dynare/matlab/perfect-foresight-models/perfect_foresight_solver_co...

177 lines
8.0 KiB
Matlab

function [oo_, maxerror] = perfect_foresight_solver_core(M_, options_, oo_)
%function [oo_, maxerror] = simulation_core(M_, options_, oo_)
% Copyright (C) 2015 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
if options_.linear_approximation && ~(isequal(options_.stack_solve_algo,0) || isequal(options_.stack_solve_algo,7))
error('perfect_foresight_solver: Option linear_approximation is only available with option stack_solve_algo equal to 0.')
end
if options_.linear && isequal(options_.stack_solve_algo,0)
options_.linear_approximation = 1;
end
if options_.block
if options_.bytecode
try
[info, tmp] = bytecode('dynamic', oo_.endo_simul, oo_.exo_simul, M_.params, repmat(oo_.steady_state,1,options_.periods+2), options_.periods);
catch
info = 0;
end
if info
oo_.deterministic_simulation.status = false;
else
oo_.endo_simul = tmp;
oo_.deterministic_simulation.status = true;
end
if options_.no_homotopy
mexErrCheck('bytecode', info);
end
else
oo_ = feval([M_.fname '_dynamic'], options_, M_, oo_);
end
else
if options_.bytecode
try
[info, tmp] = bytecode('dynamic', oo_.endo_simul, oo_.exo_simul, M_.params, repmat(oo_.steady_state,1,options_.periods+2), options_.periods);
catch
info = 0;
end
if info
oo_.deterministic_simulation.status = false;
else
oo_.endo_simul = tmp;
oo_.deterministic_simulation.status = true;
end
if options_.no_homotopy
mexErrCheck('bytecode', info);
end
else
if M_.maximum_endo_lead == 0 % Purely backward model
oo_ = sim1_purely_backward(options_, M_, oo_);
elseif M_.maximum_endo_lag == 0 % Purely forward model
oo_ = sim1_purely_forward(options_, M_, oo_);
else % General case
if options_.stack_solve_algo == 0
if options_.linear_approximation
oo_ = sim1_linear(options_, M_, oo_);
else
oo_ = sim1(M_, options_, oo_);
end
elseif options_.stack_solve_algo == 6
oo_ = sim1_lbj(options_, M_, oo_);
elseif options_.stack_solve_algo == 7
periods = options_.periods;
if ~isfield(options_.lmmcp,'lb')
[lb,ub,pfm.eq_index] = get_complementarity_conditions(M_,options_.ramsey_policy);
options_.lmmcp.lb = repmat(lb,periods,1);
options_.lmmcp.ub = repmat(ub,periods,1);
end
y = oo_.endo_simul;
y0 = y(:,1);
yT = y(:,periods+2);
z = y(:,2:periods+1);
illi = M_.lead_lag_incidence';
[i_cols,junk,i_cols_j] = find(illi(:));
illi = illi(:,2:3);
[i_cols_J1,junk,i_cols_1] = find(illi(:));
i_cols_T = nonzeros(M_.lead_lag_incidence(1:2,:)');
if options_.linear_approximation
y_steady_state = oo_.steady_state;
x_steady_state = transpose(oo_.exo_steady_state);
ip = find(M_.lead_lag_incidence(1,:)');
ic = find(M_.lead_lag_incidence(2,:)');
in = find(M_.lead_lag_incidence(3,:)');
% Evaluate the Jacobian of the dynamic model at the deterministic steady state.
model_dynamic = str2func([M_.fname,'_dynamic']);
[d1,jacobian] = model_dynamic(y_steady_state([ip; ic; in]), x_steady_state, M_.params, y_steady_state, 1);
% Check that the dynamic model was evaluated at the steady state.
if max(abs(d1))>1e-12
error('Jacobian is not evaluated at the steady state!')
end
nyp = nnz(M_.lead_lag_incidence(1,:)) ;
ny0 = nnz(M_.lead_lag_incidence(2,:)) ;
nyf = nnz(M_.lead_lag_incidence(3,:)) ;
nd = nyp+ny0+nyf; % size of y (first argument passed to the dynamic file).
jexog = transpose(nd+(1:M_.exo_nbr));
jendo = transpose(1:nd);
z = bsxfun(@minus,z,y_steady_state);
x = bsxfun(@minus,oo_.exo_simul,x_steady_state);
[y,info] = dynare_solve(@linear_perfect_foresight_problem,z(:), options_, ...
jacobian, y0-y_steady_state, yT-y_steady_state, ...
x, M_.params, y_steady_state, ...
M_.maximum_lag, options_.periods, M_.endo_nbr, i_cols, ...
i_cols_J1, i_cols_1, i_cols_T, i_cols_j, ...
M_.NNZDerivatives(1),jendo,jexog);
else
[y,info] = dynare_solve(@perfect_foresight_problem,z(:),options_, ...
str2func([M_.fname '_dynamic']),y0,yT, ...
oo_.exo_simul,M_.params,oo_.steady_state, ...
M_.maximum_lag,options_.periods,M_.endo_nbr,i_cols, ...
i_cols_J1, i_cols_1, i_cols_T, i_cols_j, ...
M_.NNZDerivatives(1));
end
if all(imag(y)<.1*options_.dynatol.f)
if ~isreal(y)
y = real(y);
end
else
info = 1;
end
if options_.linear_approximation
oo_.endo_simul = [y0 bsxfun(@plus,reshape(y,M_.endo_nbr,periods),y_steady_state) yT];
else
oo_.endo_simul = [y0 reshape(y,M_.endo_nbr,periods) yT];
end
if info == 1
oo_.deterministic_simulation.status = false;
else
oo_.deterministic_simulation.status = true;
end
end
end
end
end
if nargout>1
y0 = oo_.endo_simul(:,1);
yT = oo_.endo_simul(:,options_.periods+2);
yy = oo_.endo_simul(:,2:options_.periods+1);
if ~exist('illi')
illi = M_.lead_lag_incidence';
[i_cols,junk,i_cols_j] = find(illi(:));
illi = illi(:,2:3);
[i_cols_J1,junk,i_cols_1] = find(illi(:));
i_cols_T = nonzeros(M_.lead_lag_incidence(1:2,:)');
end
if options_.block && ~options_.bytecode
maxerror = oo_.deterministic_simulation.error;
else
if options_.bytecode
[chck, residuals, junk]= bytecode('dynamic','evaluate', oo_.endo_simul, oo_.exo_simul, M_.params, oo_.steady_state, 1);
else
residuals = perfect_foresight_problem(yy(:),str2func([M_.fname '_dynamic']), y0, yT, ...
oo_.exo_simul,M_.params,oo_.steady_state, ...
M_.maximum_lag,options_.periods,M_.endo_nbr,i_cols, ...
i_cols_J1, i_cols_1, i_cols_T, i_cols_j, ...
M_.NNZDerivatives(1));
end
maxerror = max(max(abs(residuals)));
end
end