const {return( equation_type_and_normalized_equation[equation_reordered[block_type_firstequation_size_mfs[block_number].first.second+equation_number]].second);};
//! Return the original number of equation equation_number belonging to the block block_number
virtual int getBlockEquationID(int block_number, int equation_number) const {return( equation_reordered[block_type_firstequation_size_mfs[block_number].first.second+equation_number]);};
//! Return the original number of variable variable_number belonging to the block block_number
virtual int getBlockVariableID(int block_number, int variable_number) const {return( variable_reordered[block_type_firstequation_size_mfs[block_number].first.second+variable_number]);};
//! Return the position of equation_number in the block number belonging to the block block_number
virtual int getBlockInitialEquationID(int block_number, int equation_number) const {return((int)inv_equation_reordered[equation_number] - (int)block_type_firstequation_size_mfs[block_number].first.second);};
//! Return the position of variable_number in the block number belonging to the block block_number
virtual int getBlockInitialVariableID(int block_number, int variable_number) const {return((int)inv_variable_reordered[variable_number] - (int)block_type_firstequation_size_mfs[block_number].first.second);};
};
#endif