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Introduction

I In this chapter we show how to solve DSGE models using
perturbation technics.

I Basically, the idea is to replace the original problem by a simpler
one, without loosing the properties of interest in the original model
(if possible).

I This auxiliary model is obtained by perturbing the original model in
the vicinity of the original model’s deterministic steady state.

I We will show how we can easily solve the auxiliary model.

I It is important to understand that we do not approximate the
solution of the DSGE model. We rather compute the exact solution
of an approximation of the original DSGE model, hoping it provides
an accurate approximation of the solution of the original DSGE
model.
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Perturbation approach
Square root function

I Suppose that we need to compute
√

1 + ε for small values of ε...

I But that the computational burden of such an operation is very high.

I We approximate this task using a famous result from Newton:

Generalized binomial theorem

For all (x , y) ∈ R2 such that |x/y| > 1 and for all r ∈ R we have:

(x + y)r =
∞∑
k=0

(
r
k

)
x r−kyk

where the binomial coefficient is defined as follows:(
r
k

)
=

∏k−1
i=0 (r − i)∏k−1
i=0 (k − i)

=
rk

k!

See Graham, Knuth and Patashnik (1994).
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Perturbation approach
Square root function approximation

I Applying this theorem for r = 1/2, we find the following expression:

√
1 + ε =

∞∑
k=0

(
1/2

k

)
εk

= 1 +
1

2
ε− 1

8
ε2 +

1

16
ε3 − 5

128
ε4 +

7

256
ε5 + · · ·

I The power function with integer exponent is much easier to evaluate
than the square root function.

I But the theorem states that we should evaluate an infinite number
of power functions!

I Noting that the terms of the infinite series are rapidly converging to
zero, provided |ε| < 1, we can truncate this expression. For instance:

√
1 + ε = 1 +

1

2
ε− 1

8
ε2 +O

(
ε3
)

⇒
√

1 + ε ' 1 +
1

2
ε− 1

8
ε2
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Perturbation approach
Square root function approximation error

I The symbol O
(
ε3
)
, to be read big ’O’ of ε cubed, hides the rest of

the infinite series.

I This symbol means that for sufficiently small values of ε there exists
a positive constant Γ independent of ε such that the absolute value
of O

(
ε3
)

is less than Γ|ε|3.

I More generally, when we approximate a function f (ε) by a truncated
infinite series,

f (ε) =

p−1∑
i=0

ci f
(i)(0)εi +O (εp)

O (εp) means that the accuracy error does not grow faster than ε at
the power p when ε is small.
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Perturbation approach
Square root function approximation error
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Perturbation approach
Square root function approximation error
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Perturbation approach
Square root function approximation error

I The higher is the approximation (truncation) order, the closer is the
approximation to the true function.

I A striking feature is that the approximation errors are smaller for
positive values of ε than for negative values.

I The square root function is much more curved at the origin (we
have an infinite slope at zero) than above one.

I Obviously these approximations are not valid for any values of ε.
I The perturbations ε have to be small. But what is a small ε?
I The generalized binomial theorem assumes that ε is less than one in

absolute value so that the infinite series exists.
I If ε > 1, the infinite series cannot exist because limp→∞ εp =∞.
I In this context, a small ε is any ε ∈ (−1, 1), we define r = 1 as the

radius of convergence.
I Put differently, one can expect that the approximation will behave

very poorly if ε > 1.
I The determination of the radius of convergence is generally not

obvious (unknown in the case of DSGE models).
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Perturbation approach
Square root function and its approximations (timing)

I In the following table we report the relative execution time (smaller
is better) and approximation error for three approximations of√

1 + ε with ε = .01.

I The time execution is relative to the direct computation of the
square root.

I Polynomials (approximation order greater than one) are computed
with the Horner scheme.

I Matlab code is available here.

Approx. order Relative time Approx. error
1 .2502 1.2438× 10−5

2 .5220 −6.2112× 10−8

3 .7947 3.8791× 10−10
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Stochastic RBC model
Equations

As an example, consider the RBC model, where the dynamics of
consumption, physical capital and productivity are given by:

1

ct
= βEt

[
αeat+1kα−1

t+1 + 1− δ
ct+1

]
(1)

kt+1 = eatkαt + (1− δ)kt − ct (2)

at = ϕat−1 + εt (3)

I {εt} ∼ iid(0, σ2
ε ), usually the distribution of the innovations is

Gaussian.

I Et [Xt+1] is the expectation conditional on the information available
at time t.

I The information set at time t contains the previous realizations of
the endogenous variables, the contemporaneous innovations and the
variables decided at time t).
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Log linearization

I Suppose that we have the following recurrent equation:

xt = f (xt−1)

with the steady state x? such that x? = f (x?), which is assumed to
be non zero.

I Define x̃t such that xt = x?e x̃t , or equivalently x̃t = log xt − log x?

the percentage deviation from the steady state.

I We can rewrite the recurrent equation in terms of x̃t :

x?e x̃t = f
(
x?e x̃t−1

)
I A first order Taylor approximation of both sides around x̃t = 0 gives:

x? + x?x̃t ≈ f (x?) + x?f ′(x?)x̃t−1

⇔ x̃t ≈ f ′(x?)x̃t−1
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Stochastic RBC model
Log linearization

I The exogenous variable at is already in logarithm and its law of
motion is linear, we only log-linearize with respect to ct and kt .

Exercise 1.

Show that the log linearized version of (1)-(2) is given by:

Et

[
c̃t − c̃t+1 +

ρ+ δ

1 + ρ

(
ãt+1 − (1− α)k̃t+1

)]
= 0 (4)

k̃t+1 =
y?

k?
at + β−1k̃t −

c?

k?
c̃t (5)

with ãt = at .

I We do not need to compute explicitly the deterministic steady state
to approximate the model around the deterministic steady state! ⇒
Steady state ratios.

I We even do not need to specify functional forms...
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Stochastic RBC model
Log linearization (without explicit functions)

Exercise 2.
Suppose that the Euler and transition equations are given by:

u′(ct) = βEt

[
u′(ct+1

(
eat+1 f ′(kt+1) + 1− δ)

)]
kt+1 = eat f (kt) + (1− δ)kt − ct

where yt = eat f (kt) is the level of production, f (k) is a neoclassical
production function, and u(c) is the instantaneous utility function. Let α
be the elasticity of output with respect to capital at the steady state and
γ be the absolute value of the elasticity of the marginal utility with
respect to consumption at the steady state. (1) Characterize the steady
state. (2) Compute the steady state ratios c?/k? and y?/k?. (3) Show
that the log-linearized Euler and transition equations are:

Et

[
γ (c̃t − c̃t+1) +

ρ+ δ

1 + ρ

(
ãt+1 − (1− α)k̃t+1

)]
= 0

y?

k?
at + β−1k̃t −

c?

k?
c̃t − k̃t+1 = 0
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Stochastic RBC model
Solution of the log linearized model

I A solution is a time invariant mapping between the states (at and
kt) and the controls (ct , kt+1).

I If ct = ψ(kt , at) is known, one can build time series for all the
endogenous variables by iterating over (2)-(3).

I Except under rare occasions, it is generally not possible to obtain a
closed form solution for this mapping.

Exercise 3.
Show that it is possible to solve analytically the previous RBC model if
δ = 1.

I If the model is linear (or linearized) one can show that the solution is
linear (provided that the solution exists).

I We postulate a linear solution:

ct = ηckkt + ηcaat

kt+1 = ηkkkt + ηkaat
(6)

A unique solution exists iff there exists a unique vector
(ηck , ηca, ηkk , ηka) such that (6) is consistent with (4), (5) and (3).
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Stochastic RBC model
Solution of the log linearized model

Exercise 4.

Substitute (6) in (4), (5) and (3) and show that the reduced form
parameters must satisfy:



ηck = k?

c?

(
β−1 − ηkk

)
ηca =

y?

c?
− k?

c?
ηka

0 = k?

c?

(
β−1 − ηkk

) (
1 − ηkk

)
− (1 − α)

ρ+δ
1+ρ

ηkk

0 =

(
y?

c?
− k?

c?
ηka

)
(1 − ϕ) − k?

c?

(
β−1 − ηkk

)
ηka +

ρ+δ
1+ρ

(
ϕ − (1 − α)ηka

)

I The third equation is quadratic w.r.t ηkk . If we can identify a unique
feasible real solution to this equation, then we can uniquely
determine ηca from the fourth equation, and (ηca, ηck), from the first
and second equations.

I ηkk must solve:
η2
kk − ξηkk + β−1 = 0

with

ξ = 1 + β−1 +
c?

k?
(1− α)

ρ+ δ

1 + ρ
> 1 + β−1
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Stochastic RBC model
Solution of the log linearized model

Exercise 5.
Show that the previous quadratic equation admits two distinct real
solutions: one between zero and one and the other greater than one.

I The second solution (greater than one) corresponds to a
parametrization of the reduced form model where the dynamic of
physical capital is explosive.

I We rule out explosive dynamics by selecting the first solution of the
quadratic equation:

ηkk =
ξ

2
−

√(
ξ

2

)2

− β−1

I In the process of solving a linear (or linearized) RE model we always
have to solve a quadratic equation and to rule out unstable
solutions...

I But if the number of endogenous states is greater than two, it is
generally impossible to solve the linearized model analytically.
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Stochastic RBC model
ARMA stochastic process

I The endogenous variables are ARMA processes.

I For instance, the output is characterized by: ỹt = at + αk̃t
k̃t = ηkk k̃t−1 + ηkaat−1

at = ϕat−1 + εt

I One can easily establish that:

ỹt = (ηkk + ϕ)ỹt−1 − ηkkϕỹt−2 + εt − (ηkk − αηka)εt−1

An ARMA(2,1) stochastic process with two real roots in the
autoregressive part (ηkk and ϕ).

Exercise 6.
Show that the distribution of yt is log-normal if the innovation εt is
Gaussian. Compute the expectation and variance of yt . Compare E [yt ],
the mode of the distribution of yt and the deterministic steady state.
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First order approximation
General problem

I Let y be a n × 1 vector of endogenous variables, u is a q × 1 vector
of innovations (exogenous variables in Dynarelanguage).

I We consider the following type of model:

Et [f (yt+1, yt , yt−1, ut)] = 0

with:

ut = σεt

E[εt ] = 0

E[εtε
′
t ] = Σε

where σ is a scale parameter, ε is a vector of auxiliary random
variables.

I Assumption f : R3n+q → Rn is a differentiable function in Ck .
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First order approximation
Solution

I The unknown function g collects the policy rules and transition
equations:

yt = g(yt−1, ut , σ)

I Then, we have:

yt+1 = g(yt , ut+1, σ)

= g(g(yt−1, ut , σ), ut+1, σ)

I so we can define:

Fg (yt−1, ut , ut+1, σ) = f (g(g(yt−1, ut , σ), ut+1, σ), g(yt−1, ut , σ), yt−1, ut)

I And our problem can be restated as:

Et [Fg (yt−1, ut , ut+1, σ)] = 0

I To solve the DSGE model we have to identify the unknown function
g (solve a functional equation).

I To reduce the computational burden we approximate the problem.
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First order approximation
Steady state

I A deterministic steady state, y?, for the model satisfies

f (y?, y?, y?, 0) = 0

I A model can have several steady states, but only one of them will be
used for approximation.

I Furthermore, the solution function satisfies:

y? = g(y?, 0, 0)

I If the analytical steady state is available, it should be provided to
Dynare.
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First order approximation
Taylor approximation

I Let ŷ = yt−1 − ȳ , u = ut , u+ = ut+1, fy+ = ∂f
∂yt+1

, fy = ∂f
∂yt

,

fy− = ∂f
∂yt−1

, fu = ∂f
∂ut

, gy = ∂g
∂yt−1

, gu = ∂g
∂ut

, gσ = ∂g
∂σ .

I Where all the derivates are evaluated at the deterministic steady
state.

I With a first order Taylor expansion of F around ȳ :

0 ' Fg
(1)(y−, u, u+, σ) =

fy+ (gy (gy ŷ + guu + gσσ) + guu+ + gσσ)

+ fy (gy ŷ + guu + gσσ) + fy− ŷ + fuu

I What has changed? We now have three unknown “parameters”
(gy , gu and gσ) instead of an infinite number of parameters
(function g).
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First order approximation
Taylor approximation

I Taking the expectation conditional on the information at time t, we
have:

0 'fy+ (gy (gy ŷ + guu + gσσ) + guEt [u+] + gσσ)

+ fy (gy ŷ + guu + gσσ) + fy− ŷ + fuu

I Or equivalently:

0 '
(
fy+gygy + fygy + fy−

)
ŷ + (fy+gygu + fygu + fu) u

+ (fy+gygσ + fy+gσ + fygσ)σ

I This “equality” must hold for any value of (ŷ , u, σ), so that the
terms between parenthesis must be zero. We have three
(multivariate) equations and three (multivariate) unknowns:

0 = fy+gygy + fygy + fy−
0 = fy+gygu + fygu + fu

0 = fy+gygσ + fy+gσ + fygσ
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First order approximation
Certainty equivalence

I Let us assume that gy is known. We must have:

fy+gygσ + fy+gσ + fygσ = 0

I Solving for gσ, we obtain
gσ = 0

I This is a manifestation of the certainty equivalence property of the
first order approximation: the policy rules and transition equations
do not depend on the size of the structural shocks.

I In this sense future uncertainty does not matter.
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First order approximation
Recovering the marginal effect of contemporaneous innovations, gu

I Let us assume again that gy is known. We must have:

fy+gygu + fygu + fu = 0

I Solving for gu, we obtain

gu = − (fy+gy + fy )−1 fu

I Note that fy+gy + fy must be a full rank matrix.

I gu gives the marginal effect of the structural innovations on the
endogenous (jumping and states) variables.

I Future uncertainty does not matter, but the contemporaneous
innovations do affect the endogenous variables.
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First order approximation
Recovering the marginal effect of the past, gy

I We must have: (
fy+gygy + fygy + fy−

)
ŷ = 0 ∀ŷ

I This is a quadratic equation, but the unknown is a matrix! It is
generally impossible to solve this equation analytically as we would
do for a univariate quadratic equation.

I If we interpret gy as a lead operator, we can rewrite the equation as
a second order recurrent equation:

fy+ ŷt+1 + fy ŷt + fy− ŷt−1 = 0

I For a given initial condition, ŷt−1, an infinity of paths (ŷt , ŷt+1) is
solution of the second order recurrent equation.

! In the phase diagram of the RBC model (see the previous chapter),
an infinity of trajectories satisfy the Euler and transition equations.
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First order approximation
Recovering the marginal effect of the past, gy

I The second order recurrent equation can be equivalently represented
as a first order recurrent equation by increasing the dimension of the
vector of endogenous variables, as we would rewrite an AR(2) as a
VAR(1).

I We can rewrite the second order recurrent equation as a first order
recurrent equation for zt ≡ (ŷ ′t , ŷ

′
t+1)′:(

0n fy+

In 0n

)(
ŷt
ŷt+1

)
︸ ︷︷ ︸

zt

=

(
−fy −fy−
In 0n

)(
ŷt−1

ŷt

)
︸ ︷︷ ︸

zt−1

I An admissible path zt must also be such that the transitions, from
t − 1 to t or from t to t + 1, are time invariant: ceteris paribus we
have ŷt = gy ŷt−1 and ŷt+1 = gy ŷt .

I In the sequel we examine the conditions under which gy exists and
allows to pin down a single stable trajectory for the endogenous
variables.
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First order approximation
Recovering the marginal effect of the past, gy

I The unknown matrix gy must be such that(
0n fy+

In 0n

)
︸ ︷︷ ︸

D

(
In
gy

)
gy ŷ =

(
−fy −fy−
In 0n

)
︸ ︷︷ ︸

E

(
In
gy

)
ŷ

I The matrix D is not necessarily invertible.

I We use a generalized Schur decomposition of matrices D and E .

cba

http://creativecommons.org/licenses/by-sa/3.0/legalcode
https://gitlab.com/stepan-a-dynare/dsge-perturbation-method


First order approximation
Generalized Schur decomposition

I The real generalized Schur decomposition of the pencil < E ,D >:

D = QTZ

E = QSZ

with T upper triangular, S quasi-upper triangular, Q ′Q = I and
Z ′Z = I .

I Generalized eigenvalues λi solves

λiDvi = Evi

For diagonal blocks on S of dimension 1× 1:

I Tii 6= 0: λi =
Sii
Tii

I Tii = 0, Sii > 0: λ = +∞
I Tii = 0, Sii < 0: λ = −∞
I Tii = 0, Sii = 0: λ ∈ C

Diagonal blocks of dimension 2× 2 correspond to conjugate complex
eigenvalues.
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First order approximation
Recovering the marginal effect of the past, gy

I Applying the Schur decomposition and multiplying by Q ′ we obtain:

(
T11 T12

0 T22

)(
Z11 Z12

Z21 Z22

)(
In
gy

)
gy ŷ =

(
S11 S12

0 S22

)(
Z11 Z12

Z21 Z22

)(
In
gy

)
ŷ

I Matrices S and T are arranged in such a way that the stable
eigenvalues come first.

I First block of lines, in S and T are for the stable eigenvalues. The
rows of Z are partitioned accordingly.

I The columns of Z are partitioned consistently with In and gy .
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First order approximation
Recovering the marginal effect of the past, gy

I gy is identified by imposing the stability of the path.

I To exclude explosive trajectories, one must impose

Z21 + Z22gy = 0

I Or equivalently:
gy = −Z−1

22 Z21

I A unique stable trajectory exists if Z22 is square and non-singular.

Blanchard and Kahn’s condition
A unique stable trajectory exists if there are as many roots larger than
one in modulus as there are forward–looking variables in the model and
the rank condition is satisfied.
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First order approximation
Reduced form solution

I Finally, we have:
ŷt = gy ŷt−1 + guεt

⇔ yt = (In − gy )y? + gyyt−1 + guεt

a VAR(1) model with a reduced rank covariance matrix (generally
the model has less innovations than endogenous variables, q < n).

I The unconditional expectation of yt is the deterministic steady state,
E [yt ] = y?. This is a manifestation of the certainty equivalence
property.

I The unconditional covariance matrix, Σy = V [yt ], must solve:

Σy = gyΣyg
′
y + guΣεg

′
u

Specialized algorithms exist to solve efficiently this kind of
equations... Otherwise the vec operator and kronecker product can
be used:

vecΣy = (In2 − gy ⊗ gy )−1
vecguΣεg

′
u
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First order approximation
Reduced form solution

I Inverting the reduced form, we obtain the MA(∞) representation:

⇔ yt = y? +
∞∑
i=0

g i
yguεt−i

a VAR(1) model with a reduced rank covariance matrix (generally
the model has less innovations than endogenous variables, q < n).

I Let ej be the j-th column of In

I The sequence {g i
yguej}∞i=0 is the IRF associated to a unitary shock

on the j-th innovation.

I If the innovations are not orthogonal (which is a bad practice) a
Cholesky decomposition can be used.
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Higher order approximation
Introduction

I If the reduced form is (log)linear, the (approximated) behavior of the
agents does not depend on future uncertainty.

I In such an environment we cannot reproduce the precautionary
saving behavior, even if this behavior exists in the original nonlinear
model.

I In the coming section, we show how to overcome this limit by
considering higher order approximations.

I We only present the second order approximation. We will show that
this is enough to disentangle the unconditional expectation and the
deterministic steady state (break the certainty equivalence property
inherent to the first order approximation).

I Higher order approximations (> 2) do not introduce additional
algebraic complexities.
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Second order approximation
Second order Taylor approximation

I With a second order Taylor expansion of F around ȳ :

F (2)(y−, u, u+, σ) = F (1)(y−, u, u+, σ)

+
1

2

(
Fy−y−(ŷ ⊗ ŷ) + Fuu(u ⊗ u) + Fu+u+ (u+ ⊗ u+) + Fσσσ

2
)

+ Fy−u(ŷ ⊗ u) + Fy−u+ (ŷ ⊗ u+) + Fy−σ ŷσ

+ Fuu+ (u ⊗ u+) + Fuσuσ + Fu+σu+σ

I Taking the time t conditional expectation, we get:

0 ' Et

[
F (1)(y−, u, u+, σ)

]
+

1

2

(
Fy−y−(ŷ ⊗ ŷ) + Fuu(u ⊗ u) + Fu+u+ (σ2~Σε) + Fσσσ

2
)

+ Fy−u(ŷ ⊗ u) + Fy−σ ŷσ + Fuσuσ

⇒ We have six more unknowns: gyy , gyu, guu, gyσ, guσ and gσσ
(hidden in the second order derivatives of F ).
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Second order approximation
Second order derivatives

I The second order derivatives of a vector of multivariate functions is
a three dimensional object. We use the following notation

∂2F

∂x∂x
=


∂2F1

∂x1∂x1

∂2F1

∂x1∂x2
. . . ∂2F1

∂x2∂x1
. . . ∂2F1

∂xn∂xn

∂2F2

∂x1∂x1

∂2F2

∂x1∂x2
. . . ∂2F2

∂x2∂x1
. . . ∂2F2

∂xn∂xn
...

...
. . .

...
. . .

...
∂2Fm

∂x1∂x1

∂2Fm

∂x1∂x2
. . . ∂2Fm

∂x2∂x1
. . . ∂2Fm

∂xn∂xn


I Let

y = g(s)

f (y) = f (g(s))

then the second order chain derivate rule is

∂2f

∂s∂s
=
∂f

∂y

∂2g

∂s∂s
+

∂2f

∂y∂y

(
∂g

∂s
⊗ ∂g

∂s

)
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Second order approximation
Recovering gyy

I Assuming we have already solved for gy , we must have:

Fy−y− = fy+ (gyy (gy ⊗ gy ) + gygyy ) + fygyy + B
= 0

where B is a term that doesn’t contain second order derivatives of
function g .

I The equation can be rearranged:

(fy+gy + fy ) gyy + fy+gyy (gy ⊗ gy ) = −B

I This is a Sylvester type of equation and must be solved with an
appropriate algorithm.
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Second order approximation
Recovering gyu

I We must have:

Fy−u = fy+ (gyy (gy ⊗ gu) + gygyu) + fygyu + B
= 0

where B is a term that doesn’t contain second order derivatives of
function g .

I This is a standard linear problem:

gyu = − (fy+gy + fy )−1 (B + fy+gyy (gy ⊗ gu))

cba

http://creativecommons.org/licenses/by-sa/3.0/legalcode
https://gitlab.com/stepan-a-dynare/dsge-perturbation-method


Second order approximation
Recovering guu

I We must have:

Fuu = fy+ (gyy (gu ⊗ gu) + gyguu) + fyguu + B
= 0

where B is a term that doesn’t contain second order derivatives of
function g .

I This is a standard linear problem:

guu = − (fy+gy + fy )−1 (B + fy+gyy (gu ⊗ gu))
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Second order approximation
Recovering gyσ and guσ

I We must have:

Fy−σ = fy+gygyσ + fygyσ

= 0

Fuσ = fy+gyguσ + fyguσ

= 0

because we already established that gσ = 0.

I Consequently
gyσ = guσ = 0

I The size of the structural innovations does not affect the marginal
effect of yt−1 and ut on yt .

I The last property would not resist if we consider a higher order
approximation (> 2).
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Second order approximation
Recovering gσσ

I We must have:

Fσσ + Fu+u+ Σε = fy+ (gσσ + gygσσ) + fygσσ

+ (fy+y+ (gu ⊗ gu) + fy+guu) ~Σε

= 0

taking into account gσ = 0.

I This is a standard linear problem:

gσσ = − (fy+ (I + gy ) + fy )−1 (fy+y+ (gu ⊗ gu) + fy+guu) ~Σε

I We have lost the certainty equivalence property!
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Second order approximation
Reduced form solution

I The reduced form solution is augmented with quadratic terms:

yt = y?+
1

2
gσσσ

2 + gy ŷ + guu+
1

2
(gyy (ŷ ⊗ ŷ) + guu(u ⊗ u))+ gyu(ŷ ⊗ u)

Where we fixed σ = 1.

I The unconditional variance consistent with a second order
approximation is unchanged w.r.t what we obtained previously:

Σy = gyΣyg
′
y + σ2guΣεg

′
u

ie we omit the quadratic terms (which would involve third and
fourth order terms in E[yty

′
t ]).

I The unconditional expectation is given by

E [yt ] = y? + (I − gy )−1

(
1

2

(
gσσ + gyy ~Σy + guu~Σε

))
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Second order approximation
Reduced form solution (explosive paths)

I Simulation of the endogenous variables (IRFs or time series) can
result in explosive paths, even if the non approximated model is
stable.

I This instability is caused by the quadratic terms in the second order
reduced form.

I To get an intuition, compare a linear AR(1) and a quadratic AR(1):

yt = ρyt−1 + εt

yt = ρy2
t−1 + εt

I The linear AR(1) has a unique deterministic steady state, y? = 0,
globally stable provided that |ρ| < 1.

I The quadratic AR(1) share the same deterministic steady state, plus
a “spurious” steady state ȳ = 1/ρ.

I The first steady state is only locally stable while, the second one is
unstable. Note that the local stability of y? does not depend on the
value of ρ.
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Second order approximation
Quadratic vs. Linear AR(1) models

yt−1

yt

ρy2
t−1

ρyt−1

•

•

1
ρ

− 1
ρ
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Second order approximation
Reduced form solution (explosive paths)

I In the quadratic AR(1), if yt goes outside the interval
(
− 1
ρ ,

1
ρ

)
, the

generated times series will eventually diverge towards +∞.

I One can easily show that if y0 = y? = 0, then the IRFs, for the
linear and quadratic AR(1) models, associated to an innovation ε1

are respectively:

yt = ρtε1 and yt =
1

ρ
(ρε1)2t−1

I Clearly, in the quadratic case, the IRF converges to y? iff |ε1| < 1/ρ.

I More generally, the stability properties of time series generated by
the quadratic AR(1) model depends on the entire history of
innovations (path dependency).
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Second order approximation
Reduced form solution (explosive paths and risky steady state)

I Obviously the second order reduced form of a DSGE model is not as
simple as the quadratic AR(1) model.

I Next figure plots the transition equations associated to the first
order (blue) and second order (red) approximations a DSGE model
around the deterministic steady state y?.

I The transition equation associated to the second order
approximation of the model has two fixed points: ȳ (unstable) and ỹ
(stable, because the slope of the transition equation is smaller than
one at ỹ). Both fixed points are different from the deterministic
steady state of the original model.

I The magnitude of the jump of the transition equation at y? is
determined by gσσ which characterizes the effect of future
uncertainty.

I ỹ is called the risky steady state. The economy does not move away
from ỹ if we take into account the possibility of future uncertainty.
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Second order approximation
Reduced form solution (explosive paths and risky steady state)

I The economy would not stay in y?, the deterministic steady state, if
we take into account future uncertainty.

I Suppose that the plotted variable is the physical capital stock in an
RBC model.

I The household decides to increase its saving as an insurance against
future shocks ⇒ The long run level of the physical capital stock is
higher in an economy with uncertainty (ỹ) than in a deterministic
economy (y?).

I Because of this precautionary behavior, which is, at least partially,
preserved by a second order approximation, the deterministic steady
state, y?, cannot be a fixed point.

I The risky steady state is only locally stable. If y goes below ȳ , y will
eventually diverge towards −∞.
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Second order approximation
Reduced form solution (explosive paths and risky steady state)

yt

yt−1

y?

y?

1
2
gσσ

ỹ

ỹ

ȳ

ȳ
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Second order approximation
Reduced form solution (pruning)

I Different strategies have been proposed to force the stability of the
simulations. The more popular one was proposed by Kim, Kim,
Schaumburg, and Sims: the pruning.

I Basically, the idea is to modify the recurrence by removing all the
terms of order greater than two.

I This is done by replacing the second order reduced form by:

yt = y? +
1

2
gσσσ

2 + gy ŷt−1 + guut

+
1

2

(
gyy (ŷ

0
t−1 ⊗ ŷ 0

t−1) + guu(ut ⊗ ut)
)
+ gyu(ŷ

0
t−1 ⊗ ut)

with
ŷ 0
t = gy ŷ

0
t−1 + guεt

I Provided that ŷ0
t is stationary, pruned simulations {yt} will not

explode (because we do not cumulate yt or ŷ0
t through the second

order terms).

I Note that the pruned model increases the number of states.
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Perturbation methods with Dynare
I Dynare implements perturbation approximations of order 1, 2 and 3

(2 is the default).

I If higher order approximations are needed, use Dynare++

I The simulations are triggered by the stoch_simul command. See
the manual for an exhaustive description of the options.

I The covariance matrix of the innovations must be specified before
the call to stoch_simul using the shocks block.

Content of rbc1.mod

s h o c k s ;
v a r L o g g e d P r o d u c t i v i t y I n n o v a t i o n = . 0 1 ˆ 2 ;

end ;

s t o c h s i m u l ( o r d e r =1, p e r i o d s =1000);

f i g u r e ( ’ name ’ , ’ P o l i c y r u l e ’ ) ;
p l o t ( C a p i t a l , Consumption , ’ ok ’ ) ;

I If periods>0 Dynare computes the simulated moments. If
periods=0, which is the default value, Dynare reports the
theoretical moments.
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Perturbation methods with Dynare

I Dynare First reports a summary about the status of the variables in
the model (number of predetermined variables, number of choice
variables, ...) and prints the covariance matrix used for the
simulations or computation of theoretical moments.

I Second Dynare prints the policy and transition equations obtained
by solving the model.

I Third Dynare reports various descriptive statistics about the
endogenous variables (covariance matrix, autocorrelation, ...).

I Dynare also computes Impulse Response Functions for each
innovations.

I More output are available depending on the options passed to the
stoch_simul command (see the manual).

I All the outputs can be accessed programmatically in the global
Matlab structure oo_ (see the manual again).
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