dynare/tests/measurement_errors/fs2000_corr_me_ml_mcmc/fs2000_corr_ME.mod

134 lines
3.8 KiB
Modula-2

/*
* This file is based on the cash in advance model described
* Frank Schorfheide (2000): "Loss function-based evaluation of DSGE models",
* Journal of Applied Econometrics, 15(6), 645-670.
*
* The equations are taken from J. Nason and T. Cogley (1994): "Testing the
* implications of long-run neutrality for monetary business cycle models",
* Journal of Applied Econometrics, 9, S37-S70.
* Note that there is an initial minus sign missing in equation (A1), p. S63.
*
* This implementation was written by Michel Juillard. Please note that the
* following copyright notice only applies to this Dynare implementation of the
* model.
*/
/*
* Copyright © 2004-2013 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <https://www.gnu.org/licenses/>.
*/
var m P c e W R k d n l gy_obs gp_obs y dA;
varexo e_a e_m;
parameters alp bet gam mst rho psi del theta;
alp = 0.33;
bet = 0.99;
gam = 0.003;
mst = 1.011;
rho = 0.7;
psi = 0.787;
del = 0.02;
theta=0;
model;
dA = exp(gam+e_a);
log(m) = (1-rho)*log(mst) + rho*log(m(-1))+e_m;
-P/(c(+1)*P(+1)*m)+bet*P(+1)*(alp*exp(-alp*(gam+log(e(+1))))*k^(alp-1)*n(+1)^(1-alp)+(1-del)*exp(-(gam+log(e(+1)))))/(c(+2)*P(+2)*m(+1))=0;
W = l/n;
-(psi/(1-psi))*(c*P/(1-n))+l/n = 0;
R = P*(1-alp)*exp(-alp*(gam+e_a))*k(-1)^alp*n^(-alp)/W;
1/(c*P)-bet*P*(1-alp)*exp(-alp*(gam+e_a))*k(-1)^alp*n^(1-alp)/(m*l*c(+1)*P(+1)) = 0;
c+k = exp(-alp*(gam+e_a))*k(-1)^alp*n^(1-alp)+(1-del)*exp(-(gam+e_a))*k(-1);
P*c = m;
m-1+d = l;
e = exp(e_a);
y = k(-1)^alp*n^(1-alp)*exp(-alp*(gam+e_a));
gy_obs = dA*y/y(-1);
gp_obs = (P/P(-1))*m(-1)/dA;
end;
steady_state_model;
dA = exp(gam);
gst = 1/dA;
m = mst;
khst = ( (1-gst*bet*(1-del)) / (alp*gst^alp*bet) )^(1/(alp-1));
xist = ( ((khst*gst)^alp - (1-gst*(1-del))*khst)/mst )^(-1);
nust = psi*mst^2/( (1-alp)*(1-psi)*bet*gst^alp*khst^alp );
n = xist/(nust+xist);
P = xist + nust;
k = khst*n;
l = psi*mst*n/( (1-psi)*(1-n) );
c = mst/P;
d = l - mst + 1;
y = k^alp*n^(1-alp)*gst^alp;
R = mst/bet;
W = l/n;
ist = y-c;
q = 1 - d;
e = 1;
gp_obs = m/dA;
gy_obs = dA;
end;
varobs gp_obs gy_obs;
shocks;
var e_a; stderr 0.014;
var e_m; stderr 0.005;
corr gy_obs,gp_obs = 0.5;
end;
steady;
estimated_params;
alp, 0.356;
gam, 0.0085;
del, 0.01;
stderr e_a, 0.035449;
stderr e_m, 0.008862;
corr e_m, e_a, 0;
stderr gp_obs, 1;
stderr gy_obs, 1;
corr gp_obs, gy_obs,0;
end;
estimation(order=1,datafile=fsdat_simul,mode_check,smoother,filter_decomposition,forecast = 8,filtered_vars,filter_step_ahead=[1,3],irf=20,tex) m P c e W R k d y gy_obs;
estimated_params(overwrite);
//alp, beta_pdf, 0.356, 0.02;
gam, normal_pdf, 0.0085, 0.003;
//del, beta_pdf, 0.01, 0.005;
stderr e_a, inv_gamma_pdf, 0.035449, inf;
stderr e_m, inv_gamma_pdf, 0.008862, inf;
corr e_m, e_a, normal_pdf, 0, 0.2;
stderr gp_obs, inv_gamma_pdf, 0.001, inf;
//stderr gy_obs, inv_gamma_pdf, 0.001, inf;
//corr gp_obs, gy_obs,normal_pdf, 0, 0.2;
end;
estimation(mode_compute=5,order=1,datafile=fsdat_simul,mode_check,smoother,filter_decomposition,mh_replic=2000, mh_nblocks=1, mh_jscale=0.8,forecast = 8,bayesian_irf,filtered_vars,filter_step_ahead=[1,3],irf=20) m P c e W R k d y;
shock_decomposition y W R;
//identification(advanced=1,max_dim_cova_group=3,prior_mc=250);