/* * This file is based on the cash in advance model described * Frank Schorfheide (2000): "Loss function-based evaluation of DSGE models", * Journal of Applied Econometrics, 15(6), 645-670. * * The equations are taken from J. Nason and T. Cogley (1994): "Testing the * implications of long-run neutrality for monetary business cycle models", * Journal of Applied Econometrics, 9, S37-S70. * Note that there is an initial minus sign missing in equation (A1), p. S63. * * This implementation was written by Michel Juillard. Please note that the * following copyright notice only applies to this Dynare implementation of the * model. */ /* * Copyright © 2004-2013 Dynare Team * * This file is part of Dynare. * * Dynare is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Dynare is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Dynare. If not, see . */ var m P c e W R k d n l gy_obs gp_obs y dA; varexo e_a e_m; parameters alp bet gam mst rho psi del theta; alp = 0.33; bet = 0.99; gam = 0.003; mst = 1.011; rho = 0.7; psi = 0.787; del = 0.02; theta=0; model; dA = exp(gam+e_a); log(m) = (1-rho)*log(mst) + rho*log(m(-1))+e_m; -P/(c(+1)*P(+1)*m)+bet*P(+1)*(alp*exp(-alp*(gam+log(e(+1))))*k^(alp-1)*n(+1)^(1-alp)+(1-del)*exp(-(gam+log(e(+1)))))/(c(+2)*P(+2)*m(+1))=0; W = l/n; -(psi/(1-psi))*(c*P/(1-n))+l/n = 0; R = P*(1-alp)*exp(-alp*(gam+e_a))*k(-1)^alp*n^(-alp)/W; 1/(c*P)-bet*P*(1-alp)*exp(-alp*(gam+e_a))*k(-1)^alp*n^(1-alp)/(m*l*c(+1)*P(+1)) = 0; c+k = exp(-alp*(gam+e_a))*k(-1)^alp*n^(1-alp)+(1-del)*exp(-(gam+e_a))*k(-1); P*c = m; m-1+d = l; e = exp(e_a); y = k(-1)^alp*n^(1-alp)*exp(-alp*(gam+e_a)); gy_obs = dA*y/y(-1); gp_obs = (P/P(-1))*m(-1)/dA; end; steady_state_model; dA = exp(gam); gst = 1/dA; m = mst; khst = ( (1-gst*bet*(1-del)) / (alp*gst^alp*bet) )^(1/(alp-1)); xist = ( ((khst*gst)^alp - (1-gst*(1-del))*khst)/mst )^(-1); nust = psi*mst^2/( (1-alp)*(1-psi)*bet*gst^alp*khst^alp ); n = xist/(nust+xist); P = xist + nust; k = khst*n; l = psi*mst*n/( (1-psi)*(1-n) ); c = mst/P; d = l - mst + 1; y = k^alp*n^(1-alp)*gst^alp; R = mst/bet; W = l/n; ist = y-c; q = 1 - d; e = 1; gp_obs = m/dA; gy_obs = dA; end; varobs gp_obs gy_obs; shocks; var e_a; stderr 0.014; var e_m; stderr 0.005; corr gy_obs,gp_obs = 0.5; end; steady; estimated_params; alp, 0.356; gam, 0.0085; del, 0.01; stderr e_a, 0.035449; stderr e_m, 0.008862; corr e_m, e_a, 0; stderr gp_obs, 1; stderr gy_obs, 1; corr gp_obs, gy_obs,0; end; estimation(order=1,datafile=fsdat_simul,mode_check,smoother,filter_decomposition,forecast = 8,filtered_vars,filter_step_ahead=[1,3],irf=20,tex) m P c e W R k d y gy_obs; estimated_params(overwrite); //alp, beta_pdf, 0.356, 0.02; gam, normal_pdf, 0.0085, 0.003; //del, beta_pdf, 0.01, 0.005; stderr e_a, inv_gamma_pdf, 0.035449, inf; stderr e_m, inv_gamma_pdf, 0.008862, inf; corr e_m, e_a, normal_pdf, 0, 0.2; stderr gp_obs, inv_gamma_pdf, 0.001, inf; //stderr gy_obs, inv_gamma_pdf, 0.001, inf; //corr gp_obs, gy_obs,normal_pdf, 0, 0.2; end; estimation(mode_compute=5,order=1,datafile=fsdat_simul,mode_check,smoother,filter_decomposition,mh_replic=2000, mh_nblocks=1, mh_jscale=0.8,forecast = 8,bayesian_irf,filtered_vars,filter_step_ahead=[1,3],irf=20) m P c e W R k d y; shock_decomposition y W R; //identification(advanced=1,max_dim_cova_group=3,prior_mc=250);