dynare/matlab/ep/extended_path.m

343 lines
12 KiB
Matlab

function [ts,results] = extended_path(initial_conditions,sample_size)
% Stochastic simulation of a non linear DSGE model using the Extended Path method (Fair and Taylor 1983). A time
% series of size T is obtained by solving T perfect foresight models.
%
% INPUTS
% o initial_conditions [double] m*nlags array, where m is the number of endogenous variables in the model and
% nlags is the maximum number of lags.
% o sample_size [integer] scalar, size of the sample to be simulated.
%
% OUTPUTS
% o time_series [double] m*sample_size array, the simulations.
%
% ALGORITHM
%
% SPECIAL REQUIREMENTS
% Copyright (C) 2009-2015 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global M_ options_ oo_
ep = options_.ep;
options_.verbosity = ep.verbosity;
verbosity = ep.verbosity+ep.debug;
% Set maximum number of iterations for the deterministic solver.
options_.simul.maxit = ep.maxit;
% Prepare a structure needed by the matlab implementation of the perfect foresight model solver
pfm = setup_stochastic_perfect_foresight_model_solver(M_,options_,oo_);
endo_nbr = M_.endo_nbr;
exo_nbr = M_.exo_nbr;
maximum_lag = M_.maximum_lag;
maximum_lead = M_.maximum_lead;
epreplic_nbr = ep.replic_nbr;
steady_state = oo_.steady_state;
dynatol = options_.dynatol;
% Set default initial conditions.
if isempty(initial_conditions)
if isempty(M_.endo_histval)
initial_conditions = steady_state;
else
initial_conditions = M_.endo_histval;
end
end
% Set the number of periods for the perfect foresight model
periods = ep.periods;
pfm.periods = periods;
pfm.i_upd = pfm.ny+(1:pfm.periods*pfm.ny);
pfm.block = options_.block;
% keep a copy of pfm.i_upd
i_upd = pfm.i_upd;
% Set the algorithm for the perfect foresight solver
options_.stack_solve_algo = ep.stack_solve_algo;
% Set check_stability flag
do_not_check_stability_flag = ~ep.check_stability;
% Compute the first order reduced form if needed.
%
% REMARK. It is assumed that the user did run the same mod file with stoch_simul(order=1) and save
% all the globals in a mat file called linear_reduced_form.mat;
dr = struct();
if ep.init
options_.order = 1;
oo_.dr=set_state_space(dr,M_,options_);
[dr,Info,M_,options_,oo_] = resol(0,M_,options_,oo_);
end
% Do not use a minimal number of perdiods for the perfect foresight solver (with bytecode and blocks)
options_.minimal_solving_period = 100;%options_.ep.periods;
% Initialize the output array.
time_series = zeros(M_.endo_nbr,sample_size);
% Set the covariance matrix of the structural innovations.
variances = diag(M_.Sigma_e);
positive_var_indx = find(variances>0);
effective_number_of_shocks = length(positive_var_indx);
stdd = sqrt(variances(positive_var_indx));
covariance_matrix = M_.Sigma_e(positive_var_indx,positive_var_indx);
covariance_matrix_upper_cholesky = chol(covariance_matrix);
% (re)Set exo_nbr
%exo_nbr = effective_number_of_shocks;
% Set seed.
if ep.set_dynare_seed_to_default
set_dynare_seed('default');
end
% Set bytecode flag
bytecode_flag = ep.use_bytecode;
% Set number of replications
replic_nbr = ep.replic_nbr;
% Simulate shocks.
switch ep.innovation_distribution
case 'gaussian'
shocks = transpose(transpose(covariance_matrix_upper_cholesky)* ...
randn(effective_number_of_shocks,sample_size* ...
replic_nbr));
shocks(:,positive_var_indx) = shocks;
case 'calibrated'
replic_nbr = 1;
shocks = zeros(sample_size,M_.exo_nbr);
for i = 1:length(M_.unanticipated_det_shocks)
k = M_.unanticipated_det_shocks(i).periods;
ivar = M_.unanticipated_det_shocks(i).exo_id;
v = M_.unanticipated_det_shocks(i).value;
if ~M_.unanticipated_det_shocks(i).multiplicative
shocks(k,ivar) = v;
else
socks(k,ivar) = shocks(k,ivar) * v;
end
end
otherwise
error(['extended_path:: ' ep.innovation_distribution ' distribution for the structural innovations is not (yet) implemented!'])
end
% Set waitbar (graphic or text mode)
hh = dyn_waitbar(0,'Please wait. Extended Path simulations...');
set(hh,'Name','EP simulations.');
% hybrid correction
pfm.hybrid_order = ep.stochastic.hybrid_order;
if pfm.hybrid_order
oo_.dr = set_state_space(oo_.dr,M_,options_);
options = options_;
options.order = pfm.hybrid_order;
pfm.dr = resol(0,M_,options,oo_);
else
pfm.dr = [];
end
% number of nonzero derivatives
pfm.nnzA = M_.NNZDerivatives(1);
% setting up integration nodes if order > 0
if ep.stochastic.order > 0
[nodes,weights,nnodes] = setup_integration_nodes(options_.ep,pfm);
pfm.nodes = nodes;
pfm.weights = weights;
pfm.nnodes = nnodes;
% compute number of blocks
[block_nbr,pfm.world_nbr] = get_block_world_nbr(ep.stochastic.algo,nnodes,ep.stochastic.order,ep.periods);
else
block_nbr = ep.periods;
end
% set boundaries if mcp
[lb,ub,pfm.eq_index] = get_complementarity_conditions(M_, options_.ramsey_policy);
options_.lmmcp.lb = repmat(lb,block_nbr,1);
options_.lmmcp.ub = repmat(ub,block_nbr,1);
pfm.block_nbr = block_nbr;
% storage for failed draws
oo_.ep.failures.periods = [];
oo_.ep.failures.previous_period = cell(0);
oo_.ep.failures.shocks = cell(0);
% Initializes some variables.
t = 1;
tsimul = 1;
for k = 1:replic_nbr
results{k} = zeros(endo_nbr,sample_size+1);
results{k}(:,1) = initial_conditions;
end
make_ex_;
exo_simul_ = zeros(maximum_lag+sample_size+maximum_lead,exo_nbr);
exo_simul_(1:size(oo_.exo_simul,1),1:size(oo_.exo_simul,2)) = oo_.exo_simul;
% Main loop.
while (t <= sample_size)
if ~mod(t,10)
dyn_waitbar(t/sample_size,hh,'Please wait. Extended Path simulations...');
end
% Set period index.
t = t+1;
if replic_nbr > 1 && ep.parallel_1
parfor k = 1:replic_nbr
exo_simul = repmat(oo_.exo_steady_state',periods+2,1);
% exo_simul(1:sample_size+3-t,:) = exo_simul_(t:end,:);
exo_simul(2,:) = exo_simul_(M_.maximum_lag+t,:) + ...
shocks((t-2)*replic_nbr+k,:);
initial_conditions = results{k}(:,t-1);
[results{k}(:,t), info_convergence] = extended_path_core(ep.periods,endo_nbr,exo_nbr,positive_var_indx, ...
exo_simul,ep.init,initial_conditions,...
maximum_lag,maximum_lead,steady_state, ...
ep.verbosity,bytecode_flag,ep.stochastic.order,...
M_.params,pfm,ep.stochastic.algo,ep.solve_algo,ep.stack_solve_algo,...
options_.lmmcp,options_,oo_);
end
else
for k = 1:replic_nbr
exo_simul = repmat(oo_.exo_steady_state',periods+maximum_lag+ ...
maximum_lead,1);
% exo_simul(1:sample_size+maximum_lag+maximum_lead-t+1,:) = ...
% exo_simul_(t:end,:);
exo_simul(maximum_lag+1,:) = ...
exo_simul_(maximum_lag+t,:) + shocks((t-2)*replic_nbr+k,:);
initial_conditions = results{k}(:,t-1);
[results{k}(:,t), info_convergence] = extended_path_core(ep.periods,endo_nbr,exo_nbr,positive_var_indx, ...
exo_simul,ep.init,initial_conditions,...
maximum_lag,maximum_lead,steady_state, ...
ep.verbosity,bytecode_flag,ep.stochastic.order,...
M_,pfm,ep.stochastic.algo,ep.solve_algo,ep.stack_solve_algo,...
options_.lmmcp,options_,oo_);
end
end
if verbosity
if info_convergence
disp(['Time: ' int2str(t) '. Convergence of the perfect foresight model solver!'])
else
disp(['Time: ' int2str(t) '. No convergence of the perfect foresight model solver!'])
end
end
end% (while) loop over t
dyn_waitbar_close(hh);
if isnan(options_.initial_period)
initial_period = dates(1,1);
else
initial_period = options_.initial_period;
end
if nargout
if ~isnan(results{1})
ts = dseries(transpose([results{1}]), ...
initial_period,cellstr(M_.endo_names));
else
ts = NaN;
end
else
if ~isnan(results{1})
oo_.endo_simul = results{1};
ts = dseries(transpose(results{1}),initial_period, ...
cellstr(M_.endo_names));
else
oo_.endo_simul = NaN;
ts = NaN;
end
end
assignin('base', 'Simulated_time_series', ts);
function [y, info_convergence] = extended_path_core(periods,endo_nbr,exo_nbr,positive_var_indx, ...
exo_simul,init,initial_conditions,...
maximum_lag,maximum_lead,steady_state, ...
verbosity,bytecode_flag,order,M,pfm,algo,solve_algo,stack_solve_algo,...
olmmcp,options,oo)
ep = options.ep;
if init% Compute first order solution (Perturbation)...
endo_simul = simult_(initial_conditions,oo.dr,exo_simul(2:end,:),1);
else
endo_simul = [initial_conditions repmat(steady_state,1,periods+1)];
end
oo.endo_simul = endo_simul;
oo_.endo_simul = endo_simul;
% Solve a perfect foresight model.
% Keep a copy of endo_simul_1
if verbosity
save ep_test_1 endo_simul exo_simul
end
if bytecode_flag && ~ep.stochastic.order
[flag,tmp] = bytecode('dynamic',endo_simul,exo_simul, M_.params, endo_simul, periods);
else
flag = 1;
end
if flag
if order == 0
options.periods = periods;
options.block = pfm.block;
oo.endo_simul = endo_simul;
oo.exo_simul = exo_simul;
oo.steady_state = steady_state;
options.bytecode = bytecode_flag;
options.lmmcp = olmmcp;
options.solve_algo = solve_algo;
options.stack_solve_algo = stack_solve_algo;
[tmp,flag] = perfect_foresight_solver_core(M,options,oo);
if ~flag && ~options.no_homotopy
exo_orig = oo.exo_simul;
endo_simul = repmat(steady_state,1,periods+1);
for i = 1:10
weight = i/10;
oo.endo_simul = [weight*initial_conditions + (1-weight)*steady_state ...
endo_simul];
oo.exo_simul = repmat((1-weight)*oo.exo_steady_state', ...
size(oo.exo_simul,1),1) + weight*exo_orig;
[tmp,flag] = perfect_foresight_solver_core(M,options,oo);
disp([i,flag])
if ~flag
break
end
endo_simul = tmp.endo_simul;
end
end
info_convergence = flag;
else
switch(algo)
case 0
[flag,endo_simul] = ...
solve_stochastic_perfect_foresight_model(endo_simul,exo_simul,pfm,ep.stochastic.quadrature.nodes,ep.stochastic.order);
case 1
[flag,endo_simul] = ...
solve_stochastic_perfect_foresight_model_1(endo_simul,exo_simul,options_,pfm,ep.stochastic.order);
end
tmp.endo_simul = endo_simul;
info_convergence = ~flag;
end
end
if info_convergence
y = tmp.endo_simul(:,2);
else
y = NaN(size(endo_nbr,1));
end