function [oo_, maxerror] = perfect_foresight_solver_core(M_, options_, oo_) %function [oo_, maxerror] = simulation_core(M_, options_, oo_) % Copyright (C) 2015 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . if options_.linear_approximation && ~(isequal(options_.stack_solve_algo,0) || isequal(options_.stack_solve_algo,7)) error('perfect_foresight_solver: Option linear_approximation is only available with option stack_solve_algo equal to 0.') end if options_.linear && isequal(options_.stack_solve_algo,0) options_.linear_approximation = 1; end if options_.block if options_.bytecode try [info, tmp] = bytecode('dynamic', oo_.endo_simul, oo_.exo_simul, M_.params, repmat(oo_.steady_state,1,options_.periods+2), options_.periods); catch info = 0; end if info oo_.deterministic_simulation.status = false; else oo_.endo_simul = tmp; oo_.deterministic_simulation.status = true; end if options_.no_homotopy mexErrCheck('bytecode', info); end else oo_ = feval([M_.fname '_dynamic'], options_, M_, oo_); end else if options_.bytecode try [info, tmp] = bytecode('dynamic', oo_.endo_simul, oo_.exo_simul, M_.params, repmat(oo_.steady_state,1,options_.periods+2), options_.periods); catch info = 0; end if info oo_.deterministic_simulation.status = false; else oo_.endo_simul = tmp; oo_.deterministic_simulation.status = true; end if options_.no_homotopy mexErrCheck('bytecode', info); end else if M_.maximum_endo_lead == 0 % Purely backward model oo_ = sim1_purely_backward(options_, M_, oo_); elseif M_.maximum_endo_lag == 0 % Purely forward model oo_ = sim1_purely_forward(options_, M_, oo_); else % General case if options_.stack_solve_algo == 0 if options_.linear_approximation oo_ = sim1_linear(options_, M_, oo_); else oo_ = sim1(M_, options_, oo_); end elseif options_.stack_solve_algo == 6 oo_ = sim1_lbj(options_, M_, oo_); elseif options_.stack_solve_algo == 7 periods = options_.periods; if ~isfield(options_.lmmcp,'lb') [lb,ub,pfm.eq_index] = get_complementarity_conditions(M_,options_.ramsey_policy); options_.lmmcp.lb = repmat(lb,periods,1); options_.lmmcp.ub = repmat(ub,periods,1); end y = oo_.endo_simul; y0 = y(:,1); yT = y(:,periods+2); z = y(:,2:periods+1); illi = M_.lead_lag_incidence'; [i_cols,junk,i_cols_j] = find(illi(:)); illi = illi(:,2:3); [i_cols_J1,junk,i_cols_1] = find(illi(:)); i_cols_T = nonzeros(M_.lead_lag_incidence(1:2,:)'); if options_.linear_approximation y_steady_state = oo_.steady_state; x_steady_state = transpose(oo_.exo_steady_state); ip = find(M_.lead_lag_incidence(1,:)'); ic = find(M_.lead_lag_incidence(2,:)'); in = find(M_.lead_lag_incidence(3,:)'); % Evaluate the Jacobian of the dynamic model at the deterministic steady state. model_dynamic = str2func([M_.fname,'_dynamic']); [d1,jacobian] = model_dynamic(y_steady_state([ip; ic; in]), x_steady_state, M_.params, y_steady_state, 1); % Check that the dynamic model was evaluated at the steady state. if max(abs(d1))>1e-12 error('Jacobian is not evaluated at the steady state!') end nyp = nnz(M_.lead_lag_incidence(1,:)) ; ny0 = nnz(M_.lead_lag_incidence(2,:)) ; nyf = nnz(M_.lead_lag_incidence(3,:)) ; nd = nyp+ny0+nyf; % size of y (first argument passed to the dynamic file). jexog = transpose(nd+(1:M_.exo_nbr)); jendo = transpose(1:nd); z = bsxfun(@minus,z,y_steady_state); x = bsxfun(@minus,oo_.exo_simul,x_steady_state); [y,info] = dynare_solve(@linear_perfect_foresight_problem,z(:), options_, ... jacobian, y0-y_steady_state, yT-y_steady_state, ... x, M_.params, y_steady_state, ... M_.maximum_lag, options_.periods, M_.endo_nbr, i_cols, ... i_cols_J1, i_cols_1, i_cols_T, i_cols_j, ... M_.NNZDerivatives(1),jendo,jexog); else [y,info] = dynare_solve(@perfect_foresight_problem,z(:),options_, ... str2func([M_.fname '_dynamic']),y0,yT, ... oo_.exo_simul,M_.params,oo_.steady_state, ... M_.maximum_lag,options_.periods,M_.endo_nbr,i_cols, ... i_cols_J1, i_cols_1, i_cols_T, i_cols_j, ... M_.NNZDerivatives(1)); end if all(imag(y)<.1*options_.dynatol.f) if ~isreal(y) y = real(y); end else info = 1; end if options_.linear_approximation oo_.endo_simul = [y0 bsxfun(@plus,reshape(y,M_.endo_nbr,periods),y_steady_state) yT]; else oo_.endo_simul = [y0 reshape(y,M_.endo_nbr,periods) yT]; end if info == 1 oo_.deterministic_simulation.status = false; else oo_.deterministic_simulation.status = true; end end end end end if nargout>1 y0 = oo_.endo_simul(:,1); yT = oo_.endo_simul(:,options_.periods+2); yy = oo_.endo_simul(:,2:options_.periods+1); if ~exist('illi') illi = M_.lead_lag_incidence'; [i_cols,junk,i_cols_j] = find(illi(:)); illi = illi(:,2:3); [i_cols_J1,junk,i_cols_1] = find(illi(:)); i_cols_T = nonzeros(M_.lead_lag_incidence(1:2,:)'); end if options_.block && ~options_.bytecode maxerror = oo_.deterministic_simulation.error; else if options_.bytecode [chck, residuals, junk]= bytecode('dynamic','evaluate', oo_.endo_simul, oo_.exo_simul, M_.params, oo_.steady_state, 1); else residuals = perfect_foresight_problem(yy(:),str2func([M_.fname '_dynamic']), y0, yT, ... oo_.exo_simul,M_.params,oo_.steady_state, ... M_.maximum_lag,options_.periods,M_.endo_nbr,i_cols, ... i_cols_J1, i_cols_1, i_cols_T, i_cols_j, ... M_.NNZDerivatives(1)); end maxerror = max(max(abs(residuals))); end end