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Motivations

I Severe nonlinearities play sometimes an important role in
macroeconomics.

I In particular occasionally binding constraints: irreversible
investment, borrowing constraint, ZLB.

I Usual local approximation techniques don’t work when there
are kinks.

I Deterministic, perfect forward, models can be solved with
much greater accuracy than stochastic ones.

I The extended path approach aims to keep the ability of
deterministic methods to provide accurate account of
nonlinearities.



Model to be solved

st = Q(st � 1; ut ) (1a)

F (yt ; xt ; st ; Et [Et + 1]) = 0 (1b)

G(yt ; xt + 1; xt ; st ) = 0 (1c)

Et = H(yt ; xt ; st ) (1d)

st is a ns � 1 vector of exogenous state variables, ut � BB(0; � u) is
a nu � 1 multivariate innovation, xt is a nx � 1 vector of endogenous
state variables, yt is a ny � 1 vector of non predetermined variables
and Et is a nE � 1 vector of auxiliary variables.



Solving perfect foresight models

I Perfect foresight models, after a shock economy returns
asymptotically to equilibirum.

I For a long enough simulation, one can consider that for all
practical purpose the system is back to equilibrium.

I This suggests to solve a two value boundary problem with
initial conditions for some variables (backward looking) and
terminal conditions for others (forward looking).

I In practice, one can use a Newton method to the equations of
the model stacked over all periods of the simulation.

I The Jacobian matrix of the stacked system is very sparse and
this characteristic must be used to write a practical algorithm.



Extended path approach

I Already proposed by Fair and Taylor (1983).
I The extended path approach creates a stochastic simulation as

if only the shocks of the current period were random.
I Substituting (1a) in (1d), define:

Et = E (yt ; xt ; st � 1; ut ) = H(yt ; xt ; Q(st � 1; ut ))

I The Euler equations (1b) can then be rewritten as:

F
�
yt ; xt ; st ; Et [E (yt + 1; xt + 1; st ; ut + 1)]

�
= 0

I The Extended path algorithm consists in replacing the previous
Euler equations by:

F
�
yt ; xt ; st ; E (yt + 1; xt + 1; st ; 0)

�
= 0



Extended path algorithm

Algorithm 1 Extended path algorithm

1. H  Set the horizon of the perfect foresight (PF) model.
2. (x?; y?)  Compute steady state of the model
3. (s0; x1)  Choose an initial condition for the state variables
4. for t = 1 to T do
5. ut  Draw random shocks for the current period
6. (yt ; xt + 1; st )  Solve a PF with yt + H+ 1 = y?

7. end for



Extended path algorithm (time t nonlinear problem)

st = Q(st � 1 ; ut )

0 = F
�
yt ; xt ; st ; E (yt + 1 ; xt + 1 ; st ; 0)

�

0 = G(yt ; xt + 1 ; xt ; st )

st + 1 = Q(st ; 0)

0 = F
�
yt + 1 ; xt + 1 ; st + 1 ; E (yt + 2 ; xt + 2 ; st + 1 ; 0)

�

0 = G(yt + 1 ; xt + 2 ; xt + 1 ; st + 1)

.

.

.

st + h = Q(st + h� 1 ; 0)

0 = F
�
yt + h ; xt + h ; st + h ; E (yt + h+ 1 ; xt + h+ 1 ; st + h ; 0)

�

0 = G(yt + h ; xt + h+ 1 ; xt + h ; st + h)

.

.

.

st + H = Q(st + H � 1 ; 0)

0 = F
�
yt + H ; xt + H ; st + H ; E (y? ; xt + H+ 1 ; st + H ; 0)

�

0 = G(yt + H ; xt + H+ 1 ; xt + H ; st + H )



Extended path algorithm (discussion)

I This approach takes full account of the deterministic non
linearities...

I ... But neglects the Jensen inequality by setting future
innovations to zero (the expectation).

I We do not solve the rational expectation model! We solve a
model where the agents believe that the economy will not be
perturbed in the future. They observe new realizations of the
innovations at each date but do not update this belief...

I Uncertainty about the future does not matter here.

I EP > First order perturbation (certainty equivalence)



Stochastic extended path

I The strong assumption about future uncertainty can be
relaxed by approximating the expected terms in the Euler
equations (1b)

I We assume that, at time t , agents perceive uncertainty about
realizations of ut + 1; : : : ; ut + k but not about the realizations of
ut + � for all � > k (which, again, are set to zero)

I Under this assumption, the expectations are approximated
using numerical integration.



Gaussian quadrature (univariate)

I Let X be a Gaussian random variable with mean zero and
variance � 2

x > 0, and suppose that we need to evaluate
E[’ (X )], where ’ is a continuous function.

I By definition we have:

E[’ (X )] =
1

� x
p

2�

Z 1

�1
’ (x)e

� x2
2� 2

x dx

I It can be shown that this integral can be approximated by a
finite sum using the following result:

Z 1

�1
’ (z)e� z2

dx =
nX

i= 1

! i ’ (zi )+
n!

p
n

2n
’ (2n) (� )

(2n)!

where zi (i = 1; : : : ; n) are the roots of an order n Hermite
polynomial, and the weights ! i are positive and summing up
to one (the error term is zero iff ’ is a polynomial of order at
most 2n � 1). ! xi = zi=� x

p
2



Gaussian quadrature (multivariate)

I Let X be a multivariate Gaussian random variable with mean
zero and unit variance, and suppose that we need to evaluate

E[’ (X )] = ( 2� ) � p
2

Z

Rp
’ (x)e� 1

2 x0xdx

I Let f (! i ; zi )gn
i= 1 be the weights and nodes of an order n

univariate Gaussian quadrature.
I This integral can be approximated using a tensor grid:

Z

Rp
’ (z)e� z0zdz �

nX

i1;:::; ip= 1

! i1 : : : ! ip ’ (zi1 ; : : : ; zip )

I Curse of dimensionality: The number of terms in the sum
grows exponentially with the number of shocks.



Unscented transform

I Let X be a p � 1 multivariate random variable with mean zero
and variance � x . We need to compute moments of Y = ’ (X ).

I Let Sp = f ! i ; xi g
2p+ 1
i= 1 be a set of deterministic weights and

points:

x0 = 0 ! 0 = �
p+ �

xi =
� p

(p + � )� x

�

i
! i = 1

2(p+ � ) , for i=1,. . . ,p

xi = �
� p

(p + � )� x

�

i � p
! i = 1

2(p+ � ) , for i=p+1,. . . ,2p

where � is a real positive scaling parameter.
I It can be shown that the weights are positive and summing-up

to one and that the first and second order “sample” moments
of Sp are matching those of X .

I Compute the moments of Y by applying the mapping ’ to Sp.
I Exact mean and variance of Y for a second order Taylor

approximation of ’ .



Forward histories (one shock, three nodes, order two SEP)

ut

u3
t + 1

u3
t + 2 ! 3! 3

u2
t + 2 ! 3! 2

u1
t + 2 ! 3! 1

u2
t + 1

u3
t + 2 ! 2! 3

u2
t + 2 ! 2! 2

u1
t + 2 ! 2! 1

u1
t + 1

u3
t + 2 ! 1! 3

u2
t + 2 ! 1! 2

u1
t + 2 ! 1! 1

! The tree of histories grows exponentially!



Fishbone integration

I The curse of dimensionality can be overcome by pruning the
tree of forward histories.

I This can be done by considering that innovations, say, at time
t + 1 and t + 2 are unrelated variables (even if they share the
same name).

I If we have nu innovations and if agents perceive uncertainty
for the next k following periods, we consider an integration
problem involving nu � k unrelated variables.

I We use a two points Cubature rule to compute the integral
(unscented transform with � = 0) ! The complexity of the
integration problem grows linearly with nu or k



Fishbone history (one shock, two nodes, order three SEP)

ut

ut + 1 = u

�

ut + 2 = u

�

ut + 3 = u

ut + 3 = u

ut + 2 = uut + 1 = u



Stochastic extended path algorithm

Algorithm 2 Stochastic Extended path algorithm

1. H  Set the horizon of the stochastic perfect foresight (SPF)
models.

2. (x?; y?)  Compute steady state of the model.
3. f (! i ; �u�i )gm

i= 1  Get weights and nodes for numerical integration
4. (s0; x1)  Choose an initial condition for the state variables
5. for t = 1 to T do
6. ut  Draw random shocks for the current period
7. (yt ; xt + 1; st )  Solve a SPF model with yt + H+ 1 = y?

8. end for



SEP algorithm (order 1, time t nonlinear problem)
For i = 1; : : : ; m

st = Q(st � 1 ; ut )

0 = F
�

yt ; xt ; st ;
X

i
! i E (y i

t + 1 ; xt + 1 ; st ; �u�i )
�

0 = G(yt ; xt + 1 ; xt ; st )

si
t + 1 = Q(st ; �u�i )

0 = F
�
y i

t + 1 ; xt + 1 ; si
t + 1 ; E (y i

t + 2 ; x i
t + 2 ; si

t + 1 ; 0)
�

0 = G(y i
t + 1 ; x i

t + 2 ; xt + 1 ; si
t + 1)

.

.

.

si
t + h = Q(si

t + h� 1 ; 0)

0 = F
�
y i

t + h ; x i
t + h ; si

t + h ; E (y i
t + h+ 1 ; x i

t + h+ 1 ; si
t + h ; 0)

�

0 = G(y i
t + h ; x i

t + h+ 1 ; x i
t + h ; si

t + h)

.

.

.

si
t + H = Q(si

t + H � 1 ; 0)

0 = F
�
y i

t + H ; x i
t + H ; si

t + H ; E (y? ; x i
t + H+ 1 ; si

t + H ; 0)
�

0 = G(y i
t + H ; x i

t + H+ 1 ; x i
t + H ; si

t + H )



SEP algorithm (order 2, time t nonlinear problem)
For all (i ; j ) 2 f 1; : : : ; mg2

st = Q(st � 1 ; ut )

0 = F
�

yt ; xt ; st ;
X

i
! i E (y i

t + 1 ; xt + 1 ; st ; �u�i )
�

0 = G(yt ; xt + 1 ; xt ; st )

si
t + 1 = Q(st ; �u�i )

0 = F
�
y i

t + 1 ; xt + 1 ; si
t + 1 ;

X
j
! j E (y i ; j

t + 2 ; x i
t + 2 ; si

t + 1 ; �u�j )
�

0 = G(y i
t + 1 ; x i

t + 2 ; xt + 1 ; si
t + 1)

si ; j
t + 2 = Q(si

t + 1 ; �u�j )

.

.

.

si ; j
t + h = Q(si ; j

t + h� 1 ; 0)

0 = F
�
y i ; j

t + h ; x i ; j
t + h ; si ; j

t + h ; E (y i ; j
t + h+ 1 ; x i ; j

t + h+ 1 ; si ; j
t + h ; 0)

�

0 = G(y i ; j
t + h ; x i ; j

t + h+ 1 ; x i ; j
t + h ; si ; j

t + h)

.

.

.

si ; j
t + H = Q(si ; j

t + H � 1 ; 0)

0 = F
�
y i ; j

t + H ; x i ; j
t + H ; si ; j

t + H ; E (y? ; x i ; j
t + H+ 1 ; si ; j

t + H ; 0)
�

0 = G(y i ; j
t + H ; x i ; j

t + H+ 1 ; x i ; j
t + H ; si ; j

t + H )



Stochastic extended path (discussion)

I The extended path approach takes full account of the
deterministic nonlinearities of the model.

I It takes into account the nonlinear effects of future shocks
k-period ahead.

I It neglects the effects of uncertainty in the long run. In most
models this effect declines with the discount factor.

I The Stochastic Perfect Foresight model, that must be solved
at each date, is very large.

I Curse of dimensionality with respect with the number of
innovations and the order of approximation but not with the
number of state variables!



Burnside (1998) model
I A representative household
I A single perishable consumption good produced by a single

’tree’.
I Household can hold equity to transfer consumption from one

period to the next
I Household’s intertemporal utility is given by

Et

" 1X

� = 0

� � � c�
t + �
�

#

with � 2 (�1 ; 0) [ (0; 1]

I Budget constraint is

pt et + 1 + ct = ( pt + dt ) et

I Dividends dt are growing at exogenous rate xt

dt = ext dt � 1

xt = ( 1 � � )�x + � xt � 1 + � t



Dynamics

The price/dividend ratio, yt = pt=dt , is given by

yt = � Et

h
e� xt + 1 (1 + yt + 1)

i

xt = ( 1 � � )�x + � xt � 1 + � t

Iterating forward, yt can be written as the current value of future
dividends growth rates:

yt = Et

" 1X

i= 1

� � e
P i

j = 1 � xt + j

#

= Et

" 1X

i= 1

� � e�
P i

j = 1 �x+ � i x̂t +
P j

‘ = 1 � j � ‘ � t + ‘

#

with x̂t = xt � �x.



The exact solution

Using formulas for the distribution of the log-normal random
variable, Burnside (1998) shows that the closed form solution is

yt =
1X

i= 1

� i eai + bi x̂t

where

ai = � �xi +
� 2� 2

2(1 � � )2

�
i � 2�

1 � � i

1 � �
+ � 2 1 � � 2i

1 � � 2

�

and

bi =
��

�
1 � � i �

1 � �



The extended path approach

In the extended path approach, one sets future shocks to their
expected value, E [� t + ‘ ] = 0, ‘ = 1; : : : ; 1 . The corresponding
solution is given by

ŷt =
1X

i= 1

� i eai + bi x̂t

where

ai = � �xi
( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ((

+
� 2� 2

2(1 � � )2

�
i � 2�

1 � � i

1 � �
+ � 2 1 � � 2i

1 � � 2

�

and

bi =
��

�
1 � � i �

1 � �



Numerical simulation
Calibration

�x = 0:0179
� = � 0:139
� = � 1:5
� = 0:95
� = 0:0348

I The deterministic steady state is equal to 12.3035.
I The risky steady state, defined as the fix point in absence of

shock this period:

ey =
1X

i= 1

� i e
� �xi+ � 2 � 2

2(1� � )2

�
i � 2� 1� � i

1� � + � 2 1� � 2i

1� � 2

�

is equal to 12.4812.



Comparing expended path and closed-form solution
Difference between expended path approximation, ŷt , and
closed-form solution, yt .

I Using 800 terms to approximate the infinite summation
I Computing over 30000 periods

min (yt � ŷt ) = 0:1726
max (yt � ŷt ) = 0:1820

I The effect of future volatility isn’t trivial

~y � �y
�y

= 0:0144

I The effect of future volatility doesn’t depend much on the
state of the economy.



Stochastic extended path

I A k-order stochastic expended path approach computes the
conditional expectation taking into accounts the shocks over
the next k periods.

I The closed formula is

�yt =
1X

i= 1

� i eai + bi x̂t

where

ai = � �xi+

8
<

:

� 2� 2

2(1� � )2

�
i � 2� 1� � i

1� � + � 2 1� � 2i

1� � 2

�
for i � k

� 2� 2

2(1� � )2

�
k � 2� � i � k � � i

1� � + � 2 � 2( i � k ) � � 2i

1� � 2

�
for i > k

and

bi =
��

�
1 � � i �

1 � �



Quantitative evaluation
I What is the ability of the stochastic extended path approach

to capture the effect of future volatility?
I What part of the difference between the risky steady state and

deterministic steady state is captured by different values of k?
I Deterministic steady state: 12.3035
I Risky steady state: 12.4812
I The contribution of k future periods

k Percentage
1 7.4%
2 14.3%
9 50.0%
30 90.1%
60 99.0%

I In such a model, it is extremely costly to give full account of
the effects of future volatility with the stochastic extended
path approach.



Hybrid approach, I

I A very large number of periods forward (the order of
stochastic extended path) is necessary to obtain an accurate
figure of the effects of future volatility.

I However, even a local approximation with a Taylor expansion
of low order provides better information on this effect of future
volatility.

I This suggests to combine the two approaches.



Hybrid approach, II
For i = 1; : : : ; # f nodesg:

st = Q(st � 1 ; ut )

0 = F
�

yt ; xt ; st ;
X

i
! i E

�
y i

t + 1 +
1

2
g�� ; xt + 1 ; st ; �u�i

��

0 = G(yt ; xt + 1 ; xt ; st )

si
t + 1 = Q(st ; �u�i )

0 = F
�
y i

t + 1 ; xt + 1 ; si
t + 1 ; E (y i

t + 2 ; x i
t + 2 ; si

t + 1 ; 0)
�

0 = G(y i
t + 1 ; x i

t + 2 ; xt + 1 ; si
t + 1)

.

.

.

si
t + h = Q(si

t + h� 1 ; 0)

0 = F
�
y i

t + h ; x i
t + h ; si

t + h ; E (y i
t + h+ 1 ; x i

t + h+ 1 ; si
t + h ; 0)

�

0 = G(y i
t + h ; x i

t + h+ 1 ; x i
t + h ; si

t + h)

.

.

.

si
t + H = Q(si

t + H � 1 ; 0)

0 = F
�
y i

t + H ; x i
t + H ; si

t + H ; E (y? ; x i
t + H+ 1 ; si

t + H ; 0)
�

0 = G(y i
t + H ; x i

t + H+ 1 ; x i
t + H ; si

t + H )



Hybrid approach, III

We compute the difference between the stochastic expended path
approximation of order 2, the hybrid approach of order 2 and the
closed-form solution, yt . We use 800 terms to approximate the
infinite summation and run simulations over 30000 periods.

Stochastic Hybrid stochastic
extended path extended path

maximum difference 0.1607 0.0021
minimum difference 0.1513 0.0019



Irreversible investment

Consider the following RBC model with irreversible investment:

max
f ct + j ;lt + j ;kt + j + 1g1

j = 0

Wt =
1X

j = 0

� j u(ct + j ; lt + j )

s:t :
yt = ct + it
yt = At f (kt ; lt )

kt + 1 = it + ( 1 � � )kt

At = A?eat

at = � at � 1 + " t

it � 0



Further specifications

The utility function is

u(ct ; lt ) =
�
c�

t (1 � lt )1� � � �

1 � �

and the production function,

f (kt ; lt ) =
�

� k  
t + ( 1 � � )l  

t

� 1
 



First order conditions

uc(ct ; lt ) � � t = � Et

h
uc(ct + 1; lt + 1)

�
At + 1fk (kt + 1; lt + 1) + 1 � �

�
� � t + 1(1 � � )

i

ul (ct ; lt )
uc(ct ; lt )

= At fl (kt ; lt )

ct + kt + 1 = At f (kt ; lt ) + ( 1 � � )kt

0 = � t (kt + 1 � (1 � � )kt )

where � t is the Lagrange multiplier associated with the constraint
on investment.



Calibration

� = 0:990
� = 0:357
� = 2:000
� = 0:450
 = � 0:500
� = 0:020
� = 0:995

A? = 1:000
� = 0:100



Simulation

I Order: 0, 1, 2 and 3
I Integration nodes: 3 (Gaussian quadrature)
I Number of periods for auxiliary simulations (SPF): 200



The trajectory of investment
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The trajectory of investment
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