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Introduction

I We abstract from the effects of future uncertainty by assuming that
the agents can form perfect foresights.

I For instance, if the current productivity departs from its equilibrium
level, all the agents can perfectly anticipate the productivity’s return
path to its steady state.

I Possible future shocks are anticipated (deterministic).

I Pros:
I Nonlinear deterministic models are much easier to solve than their

stochastic counterpart.
I Can easily handle models with kinks or occasionally binding

constraints.

I Cons:
I What if future uncertainty really matters?
I How can we simulate time series?...
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Deterministic RBC model (equations)

As an example, consider a deterministic version of the RBC model, where
the dynamics of consumption, physical capital and productivity are given
by:

ct+1

ct
= β

(
αeat+1kα−1

t+1 + 1− δ
)

(Euler)

kt+1 = eatkαt + (1− δ)kt − ct (Transition)

at = ρat−1 (Productivity)

Note that we do not have zero mean innovations in the exogenous
productivity process, as in the stochastic RBC model, and, as a
consequence no conditional expectation in the Euler equation.
Later we will consider the possibility of perfectly anticipated shocks.
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The equations given in the previous slide are the first order condition of a Central planner, whose behavior is characterized by:

max
{ct+j ,kt+1+j}

∞
j=0

∞∑
j=0

β
j log ct+j

s.t. ct+j + kt+1+j = e
at+j kαt+j + (1 − δ)kt+j ∀j ≥ 0

at+j = ρat+j−1

(1)

• β ∈ (0, 1) is the discount factor,

• α ∈ (0, 1) is the elasticity of production with respect to physical capital,

• δ ∈ (0, 1) is the depreciation rate of physical capital stock,

• Autoregressive parameter ρ is assumed to be less than one in absolute value,

• Usual notations: ct , kt and at respectively stand for consumption, physical capital stock and (logged) exogenous efficiency.

For simplicity, we state the central planner formulation of the problem. We know that, without any departure from the perfect competition
assumptions, we would obtain exactly the same equilibrium dynamics by stating the decentralized problem. The Lagrangian associated to
this problem is given by:

L =
∞∑
j=0

β
j
(

log ct+j + λt+j

{
e
at+j kαt+j + (1 − δ)kt+j − ct+j − kt+1+j

})

where λt+j ≥ 0 is the Lagrange multiplier for the resource constraint.

The same Lagrangian can be alternatively written in the following manner:

L = log ct + λt

{
eat kαt + (1 − δ)kt − ct − kt+1

}
β
(

log ct+1 + λt+1

{
e
at+1 kαt+1 + (1 − δ)kt+1 − ct+1 − kt+2

})
+ . . .

β
s
(

log cs + λs

{
eas kαs + (1 − δ)ks − cs − ks+1

})
+ . . .
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The first order conditions are obtained by setting to zero the first partial derivatives of L with respect to ct and kt+1. We obtain:

λt =
1

ct
(a)

and
λt = βλt+1

(
αe

at+1 k
α−1
t+1

+ 1 − δ
)

(b)

The Lagrange multiplier, λt , is also called the shadow price of capital. λt says how much the household is willing to pay for an additional
unit of physical capital tomorrow. Condition (a) relates this implicit price to the marginal utility of consumption (an additional unit of
physical capital tomorrow is at the cost of one unit of consumption today).

Equation (b) states that, in equilibrium, what is lost by postponing consumption today (λt ) has to be exactly compensated by the dis-
counted gains obtained tomorrow (β times λt+1 times the future real gross return to physical capital).

Substituting (a) into (b) we obtain the Euler equation which, completed with the resource constraint and the law of motion for productivity,
characterizes the dynamics of the economy.

Substituting the transition equation in the Euler equation, one can see that the first order conditions implicitly define a second order
nonlinear recurrent equation for the physical capital stock (with kt , kt+1 and kt+2). This recurrent equation admits an infinity of solution
given the initial condition k0. We need to add another boundary condition to pin down a unique solution. In an infinite horizon problem
we use a transversality condition for that purpose:

lim
T→∞

β
T
λT kT+1 = 0

where λT is the previously defined Lagrange multiplier (the marginal utility of consumption). This condition states that asymptotically the
detention of capital is not valued.

In the sequel, when solving perfect foresight models, we will not explicitely referring to a transversality condition. To pin down a unique
path for the endogenous variables we will impose that these variable have to converge to a steady state. Provided that the steady state has
good properties (determinacy), this additional boundary condition is enough to identify a unique solution.
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Deterministic RBC model (steady state)

The steady state of the model is given by:

a? = 0

k? =

(
α

b + δ

) 1
1−α

c? = k? α − δk?

We know that the steady state is unstable in all directions except one, for
all admissible values of the deep parameters (saddle path property).
We can illustrate this property, that will be shared by all the DSGE
models that we will deal with in this course, with a phase diagram.
To do that, we will assume that a0 = a?, so that we can get rid of the
productivity variable.
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The steady state level of productivity is necessarily zero because it is the only possible value for a? such that a? = ρa? for any value of
the autoregressive parameter ρ.

Evaluating the Euler equation at the (unknown) steady state, we obtain:

β
−1 = α k? α−1 + 1 − δ

because the constant levels of consumption cancel out. Defining b a positive real number such that β = 1
1+b

, we have equivalently:

b + δ

α
= k? α−1

or

k? =

(
α

b + δ

) 1
1−α

Substituting k? in the transition equation, we obtain the steady state level of consumption:

c? = k? α − δk?

cba

http://creativecommons.org/licenses/by-sa/3.0/legalcode
https://gitlab.com/stepan-a-dynare/perfect-foresight


Deterministic RBC model (phase diagram)

I We represent graphically the dynamics in the plan (kt , ct).

I The physical capital stock is decreasing (∆kt+1 ≤ 0) if and only if
(kt , ct) is such that:

ct ≥ kαt − δkt ≡ ϕ∆k(kt)

ϕ∆k is an increasing function of k as long as the marginal
productivity of capital is greater than the depreciation rate (k < k̄).
For higher levels k, ϕ∆k is a decreasing function of k.

I The consumption is decreasing (∆ct+1 ≤ 0) if and only if (kt , ct) is
such that:

ct ≤ kαt + (1− δ)kt − k? ≡ ϕ∆c(kt)

ϕ∆c is an increasing function of k .
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Deterministic RBC model (phase diagram)

kt

ct

•

k?

c?

k̄k(0)

c(0)
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Deterministic RBC model (phase diagram)

I Any trajectory in the (k , c) plan satisfies the Euler and transition
equations... But, given an initial condition for the physical capital
stock, only one path leads to the steady state in the long run.

I If k(0) is the initial state of the economy, the central planner
chooses the initial level of the control variable, c(0), such that the
economy will converge to the steady state in the long run ⇒ c(0)
has to be on the saddle path (the red curve)...

I Otherwise the economy will move away permanently from its steady
state, and the economy will eventually disappear in finite time or
violate the transversality condition.
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Because the transition equation can be equivalently rewritten as:

kt+1 − kt = kαt − δkt − ct

∆kt+1 ≤ is equivalent to:

kαt − δkt − ct ≤ 0

⇔ ct ≥ kαt − δkt (ϕ∆k )

One can show that ϕ′∆k (k) ≥ 0 if and only if k ≤ k̄ ≡ (α/δ)
1

1−α and that k̄ > k? .

If ∆ct+1 ≤ 0, then ct+1/ct ≤ 1 and from the Euler equation we have:

αk
α−1
t+1

+ 1 − δ ≤ β−1

kt+1 ≤ k?

Substituting the law of motion for the physical capital stock:

kαt + (1 − δ)kt − ct ≤ k?

⇔ ct ≥ kαt + (1 − δ)kt − k? (ϕ∆c )

The representative curves for ϕ∆c and ϕ∆k divide the plan (k, c) if four regions. In each region, the vertical and horizontal arrows
indicate how consumption and physical capital stock are moving. Curved arrows show how a path can go from a region to another.
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Deterministic RBC model (solution strategies)

I To study the properties and implications of the model, we need to
solve it.

I A first approach is to solve for policy rules, ie time invariant
functional forms that relate the control variables to the state
variables.

I A second approach is to solve for the paths of all the endogenous
variables.

I The second approach, which will be emphasized in this chapter, is
less general because the solution is obtained for a specific initial
condition and/or set of shocks.

I But this approach offers a better control over the accuracy of the
solution and is often easier to compute (especially in the presence of
non differentiabilities induced by occasionally binding constraints, as
the ZLB for nominal interest rate).
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Deterministic RBC model (solving for the policy rules)

I We are looking for a time invariant function ct = ψ(kt) satisfying
the Euler and transition equations:

ψ (kαt + (1− δ)kt − ψ(kt))

ψ (kt)
=

β

[
α
(
kαt + (1− δ)kt − ψ(kt)

)α−1

+ (1− δ)kt − ψ(kt)

]
I In general there is no closed form solution to this functional

equation...

I We postulate a parametric solution ψ̂(kt , a), and look for the vector
of reduced form parameters a such that the residuals of the previous
equation are satisfied or arbitrarily small for some values of kt .

Ex. 1
Show that the previous model (with a = a?) admits a closed form solution if
the depreciation rate is equal to one. What is the form of the saddle path in
this case? Write a matlab code to simulate the path of output if k(0) = k?/2
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Deterministic RBC model (solving for the paths)

I We assume that the economy reaches the steady state in finite time
(T <∞). This is obviously an approximation.

I Paths for c and k must satisfy the following system (Euler and
transition equations for t = 0, . . . ,T ):

c1

c0

− β
(
αk
α−1
1

+ 1 − δ
)

= 0

k1 − kα0 − (1 − δ)k0 + c0 = 0

c2

c1

− β
(
αk
α−1
2

+ 1 − δ
)

= 0

k2 − kα1 − (1 − δ)k1 + c1 = 0

.

.

.

ct+1

ct
− β

(
αk
α−1
t+1

+ 1 − δ
)

= 0

kt+1 − kαt − (1 − δ)kt + ct = 0

.

.

.

cT

cT−1

− β
(
αk
α−1
T

+ 1 − δ
)

= 0

kT − kαT−1 − (1 − δ)kT−1 + cT−1 = 0

with k0 give and cT = c? the known boundary conditions.
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Deterministic RBC model (solving for the paths)

I In the numerical analysis literature this kind of problem is known as
a two boundary value problem. The boundaries are the initial
condition for the states and the terminal condition (steady state) for
the control variables.

I At least two class of methods are available to solve these problems:
the shooting method (find the initial condition such that the
endogenous variables converge to the steady state) and the
relaxation method that will be explored in this chapter.

I The relaxation method is generally found to be faster and more
accurate (because, as shown below, we exploit all the equations at
all the periods between 0 and T − 1).

I Dynare solves the perfect foresight models using the relaxation
approach.
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Deterministic RBC model (solving for the paths)

I We have a system of 2T equations for 2T unknowns:
c0, c1, . . . , cT−1 and k1, k2, . . . , kT , the paths for the endogenous
variables.

I Note that k0 is given by the initial condition and cT is given by the
terminal condition (c?).

I We use a Newton algorithm for solving this system of nonlinear
equations.

I We stack the unknown variables in a column vector Y as follows:

Y = (c0, k1, c1, k2, c2, . . . , kt−1, ct−1, kt)

The boundary conditions (k0 and cT ) are not in the vector.

I The previous system of equations can be represented by defining a
function F : R2T

+ → R2T such that:

F (Y) = 0

This function is parameterized by the deep parameters (α, β and δ)
and the boundary conditions (k0 and cT ).
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Deterministic RBC model (solving for the paths)

I At time t the Euler and transition equations depend only on ct ,
ct+1, kt and kt+1.

⇒ The jacobian of F , denoted JF (Y), is a sparse matrix.

I Specialized inversion algorithms are available for sparse matrices.

I Using Newton iterations, we can solve for the paths:

Y(n) = Y(n−1) − JF
(
Y(n−1)

)−1

F
(
Y(n−1)

)
I As an initial guess for the unknown paths, Y0, we generally consider

that all the variables at all periods are at the steady state.

I A clever choice for the initial guess, Y0, would be to use simulations
obtained with a perturbation approach (next chapter).

I Matlab code for simulating this model are available here.
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We adopt the following notations:

f t =
ct+1

ct
− β

(
αk
α−1
t+1

+ 1 − δ
)

gt = kt+1 − kαt − (1 − δ)kt + ct

for the residuals of the Euler and transition equations at time t, and

f tc = −
ct+1

c2
t

, f tc+
=

1

ct
, f tk = 0, f tk+

= βα(1 − α)k
α−2
t+1

gtc = 1, gtc+
= 0, gtk = −(1 − δ) − αk

α−1
t , gtk+

= 1

the associated partial derivates. Using these notations, the jacobian of F is given by:

JF (Y) =



f
0
c

f
0
k+

f
0
c+

0 . . . . . . . . . 0

g
0
c

g
0
k+

g
0
c+

0 . . . . . . . . . 0

0 f
1
k

f
1
c

f
1
k+

f
1
c+

0 . . . 0

0 g
1
k

g
1
c

g
1
k+

g
1
c+

0 . . . 0

.
.
.

.
.
.

.
.
.

.
.
.

0 . . . 0 f
T−2
k

f
T−2
c

f
T−2
k+

f
T−2
c+

0

0 . . . 0 g
T−2
k

g
T−2
c

g
T−2
k+

g
T−2
c+

0

0 . . . . . . . . . 0 f
T−1
k

f
T−1
c

f
T−1
k+

0 . . . . . . . . . 0 g
T−1
k

g
T−1
c

g
T−1
k+



This matrix has 4T
2 elements and only 10 + (T− 2)× 6 of them are nonzero. Note that the total number of elements grows quadratically

while the number of nonzero elements grows linearly. Consequently the percentage of nonzero elements, ie the sparsity of the jacobian
matrix, is a decreasing function of T. For instance for T = 200, the percentage of nonzero elements is 0.74875%.
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Deterministic RBC model (solving for the paths)

Ex. 2
Use the provided matlab code to represent graphically the saddle path for
k ∈ k? ± k? × 40%.

Ex. 3
Adapt the provided matlab by adding the dynamic of efficiency (ie we do not
assume a0 = a?). Simulate the model with k0 = .6k? and a0 = −.1 and plot
the dynamic of output.

Ex. 4
We considered cT = c? as a terminal condition. An alternative would be to
impose that the variation of consumption is zero in the two last periods. Adapt
the provided matlab code to implement this terminal condition, and compare
the simulation obtained with the two terminal conditions.
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Deterministic RBC model (solving for the paths)

I The Newton algorithm may fail to converge if the distance between
k0 and k? is too large.

I For instance it is not possible to simulate the model with the
provided matlab code if k0 = .05k? (try by replacing .5kstar by
.05kstar in the last line of example1.m).

I The main reason is that the initial guess is too far from the solution
in this case. The matlab’s script example2.m shows how we can
solve this issue using an homotopy.

I Suppose we want to solve f (x) = 0 for x but that the Newton
algorithm, starting from an initial guess x0, fails. The idea of the
homotopy is to start by solving a simpler problem for which we are
able to obtain a solution. Suppose we are able to solve:

Fλ(x) ≡ λf (x) + (1− λ)x = 0

for a small positive value of lambda. We can use the solution x?λ as
an initial guess for the problem Fλ+ε(x) = 0. Iterating with an
increasing sequence of λs we can reach the solution we are looking
for (by a continuity argument, noting that Fλ(x)→ f (x) as λ→ 1).
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The general problem

In the sequel we will consider perfect foresight (PF) models that can be
cast in the following form:

f (yt+1, yt , yt−1, ut) = 0

for t = 1, . . . ,T , with initial condition y0 given for the states and
yT = y? (the steady state) for the control variables.

I y is an n × 1 vector of endogenous variables.

I u is a q × 1 vector of perfectly anticipated innovations.

I f : R3n+q → Rn must be a continuous function. We must have as
many endogenous variables (y) as equations (f ).

I The steady state y? is such that f (y?, y?, y?, u?) = 0.

Note that the shocks (u) can occur at any period. A shock in period 1 is
a surprise, while a shock in period t > 1 is perfectly anticipated in period
1 (when the model is solved). Put differently, {ut}Tt=1 is in the
information set at time 1.
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The general problem
Certainty equivalence

I A rational expectation (RE) version of the same model (we will deal
with these models in the next chapter) would be:

Et [f (yt+1, yt , yt−1, ut)] = 0

where innovations ut is a zero mean random variable. The future
realizations of u are unknown at time t, only the associated CDF is
in the time t information set).

I The RE and PF models would be equivalent if it was possible to
pass the conditional expectation inside the f function.

I This is possible if and only if f is linear.

⇒ Certainty equivalence property: the size of the innovations does
not affect agents behavior.

I For a linear model the IRFs obtained from a RE model solver are
identical to the ones obtained with a PF model solver.
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The general problem
Remarks

I The steady state, y? depends implicitly on the deep parameters and
the steady state level of the innovations (usually zero). If the model
is well behaved the steady state exists, but nothing guaranties its
unicity.

I We did not impose the differentiability of f . The model may admit
kinks.

I Models with more than one lead and/or lag can be considered by
adding auxiliary variables.

I If a variable with two leads, xt+2, is needed:
I Create an auxiliary variable at = xt+1.
I Replace all occurrences of xt+2 by at+1.

I If a variable with three leads, xt+3, is needed:
I Create auxiliary variables at = xt+1 and bt = at+1.
I Replace all occurrences of xt+2 by bt+1

I Same trick for variables with more than one lag
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Solution of Perfect Foresight models
Stacked system

I Approximation: Impose return to equilibrium in finite time
(T <∞) instead of asymptotically.

I Note that it is possible to return to another point than the steady
state.

I We need to solve the stacked system of nonlinear equations:

f (y2, y1, y0, u1) = 0

f (y3, y2, y1, u2) = 0

...

f (yt+1, yt , yt−1, ut) = 0

...

f (yT+1, yT , yT−1, uT ) = 0

where the boundary conditions, y0 and yT+1 = y? are given.
I This system can be written F (Y) = 0 with Y = (y ′1, y

′
2, . . . , y

′
T )′,

where the function F is parameterized by the deep parameters, y0

and y?.
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Solution of Perfect Foresight models
Newton algorithm

I Set an initial guess Y(0): usually the steady state: y? ⊗ ~eT
I Update the solution paths, Y(i+1) (i = 0, 1, . . . ), by solving the

following linear system of equations:

F
(
Y(i)

)
+ JF

(
Y(i)

)(
Y(i+1) − Y(i)

)
= 0

where JF (Y) = ∂F (Y)
∂Y′ is the jacobian matrix of F .

I Stop the iterations if

||F
(
Y(i)

)
|| < ε

⇒ We solve a system of nonlinear equations by solving a sequence of
systems of linear equations!

I The Newton iteration step exposed here is very basic. It may be
useful to consider variable length steps (when Y moves in the
direction defined by the jacobian matrix).

I Different methods are available to solve the systems of linear
equations (we do not need to explicitely inverse the jacobian matrix).
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Solution of Perfect Foresight models
Solving the system of linear equations

I The size of the jacobian is very large. If we have a model with
n = 100 endogenous variables and T = 400, we must solve systems
of 40000 linear equations!

I This jacobian matrix is sparse:

JF (Y) =



f 1
y f 1

y+
0 . . . . . . . . . . . . 0

f 2
y−

f 2
y f 2

y+
0 . . . . . . . . . 0

0 f 3
y−

f 3
y f 2

y+
0 . . . . . . 0

.
.
.

.
.
.

.
.
.

.
.
.

0 . . . . . . 0 f
T−2
y− f

T−2
y f

T−2
y+

0

0 . . . . . . . . . 0 f
T−1
y− f

T−1
y f

T−1
y+

0 . . . . . . . . . . . . 0 f Ty−
f Ty



with f tx = ∂F (Yt)
∂x′ for x equal to y = yt , y− = yt−1, y+ = yt+1

I We have to exploit the sparsity when solving the systems of linear
equations.
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Solution of Perfect Foresight models
LBJ algorithm (1/5)

I Laffargue, Boucekine and Juillard propose to solve each Newton
step:



f 1
y f 1

y+
f 2
y−

f 2
y f 2

y+

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

f
T−1
y− f

T−1
y f

T−1
y+

f Ty−
f Ty



∆Y = −



f (y2, y1, y0, u1)
f (y3, y2, y1, u2)

.

.

.

.

.

.
f (yT , yT−1, yT , uT−1)

f (yT+1, yT , yT−1, uT )



by triangularizing the system of linear equations.

I Note that the first and last blocks of rows need a special treatment.
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Solution of Perfect Foresight models
LBJ algorithm (2/5, first block of rows)

1. Pre-multiply the t = 1 rows by
(
f 1
y

)−1
: f 1

y → In

2. Substract f 2
y− times the new t = 1 rows to t = 2 rows: f 2

y− → On



In g1

On f 2
y − f 2

y−
g1 f 2

y+

f 3
y−

f 3
y f 3

y+

.
.
.

.
.
.

.
.
.

f
T−1
y− f

T−1
y f

T−1
y+

f Ty−
f Ty


∆Y = −



d1

f (y3, y2, y1, u2) + f 2
y−

d1

f (y4, y3, y2, u3)

.

.

.
f (yT , yT−1, yT , uT−1)

f (yT+1, yT , yT−1, uT )



where

I g1 =
(
f 1
y

)−1
f 1
y+

I d1 =
(
f 1
y

)−1
f (y2, y1, y0, u1)

This new system of linear equations is equivalent to the previous one.
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Solution of Perfect Foresight models
LBJ algorithm (3/5, following blocks of rows)

For t = 2, . . . ,T − 1:

1. Pre-multiply the t rows by
(
f ty − f ty−g

t−1
)−1

2. Substract f t+1
y− times the new t rows to t + 1 rows



In g1

In g2

f 3
y − f 3

y−
g2 f 3

y+

.
.
.

.
.
.

.
.
.

f
T−1
y− f

T−1
y f

T−1
y+

f Ty−
f Ty


∆Y = −



d1
d2

f (y4, y3, y2, u3) + f 3
y−

d2

.

.

.
f (yT , yT−1, yT , uT−1)

f (yT+1, yT , yT−1, uT )



where

I g t =
(
f ty − f ty−g

t−1
)−1

f ty+

I dt =
(
f ty − f ty−g

t−1
)−1 (

f (yt+1, yt , yt−1, ut) + f ty−dt−1

)
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Solution of Perfect Foresight models
LBJ algorithm (4/5, triangularized system)

I Note that for the last block of rows we only need to apply the first
transformation defined on the previous slide.

I In the end the system of linear equations looks like:

In g1

In g2

In g3

. . .
. . .

In gT−1

In


∆Y = −



d1

d2

d3

...
dT−1

dT


with dT =

(
f Ty − f Ty−g

T−1
)−1 (

f (y?, yT , yT−1, u
?) + f Ty−dT−1

)
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Solution of Perfect Foresight models
LBJ algorithm (5/5, backward iteration)

I The system is then solved by backward iteration:

yk+1
T = yk

T − dT

yk+1
T−1 = yk

T−1 − dT−1 − gT−1(yk+1
T − yk

T )

...

yk+1
1 = yk

1 − d1 − g1(yk+1
2 − yk

2 )

I Note that:
I we do not need to ever store the whole jacobian: only the g s and ds

have to be stored.
I we inverse T n × n matrices, f 1

y and f ty − f ty−g
t−1 for t = 2, . . . ,T ,

instead of a nT × nT matrix (remember that the number of flops for
solving a system of linear equations is a third order polynomial of the
number of equations).

I This approach was the default method in Dynare ≤ 4.2.
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Solution of Perfect Foresight models
Sparse matrix algebra

I Sparse matrix algebra libraries are now widely available.
I The jacobian of the PF model is a sparse matrix because:

I We have a lots of zero blocks (see previous slides).
I The f ty+

, f ty and f ty− are themselves sparse because in general very
few endogenous variables appear in each equation.

I Sparse matrices are stored as a list of triplets (i , j , v) where (i , j) is a
matrix coordinate and v a non-zero value.0 0 1

0 0 0
1 0 0

 −→
(

1 3 1
3 1 1

)
The percentage of non zero elements has to be very small, otherwise
there is no advantage in using sparse matrices.

I A lot of optimized algorithms for such matrices (including solution
for system of linear equations, Ax = b).

I Nowadays more efficient than the LBJ approach, even though it
does not exploit explicitely the particular structure of the jacobian
matrix ⇒ default method in Dynare ≥ 4.3
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Typology of simulations

In the framework of the perfect foresight models, we can imagine a lot of
possible scenarii:

I Impulse Response Functions.
I Plot the paths of the endogenous variables after a transitory shock in

period 1.
I Plot the paths of the endogenous variables after a permanent shock

in period 1.

I Transitions from one steady state to another. Equivalent to a
permanent shock in period 1.

I Transitory expected shock in period t > 1.

I Permanent expected shock in period t > 1 (for instance, an
announced fiscal reform).

I Simulation conditional on an expected path for the exogenous
variables (for instance, the future demographic structure can be
expected at time 1).

I Simulation with non expected shocks (surprises).

Except the last case (which requires more work), these scenarii can be
easily handled by Dynare.
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Perfect foresight models in Dynare

I Declaration of the endogenous variables (var command).
I In the RBC model, the productivity, at , is an endogenous variable...

I Declaration of the exogenous variables (varexo command).
I ... and the innovation of (shocks on) productivity is an exogenous

variable.

I Declaration of the parameters (parameters command).

I Calibration of the parameters (as in matlab).

I Definition of the model (in a model block).

BTiming convention

Variables decided at time t must be indexed by t.

For instance, the capital stock used in production at time t is decided at
time t − 1, thus output at time t has to be written yt = kαt−1.
⇒ Thanks to this timing convention, Dynare is able to identify the
predetermined (state) variables (variables appearing at time t-1).
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Perfect foresight models in Dynare
Example

Content of rbc.mod

v a r Consumption , C a p i t a l , L o g g e d P r o d u c t i v i t y ;

v a r e x o L o g g e d P r o d u c t i v i t y I n n o v a t i o n ;

p a r a m e t e r s beta , a lpha , d e l t a , rho ;

b e t a = . 9 8 5 ;
a l p h a = 1 / 3 ;
d e l t a = a l p h a / 1 0 ;
rho = . 9 ;

model ;

[ name=’ E u l e r e q u a t i o n ’ ] // This i s an e q u a t i o n tag !
1/ Consumption = b e t a / Consumption (1)∗( a l p h a∗exp ( L o g g e d P r o d u c t i v i t y (1))∗ C a p i t a l ˆ( a lpha−1)+1−d e l t a ) ;

[ name=’ P h y s i c a l c a p i t a l s t o c k law o f motion ’ ]
C a p i t a l = exp ( L o g g e d P r o d u c t i v i t y )∗ C a p i t a l (−1)ˆ a l p h a+(1−d e l t a )∗ C a p i t a l (−1)−Consumption ;

[ name=’ Logged p r o d u c t i v i t y law o f motion ’ ]
L o g g e d P r o d u c t i v i t y = rho∗L o g g e d P r o d u c t i v i t y (−1)+ L o g g e d P r o d u c t i v i t y I n n o v a t i o n ;

end ;
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Leads. If X is a variable, Xt , then X(1) is Xt+1 and more generally X(p) with p a positive integer is Xt+p .

Lags. If X is a variable, Xt , then X(-1) is Xt−1 and more generally X(-p) with p a positive integer is Xt−p .

Note that the “paper” version of the transition equation, kt+1 = eat kαt + (1 − δ)kt − ct , translates into:

kt = eat kαt−1 + (1 − δ)kt−1 − ct

in the Dynare language, due to the timing convention. Thanks to this timing convention, Dynare understands that the physical capital
used at time t in production is given at time t, ie that the capital stock is a predetermined variable. At time t the central planner (or
household) can choose the capital stock that will be used tomorrow (through its consumption/investment decision) but not the capital
stock currently used. Some Dynare users claim that Dynare is able to identify the predetermined variables (states) and non predetermined
variables (controls). This statement is wrong, because the status of the variables is dictated by the timing of the variables (there is a
perfect mapping between the timing and status of the variables). It is equivalent to declare the nature of a variable (predetermined vs. non
predetermined) and to decide its timing.

An alternative interpretation of the timing in Dynare is that Dynare is uses a “stock at the end of the period” concept instead of a “stock
at the beginning of the period” convention.

If you really do not like the Dynare’s timing convention (ie if you prefer to adopt the same timing in your paper and the mod file), you
have to declare the list of the predetermined variables using the predetermined_variables command. For instance, after the first line in
rbc.mod, we should add

p r e d e t e r m i n e d v a r i a b l e s C a p i t a l ;

and change the model’s equations as follows:

model ;

[ name=’ E u l e r e q u a t i o n ’ ] // This i s an e q u a t i o n tag !
1/ Consumption=b e t a / Consumption (1)∗( a l p h a∗exp ( L o g g e d P r o d u c t i v i t y (1))∗ C a p i t a l ( 1 ) ˆ ( a lpha−1)+1−d e l t a ) ;

[ name=’ P h y s i c a l c a p i t a l s t o c k law o f motion ’ ]
C a p i t a l (1)= exp ( L o g g e d P r o d u c t i v i t y )∗ C a p i t a l ˆ a l p h a+(1−d e l t a )∗C a p i t a l−Consumption ;

[ name=’ Logged p r o d u c t i v i t y law o f motion ’ ]
L o g g e d P r o d u c t i v i t y=rho∗L o g g e d P r o d u c t i v i t y+L o g g e d P r o d u c t i v i t y I n n o v a t i o n ;

end ;
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The variables and parameters used in the model block must be declared as such before. Note however that it is possible to declare local
variables inside the model block using the # symbol. Suppose we have a CES production function of the form:

y =
(
αkρ + (1 − α)lρ

) 1
ρ

in the model. Instead of calibrating ρ we may prefer to calibrate the elasticity of substitution between k and l , ie ε = 1/1−ρ. In this
case, we declare ε as a parameter (ie after the parameters keyword) and at the top of the model block we write the definition of rho:

model ;
#rho = ( e p s i l o n−1)/ e p s i l o n ;
. . .

end ;

Note that rho is unknown outside of the scope defined by the model block. Behind the scene, Dynare replaces all occurences of rho by
(epsilon-1)/epsilon.
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Perfect foresight models in Dynare
Steady state (numerical routine)

I Dynare can find out the steady state of the model (using the
steady command)...

I Dynare uses a Newton like solver, so we need to define an initial
guess. The initval block can be used for that purpose (see
rbc1.mod):
i n i t v a l ;
Consumption = 2 ;
C a p i t a l = 1 5 ;
L o g g e d P r o d u c t i v i t y = 0 ;
L o g g e d P r o d u c t i v i t y I n n o v a t i o n = 0 ;
end ;

s t e a d y ;

I Different algorithms are available to solve for the steady state, see
section 4.10 in the manual. It is also possible to use an homotopy
approach to solve for the steady state.

I But if the initial guess is far from the solution, the solution
algorithms may fail (see rbc2.mod for instance). Note that in case of
failure, Dynare returns the residuals of the static equations (this may
help to identify the problem).

I If possible, the analytical steady state should be provided.
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Perfect foresight models in Dynare
Steady state (closed form, 1)

I The simplest way to define the steady state is to use the
steady_state_block.

Content of rbc4.mod

s t e a d y s t a t e m o d e l ;
L o g g e d P r o d u c t i v i t y = 0 ;
C a p i t a l = ( a l p h a /(1/ beta−1+d e l t a ))ˆ(1/(1− a l p h a ) ) ;
Consumption = C a p i t a l ˆ a lpha−d e l t a∗C a p i t a l ;

end ;

I Parameters can be updated according to steady state constraints in
this block.

I External matlab routines may be called in this block, but it is not
allowed to use loops or conditional structures.

I If the analytical steady state is only available for a subset of
variables conditional on the others, a solver can be called in this
block to solve the concentrated static model.
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Perfect foresight models in Dynare
Steady state (closed form, 2)

I A more flexible approach is to write a matlab routine that computes
the steady state. This routine must be saved in a file called
<BASE_NAME_OF_THE_MOD_FILE>_steadystate.m

Content of rbc5 steadystate.m

f u n c t i o n [ ys , check ] = r b c 5 s t e a d y s t a t e ( ys , exe )
g l o b a l M
check = 0 ;
beta = M . params ( 1 ) ; a l p h a = M . params ( 2 ) ; d e l t a = M . params ( 3 ) ; rho = M . params ( 4 ) ;
L o g g e d P r o d u c t i v i t y = 0 ;
C a p i t a l = ( a l p h a /(1/ beta−1+d e l t a ))ˆ(1/(1− a l p h a ) ) ;
Consumption = C a p i t a l ˆ a lpha−d e l t a∗C a p i t a l ;
y s = [ Consumption ; C a p i t a l ; L o g g e d P r o d u c t i v i t y ] ;

I The routine has to return check=0 if the steady state exist. If a
nonzero value is returned, Dynare understands that there is a
problem with the steady state.

I All legal matlab statements are allowed, contrary to the previous
approach with the steady_state_model.

I But flexibility comes at a price: this approach is slower than the
previous one (why?).
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Perfect foresight models in Dynare
Simulation of a transition (1)

I Initial condition is different from the steady state.

I Simulate transition to the steady state.

I Use the initval block

Content of rbc6.mod

i n i t v a l ;
L o g g e d P r o d u c t i v i t y I n n o v a t i o n = 0 ;
L o g g e d P r o d u c t i v i t y = . 0 5 ;
C a p i t a l = 1 7 . 5 ;

end ;

e n d v a l ;
L o g g e d P r o d u c t i v i t y I n n o v a t i o n = 0 ;

end ;

s t e a d y ;

s i m u l ( p e r i o d s =200);

I The initval block sets the initial condition for the states, while the
endval block with the steady command set the terminal condition.
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Perfect foresight models in Dynare
Simulation of a transition (2)

I Initial condition is the steady state.
I A permanent shock shifts upward the productivity (steady state goes

up).
I Change the value of the innovation (> 0) in the endval block and

compute the new steady state with the steady command.

Content of rbc7.mod

i n i t v a l ;
L o g g e d P r o d u c t i v i t y I n n o v a t i o n = 0 ;

end ;

s t e a d y ;

e n d v a l ;
L o g g e d P r o d u c t i v i t y I n n o v a t i o n = . 0 1 ;

end ;

s t e a d y ;

s i m u l ( p e r i o d s =200);

I With these commands we implicitly set the innovations equal to .01
from period 1 to period 20. Initial and terminal conditions are
different steady states.
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Perfect foresight models in Dynare
Transition induced by a shock in period 1

I Initial condition is the steady state.
I A shock in period 1 temporarily increases productivity.
I We use the shocks block.

Content of rbc8.mod

i n i t v a l ;
L o g g e d P r o d u c t i v i t y I n n o v a t i o n = 0 ;

end ;

s t e a d y ;

e n d v a l ;
L o g g e d P r o d u c t i v i t y I n n o v a t i o n = 0 ;

end ;

s t e a d y ;

s h o c k s ;
v a r L o g g e d P r o d u c t i v i t y I n n o v a t i o n ;
p e r i o d s 1 ;
v a l u e s . 1 ;
end ;

s i m u l ( p e r i o d s =200);

I With these commands we implicitly set the innovations equal to
(.1, 0, 0, . . . )
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Perfect foresight models in Dynare
Transition induced by a sequence of expected shocks

I Initial condition is the steady state.
I Shocks in periods 1 to 5 temporarily hit productivity.

Content of rbc9.mod

i n i t v a l ;
L o g g e d P r o d u c t i v i t y I n n o v a t i o n = 0 ;

end ;

s t e a d y ;

e n d v a l ;
L o g g e d P r o d u c t i v i t y I n n o v a t i o n = 0 ;

end ;

s t e a d y ;

s e q u e n c e o f s h o c k s = [ . 1 ; . 2 ; −.2; −.2ˆ2; − .5]; / / [ . 1 ; . 2 ; . 2 ; . 2 ˆ 2 ; . 2 ˆ 4 ] ;

s h o c k s ;
v a r L o g g e d P r o d u c t i v i t y I n n o v a t i o n ;
p e r i o d s 1 : 5 ;
v a l u e s ( s e q u e n c e o f s h o c k s ) ;
end ;

s i m u l ( p e r i o d s =200);

I With these commands we implicitly set the innovations equal to
(.1, .2,−.2,−.22,−.5, 0, . . . )
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Perfect foresight models in Dynare
Non expected shocks 1/2

I It is also possible to simulate paths with an unexpected sequence of
shocks. But there is no interface for that in Dynare so we need to
add some matlab code in the mod file.

I Basically, the idea it to solve the perfect foresight model for each
new shock with an initial condition given by the solution obtained
for the previous shock. If we have p non expected shocks:

In period 1 a1
0 = a0 and k1

0 = k0 are given. Conditionally on the observed
productivity shock, u1

1 = ε1, we solve a perfect foresight model
assuming that no shock will hit the economy tomorrow, and save
c1 = c1

1 , k1 = k1
1 and a1 = a1

1.
In period 2 a2

0 = a1 and k2
0 = k1 are given. Conditionally on the observed

productivity shock, u2
1 = ε2, we solve a perfect foresight model

assuming that no shock will hit the economy tomorrow, and save
c2 = c2

1 , k2 = k2
1 and a2 = a2

1.
...

In period p ap0 = ap−1 and kp
0 = kp−1 are given. Conditionally on the observed

productivity shock, up
1 = εp, we solve a perfect foresight model

assuming that no shock will hit the economy tomorrow, and save
cp... = cp1..., kp... = kp

1... and ap... = ap1....
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Perfect foresight models in Dynare
Non expected shocks 2/2

I This algorithm is related to the extended path approach that we will
present in the next section.

Content of rbc10.mod

1 i n i t v a l ; L o g g e d P r o d u c t i v i t y I n n o v a t i o n = 0 ; end ; s t e a d y ;
2
3 e n d v a l ; L o g g e d P r o d u c t i v i t y I n n o v a t i o n = 0 ; end ; s t e a d y ;
4
5 s e q u e n c e o f s h o c k s = [ . 1 ; . 2 ; −.2; −.2ˆ2; − .5]; // [ . 1 ; . 2 ; . 2 ; . 2 ˆ 2 ; . 2 ˆ 4 ] ;
6
7 s h o c k s ;
8 v a r L o g g e d P r o d u c t i v i t y I n n o v a t i o n ; p e r i o d s 1 ; v a l u e s ( s e q u e n c e o f s h o c k s ( 1 ) ) ;
9 end ;

10
11 yy = oo . s t e a d y s t a t e ;
12 // F i r s t p e r i o d
13 p e r f e c t f o r e s i g h t s e t u p ( p e r i o d s =200);
14 p e r f e c t f o r e s i g h t s o l v e r ;
15 yy = [ yy , oo . e n d o s i m u l ( : , 2 ) ] ;
16
17 // F o l l o w i n g p e r i o d s
18 f o r i =2: l e n g t h ( s e q u e n c e o f s h o c k s )
19 oo . e x o s i m u l ( 2 ) = s e q u e n c e o f s h o c k s ( i ) ;
20 oo . e n d o s i m u l ( : , 1 ) = yy ( : , end ) ;
21 p e r f e c t f o r e s i g h t s o l v e r ;
22 yy = [ yy , oo . e n d o s i m u l ( : , 2 ) ] ;
23 end ;
24
25 yy = [ yy , oo . e n d o s i m u l ( : , 3 : end ) ] ; // Complete t h e p a t h s w i t h t h e l a s t s i m u l a t i o n .
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Some Remarks about the code in rbc10.mod:

Line 5. The sequence of non expected innovations, defined in sequence_of_shocks, must be a column vector. This vector can be the
result returned by a matlab routine. Note that if some of the innovations are too large, Dynare may fail in solving the model. The code is
valid for any number of non expected shocks.

Line 8. The value of the innovation must be between parenthesis because it is defined as a matlab expression (here the element of an
array).

Line 11. Initialization of the matrix that will hold the generated paths. The initial condition is the steady state, stored in oo_.steadystate.
The global variable oo_ is a global matlab structure containing all the results.

Line 15. The results of the perfect foresight solver are stored in oo_.endo_simul, a n × (T + 2) matrix (where n is the number of
endogenous variables and T the simulation horizon). The variables (rows) are ordered consistently with the order of declaration in the mod
file. So in our example (see rbc.mod) the first, second and third rows are respectively for Consumption, Capital and LoggedProductivity.
The first column is for the initial condition (y0) and the last column for the terminal condition (yT+1)⇒ The first period of the simulation
is stored in the second column, and more generally period t is stored in column t + 1. Note also that the storing is consistent with Dynare’s
timing convention. In our example, the second row second column is k1, the capital stock decided in period one and used in period two.

The innovations are stored in oo_.exo_simul, a (T + 2) × q matrix, where q is the number of declared shocks (varexo) in the model.
This matrix is not an output of the perfect foresight solver but an input, where the expected shocks are defined. The second row contains
the shocks values declared for period 1, and more generally the time t shocks values are stored in row t + 1. The last row (T + 1) is filled
by the content of the endval block (if values are assigned to the exogenous variables as it is the case when we consider permanent shocks,
see rbc7.mod). By default the elements of this matrix are all zeros. Non zero values are defined by the content of the shocks block.

In line 15, we append the second column of oo_.endo_simul, corresponding to the choices of the agents (or central planner) in reaction to
the surprise on productivity, to yy (see the description of the algorithm in the previous page).
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Perfect foresight models in Dynare
Expected versus Surprise shocks

I In the two next slides we compare the paths for the capital stock
and consumption when the sequence of shocks is expected or non
expected.

I For this exercise, we considered the following sequence of shocks:

.1, .2, .2, .22, .24, 0, 0, . . .

I The data are generated with rbc9.mod and rbc10.mod

I If the (positive) productivity shocks are expected the consumption
reacts upward more aggressively (during the first periods) to benefit
from the anticipated growth of the physical capital return.

I Consequently, in the first period the physical capital stock is almost
flat when the shocks are expected. The path of the physical capital
stock has a smaller amplitude when the shocks are expected (→
smoothing).
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Perfect foresight models in Dynare
Expected versus Surprise shocks (Consumption)
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Perfect foresight models in Dynare
Expected versus Surprise shocks (Capital)
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Perfect foresight models in Dynare

Ex. 5
Write a program that allows to mix expected and non expected transitory
shocks in the basic Real Business Cycle model.

Ex. 6
In the basic RBC model, write a mod file to generate paths induced by an
expected permanent shock in period 5.

Ex. 7
In the basic RBC model, identify a shock (or sequence of shocks) for which the
perfect foresight model solver fails. Write a program that implements an
homotopy for solving this issue.
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Extended path
Introduction

I What if we need to generate time series for the endogenous
variables?

I We can use the extended path approach advocated by Fair and
Taylor (Econometrica, 1983).

I Basically, the idea is to use the same strategy than for simulating
the perfect foresight model with a sequence of unexpected shocks.

⇒ We just need to take the sequence of unexpected shocks from a
random number generator.

I In the following slides, we present the extended path approach and
discuss its implementation in Dynare.

I We will also present an extension, implemented in Dynare, that aims
at taking care about the role of future uncertainty.

I Because of this extension, we change the representation of the
model (by explicitely differencing the state and control variables).

cba

http://www.dynare.org
http://www.dynare.org
http://creativecommons.org/licenses/by-sa/3.0/legalcode
https://gitlab.com/stepan-a-dynare/perfect-foresight


Extended path
Model to be solved

st = Q(st−1, ut) (2a)

F (yt , xt , st ,Et [Et+1]) = 0 (2b)

G(yt , xt+1, xt , st) = 0 (2c)

Et = H(yt , xt , st) (2d)

st is a ns × 1 vector of exogenous state variables, ut ∼ BB(0,Σu) is a
nu × 1 multivariate innovation, xt is a nx × 1 vector of endogenous state
variables, yt is a ny × 1 vector of non predetermined variables and Et is a
nE × 1 vector of auxiliary variables. Et is a vector gathering the nonlinear
functions of the endogenous variables that appear under the condition
expectation.

Functions Q, F, G and H are assumed to be continuous functions (but
not necessarily differentiable). They respectively collect the equations for
the exogenous variables, the Euler equations and static equilibrium
conditions, the transition equations, and the definitions of the auxiliary
variables.
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Obviously, the basic RBC model can be cast into the previous form:

(2a)→ at − ρat−1 − εt = 0 where εt , usually a Gaussian white noise, is for the random unexpected shocks.

(2b)→ 1
ct
− β−1Et

[
Et+1

]
= 0, the Euler equation.

(2c)→ kt+1 − eat kαt − (1 − δ)kt + ct = 0, the transition equation.

(2d)→ , Et =
αeat k

α−1
t +1−δ
ct

, the definition of auxiliary variable Et .

Note the presence of the conditional expectation, appearing because of the non expected shocks. The model defined in (2a)-(2d) is a
rational expectation model. In the next slides we will see how we deal with the conditional expectation (the extended path approach
basically removes the conditional expectation, while its extension, the stochastic extended path method, uses numerical integration methods
to compute the expectations).

Note also that we do not use the timing convention of Dynare here and in the description of the algorithms.
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Extended path
Rational

I Idea proposed by Fair and Taylor (Econometrica, 1983).

I The extended path approach creates a stochastic simulation as if
only the shocks of the current period were random.

I Substituting (2a) in (2d), define:

Et = E (yt , xt , st−1, ut) = H(yt , xt ,Q(st−1, ut))

I The Euler equations (2b) can then be rewritten as:

F
(
yt , xt , st ,Et [E (yt+1, xt+1, st , ut+1)]

)
= 0

I The Extended path algorithm consists in replacing the previous Euler
equations by:

F
(
yt , xt , st ,E (yt+1, xt+1, st , 0)

)
= 0

⇒ Set the future innovations to their expectation (0). As if it was legal
to pass the expectation inside the E function.
⇒ Certainty equivalence property!
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Extended path
Algorithm

Algorithm 1 Extended path algorithm

1. H ← Set the horizon of the perfect foresight (PF) model.
2. (x?, y?)← Compute steady state of the model
3. (s0, x1)← Choose an initial condition for the state variables
4. for t = 1 to T do
5. ut ← Draw random shocks for the current period
6. (yt , xt+1, st)← Solve a PF with yt+H+1 = y?

7. end for
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Extended path
Time t nonlinear problem

For each period we need to solve the following non linear problem with
respect to the paths for the endogenous variables:

st = Q(st−1, ut )

0 = F
(
yt , xt , st ,E (yt+1, xt+1, st , 0)

)
0 = G(yt , xt+1, xt , st )

st+1 = Q(st , 0)

0 = F
(
yt+1, xt+1, st+1,E (yt+2, xt+2, st+1, 0)

)
0 = G(yt+1, xt+2, xt+1, st+1)

.

.

.

st+h = Q(st+h−1, 0)

0 = F
(
yt+h, xt+h, st+h,E (yt+h+1, xt+h+1, st+h, 0)

)
0 = G(yt+h, xt+h+1, xt+h, st+h)

.

.

.

st+H = Q(st+H−1, 0)

0 = F
(
yt+H , xt+H , st+H ,E (y?, xt+H+1, st+H , 0)

)
0 = G(yt+H , xt+H+1, xt+H , st+H )

We create the time series by concatenating the solutions for yt and xt+1

(t = 1, . . . ,T ).
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Extended path
Discussion

I This approach takes full account of the deterministic non
linearities...

I ... But neglects the Jensen inequality by setting future innovations
to zero (the expectation).

I We do not solve the rational expectation model! We solve a model
where the agents believe that the economy will not be perturbed in
the future. They observe new realizations of the innovations at each
date but do not update this belief...

I Uncertainty about the future does not matter here (for instance, an
hypothetical economy simulated with this approach would not save
for precautionary motives).

I EP > First order perturbation (which shares the certainty
equivalence property with the EP approach).
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Extended path
EP with Dynare

I Declare the variance of the innovations using the shocks block.

I Use the extended_path command.

Content of rbc11.mod

s t e a d y ;

s h o c k s ;
v a r L o g g e d P r o d u c t i v i t y I n n o v a t i o n = . 0 1 ˆ 2 ;

end ;

e x t e n d e d p a t h ( p e r i o d s =1000);

p l o t ( S i m u l a t e d t i m e s e r i e s . C a p i t a l , S i m u l a t e d t i m e s e r i e s . Consumption , ’ ok ’ )

I periods is the size of the generated sample.

I By default, the horizon, H, is set equal to 400. This can be changed
(see the manual).
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Stochastic extended path
Introduction

I It is not possible to think about the importance of future uncertainty
with the extended path approach.

I In a lot of situations this is not an issue (after all we are used to
simulate linearized models) but not always.

I To circumvent this issue Dynare proposes an extension: the
stochastic extended path.

I The strong assumption about future uncertainty can be relaxed by
approximating the expected terms in the Euler equations (2b)

I We assume that, at time t, agents perceive uncertainty about
realizations of ut+1, . . . , ut+k but not about the realizations of ut+τ

for all τ > k (which, again, are set to zero)

I Under this assumption, the expectations are approximated using
numerical integration.
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Stochastic extended path
Gaussian quadrature (univariate)

I Let X be a Gaussian random variable with mean zero and variance
σ2
x > 0, and suppose that we need to evaluate E[ϕ(X )], where ϕ is a

continuous function.

I By definition we have:

E[ϕ(X )] =
1

σx

√
2π

∫ ∞
−∞

ϕ(x)e
− x2

2σ2
x dx

I It can be shown that this integral can be approximated by a finite
sum using the following result:∫ ∞

−∞
ϕ(z)e−z2

dx =
n∑

i=1

ωiϕ(zi )+
n!
√
n

2n

ϕ(2n)(ξ)

(2n)!

where zi (i = 1, . . . , n) are the roots of an order n Hermite
polynomial, and the weights ωi are positive and summing up to one
(the error term is zero iff ϕ is a polynomial of order at most 2n− 1).
→ xi = zi/σx

√
2
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Stochastic extended path
Gaussian quadrature (multivariate)

I Let X be a multivariate Gaussian random variable with mean zero
and unit variance, and suppose that we need to evaluate

E[ϕ(X )] = (2π)−
p
2

∫
Rp

ϕ(x)e−
1
2
x′xdx

I Let {(ωi , zi )}ni=1 be the weights and nodes of an order n univariate
Gaussian quadrature.

I This integral can be approximated using a tensor grid:∫
Rp

ϕ(z)e−z′zdz ≈
n∑

i1,...,ip=1

ωi1 . . . ωipϕ(zi1 , . . . , zip )

I Curse of dimensionality: The number of terms in the sum grows
exponentially with the number of shocks.
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Stochastic extended path
Forward histories (one shock, three nodes, order two SEP)

ut

u3
t+1

u3
t+2 ω3ω3

u2
t+2 ω3ω2

u1
t+2 ω3ω1

u2
t+1

u3
t+2 ω2ω3

u2
t+2 ω2ω2

u1
t+2 ω2ω1

u1
t+1

u3
t+2 ω1ω3

u2
t+2 ω1ω2

u1
t+2 ω1ω1

⇒ Curse of dimensionality: The tree of histories grows exponentially!
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Stochastic extended path
Curses of dimensionality

I We face two curses of dimensionality:
I Number of innovations (nu).
I Approximation order (k).

I However, the size of the problem grow “only” polynomially (because
of the inversion of the jacobian matrix) with respect to the number
of state variables.

I The relative advantage of this approach (compared with global
approximation methods) is in models with a large number of states.

I It is possible to use alternative numerical integration routines, which
overcome the exponential growth issues. But this is ongoing
research and not yet stable in Dynare.
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Stochastic extended path
Algorithm

Algorithm 2 Stochastic Extended path algorithm

1. H ← Set the horizon of the stochastic perfect foresight (SPF) models.
2. (x?, y?)← Compute steady state of the model.
3. {(ωi , δi )}mi=1 ← Get weights and nodes for numerical integration
4. (s0, x1)← Choose an initial condition for the state variables
5. for t = 1 to T do
6. ut ← Draw random shocks for the current period
7. (yt , xt+1, st)← Solve a SPF model with yt+H+1 = y?

8. end for
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Stochastic extended path
SEP algorithm (order 1, time t nonlinear problem)

For i = 1, . . . ,m

st = Q(st−1, ut )

0 = F
(
yt , xt , st ,

∑
i
ωiE (yit+1, xt+1, st , δi )

)
0 = G(yt , xt+1, xt , st )

sit+1 = Q(st , δi )

0 = F
(
yit+1, xt+1, s

i
t+1,E (yit+2, x

i
t+2, s

i
t+1, 0)

)
0 = G(yit+1, x

i
t+2, xt+1, s

i
t+1)

.

.

.

sit+h = Q(sit+h−1, 0)

0 = F
(
yit+h, x

i
t+h, s

i
t+h,E (yit+h+1, x

i
t+h+1, s

i
t+h, 0)

)
0 = G(yit+h, x

i
t+h+1, x

i
t+h, s

i
t+h)

.

.

.

sit+H = Q(sit+H−1, 0)

0 = F
(
yit+H , x

i
t+H , s

i
t+H ,E (y?, xit+H+1, s

i
t+H , 0)

)
0 = G(yit+H , x

i
t+H+1, x

i
t+H , s

i
t+H )
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Stochastic extended path
SEP algorithm (order 2, time t nonlinear problem)

For all (i , j) ∈ {1, . . . ,m}2

st = Q(st−1, ut )

0 = F
(
yt , xt , st ,

∑
i
ωiE (yit+1, xt+1, st , δi )

)
0 = G(yt , xt+1, xt , st )

sit+1 = Q(st , δi )

0 = F
(
yit+1, xt+1, s

i
t+1,

∑
j
ωjE (y

i,j
t+2

, xit+2, s
i
t+1, δj )

)
0 = G(yit+1, x

i
t+2, xt+1, s

i
t+1)

s
i,j
t+1

= Q(sit+1, δj )

.

.

.

s
i,j
t+h

= Q(s
i,j
t+h−1

, 0)

0 = F
(
y
i,j
t+h

, x
i,j
t+h

, s
i,j
t+h

,E (y
i,j
t+h+1

, x
i,j
t+h+1

, s
i,j
t+h

, 0)
)

0 = G(y
i,j
t+h

, x
i,j
t+h+1

, x
i,j
t+h

, s
i,j
t+h

)

.

.

.

s
i,j
t+H

= Q(s
i,j
t+H−1

, 0)

0 = F
(
y
i,j
t+H

, x
i,j
t+H

, s
i,j
t+H

,E (y?, x
i,j
t+H+1

, s
i,j
t+H

, 0)
)

0 = G(y
i,j
t+H

, x
i,j
t+H+1

, x
i,j
t+H

, s
i,j
t+H

)
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Stochastic extended path
SEP with Dynare

I Add options to the extended_path command.
I order is the value of k (approximation order of the SEP)
I In the current version of Dynare there is no interface for controlling

the number of nodes for the Gaussian quadrature. The number of
nodes has to be directly set in the options_ global structure.

Content of rbc12.mod

s t e a d y ;

s h o c k s ;
v a r L o g g e d P r o d u c t i v i t y I n n o v a t i o n = . 0 1 ˆ 2 ;

end ;

o p t i o n s . ep . s t o c h a s t i c . q u a d r a t u r e . nodes = 3 ;
e x t e n d e d p a t h ( p e r i o d s =1000 , o r d e r =1);

p l o t ( S i m u l a t e d t i m e s e r i e s . C a p i t a l , S i m u l a t e d t i m e s e r i e s . Consumption , ’ ok ’ )
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Stochastic extended path

Ex. 8
Compare the extended path and stochastic extended path (for different orders)
simulations with the basic RBC model. Comment the results.
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