dynare/matlab/kalman/likelihood/univariate_kalman_filter.m

96 lines
4.1 KiB
Matlab
Raw Normal View History

function [LIK, lik] = univariate_kalman_filter(T,R,Q,H,P,Y,start,mf,kalman_tol,riccati_tol,data_index,number_of_observations,no_more_missing_observations)
% Computes the likelihood of a stationnary state space model (univariate approach).
%
% INPUTS
% T [double] mm*mm transition matrix of the state equation.
% R [double] mm*rr matrix, mapping structural innovations to state variables.
% Q [double] rr*rr covariance matrix of the structural innovations.
% H [double] pp*1 (zeros(pp,1) if no measurement errors) variances of the measurement errors.
% P [double] mm*mm variance-covariance matrix with stationary variables
% Y [double] pp*smpl matrix of (detrended) data, where pp is the maximum number of observed variables.
% start [integer] scalar, likelihood evaluation starts at 'start'.
% mf [integer] pp*1 vector of indices.
% kalman_tol [double] scalar, tolerance parameter (rcond).
% riccati_tol [double] scalar, tolerance parameter (riccati iteration).
% data_index [cell] 1*smpl cell of column vectors of indices.
% number_of_observations [integer] scalar.
% no_more_missing_observations [integer] scalar.
%
% OUTPUTS
% LIK [double] scalar, likelihood
% lik [double] vector, density of observations in each period.
%
% REFERENCES
% See "Filtering and Smoothing of State Vector for Diffuse State Space
% Models", S.J. Koopman and J. Durbin (2003, in Journal of Time Series
% Analysis, vol. 24(1), pp. 85-98).
%
% NOTES
% The vector "lik" is used to evaluate the jacobian of the likelihood.
% Copyright (C) 2004-2008 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
pp = size(Y,1); % Number of observed variables
mm = size(T,1); % Number of variables in the state vector.
smpl = size(Y,2); % Number of periods in the dataset.
a = zeros(mm,1); % Initial condition of the state vector.
QQ = R*Q*transpose(R);
t = 0;
lik = zeros(smpl+1,1);
lik(smpl+1) = number_of_observations*log(2*pi); % the constant of minus two times the log-likelihood
notsteady = 1;
while notsteady && t<smpl
t = t+1;
MF = mf(data_index{t});
oldP = P;
for i=1:length(MF)
prediction_error = Y(data_index{t}(i),t) - a(MF(i));
Fi = P(MF(i),MF(i)) + H(data_index{t}(i));
if Fi > kalman_tol
Ki = P(:,MF(i))/Fi;
a = a + Ki*prediction_error;
P = P - (Fi*Ki)*transpose(Ki);
lik(t) = lik(t) + log(Fi) + prediction_error*prediction_error/Fi;
end
end
a = T*a;
P = T*P*transpose(T) + QQ;
if t>no_more_missing_observations
notsteady = max(max(abs(P-oldP)))>riccati_tol;
end
end
% Steady state kalman filter.
while t < smpl
PP = P;
t = t+1;
for i=1:pp
prediction_error = Y(i,t) - a(mf(i));
Fi = PP(mf(i),mf(i)) + H(i);
if Fi > kalman_tol
Ki = PP(:,mf(i))/Fi;
a = a + Ki*prediction_error;
PP = PP - (Fi*Ki)*transpose(Ki);
lik(t) = lik(t) + log(Fi) + prediction_error*prediction_error/Fi;
end
end
a = T*a;
end
LIK = .5*(sum(lik(start:end))-(start-1)*lik(smpl+1)/smpl);