Local \& Global Approximations of DSGE models

Stéphane Adjemian
Université du Maine, GAINS \& CEPREMAP
stephane.adjemian@ens.fr
December 13, 2007

Let y be a $n \times 1$ vector of endogenous variables, u is a $q \times 1$ vector of exogenous stochastic shocks. We consider the following type of model:

$$
\mathbb{E}_{t}\left[f\left(y_{t+1}, y_{t}, y_{t-1}, u_{t}\right)\right]=0
$$

with:

$$
\begin{aligned}
u_{t} & =\sigma \epsilon_{t} \\
\mathbb{E}\left[\epsilon_{t}\right] & =0 \\
\mathbb{E}\left[\epsilon_{t} \epsilon_{t}^{\prime}\right] & =\Sigma_{\epsilon}
\end{aligned}
$$

where σ is a scale parameter, ϵ is a vector of auxiliary random variables.

$$
\text { Assumption } f: \quad \mathbb{R}^{3 n+q} \rightarrow \mathbb{R}^{n} \text { is a differentiable function in } \mathcal{C}^{k} .
$$

$$
y_{t}=g\left(y_{t-1}, u_{t}, \sigma\right)
$$

The unknown function g collects the policy rules and transition equations.

Then,

$$
\begin{aligned}
y_{t+1} & =g\left(y_{t}, u_{t+1}, \sigma\right) \\
& =g\left(g\left(y_{t-1}, u_{t}, \sigma\right), u_{t+1}, \sigma\right)
\end{aligned}
$$

and we define:
$F_{g}\left(y_{t-1}, u_{t}, u_{t+1}, \sigma\right)=f\left(g\left(g\left(y_{t-1}, u_{t}, \sigma\right), u_{t+1}, \sigma\right), g\left(y_{t-1}, u_{t}, \sigma\right), y_{t-1}, u_{t}\right)$
Our problem may be then written as:

$$
\mathbb{E}_{t}\left[F_{g}\left(y_{t-1}, u_{t}, u_{t+1}, \sigma\right)\right]=0
$$

- A deterministic steady state, \bar{y}, for the model satisfies

$$
f(\bar{y}, \bar{y}, \bar{y}, 0)=0
$$

- A model can have several steady states, but only one of them will be used for approximation.
- Furthermore, the solution function satisfies:

$$
\bar{y}=g(\bar{y}, 0,0)
$$

Let $\hat{y}=y_{t-1}-\bar{y}, u=u_{t}, u_{+}=u_{t+1}, f_{y_{+}}=\frac{\partial f}{\partial y_{t+1}}, f_{y}=\frac{\partial f}{\partial y_{t}}$, $f_{y_{-}}=\frac{\partial f}{\partial y_{t-1}}, f_{u}=\frac{\partial f}{\partial u_{t}}, g_{y}=\frac{\partial g}{\partial y_{t-1}}, g_{u}=\frac{\partial g}{\partial u_{t}}, g_{\sigma}=\frac{\partial g}{\partial \sigma}$. Where all the derivates are evaluated at the deterministic steady state.

With a first order Taylor expansion of F around \bar{y} :

$$
\begin{aligned}
& 0 \simeq F_{g}^{(1)}\left(y_{-}, u, u_{+}, \sigma\right)= \\
& f_{y_{+}}\left(g_{y}\left(g_{y} \hat{y}+g_{u} u+g_{\sigma} \sigma\right)+g_{u} u_{+}+g_{\sigma} \sigma\right) \\
& \quad+f_{y}\left(g_{y} \hat{y}+g_{u} u+g_{\sigma} \sigma\right)+f_{y_{-}} \hat{y}+f_{u} u
\end{aligned}
$$

What has changed? We now have three unknown
"parameters" $\left(g_{y}, g_{u}\right.$ and $\left.g_{\sigma}\right)$ instead of an infinite number of parameters (function g).

Taking the expectation conditional on the information at time t, we have:

$$
\begin{aligned}
0 \simeq & f_{y_{+}}\left(g_{y}\left(g_{y} \hat{y}+g_{u} u+g_{\sigma} \sigma\right)+g_{u} \mathbb{E}_{t}\left[u_{+}\right]+g_{\sigma} \sigma\right) \\
& +f_{y}\left(g_{y} \hat{y}+g_{u} u+g_{\sigma} \sigma\right)+f_{y_{-}} \hat{y}+f_{u} u
\end{aligned}
$$

or equivalently:

$$
\begin{aligned}
0 \simeq & \left(f_{y_{+}} g_{y} g_{y}+f_{y} g_{y}+f_{y_{-}}\right) \hat{y}+\left(f_{y_{+}} g_{y} g_{u}+f_{y} g_{u}+f_{u}\right) u \\
& +\left(f_{y_{+}} g_{y} g_{\sigma}+f_{y_{+}} g_{\sigma}+f_{y} g_{\sigma}\right) \sigma
\end{aligned}
$$

This "equality" must hold for any value of (\hat{y}, u, σ), so that the terms between parenthesis must be zero. We have three (multivariate) equations and three (multivariate) unknowns.

Let us assume that g_{y} is known. We must have:

$$
f_{y_{+}} g_{y} g_{\sigma}+f_{y_{+}} g_{\sigma}+f_{y} g_{\sigma}=0
$$

Solving for g_{σ}, we obtain

$$
g_{\sigma}=0
$$

This is a manifestation of the certainty equivalence property of first order approximation: the policy rule does not depend on the size of the structural shocks.

Let us assume again that g_{y} is known. We must have:

$$
f_{y_{+}} g_{y} g_{u}+f_{y} g_{u}+f_{u}=0
$$

Solving for g_{u}, we obtain

$$
g_{u}=-\left(f_{y_{+}} g_{y}+f_{y}\right)^{-1} f_{u}
$$

g_{u} gives the marginal effect of the structural innovations on the endogenous (jumping and states) variables.

We must have:

$$
\left(f_{y_{+}} g_{y} g_{y}+f_{y} g_{y}+f_{y_{-}}\right) \hat{y}=0
$$

Structural state space representation:

$$
\left[\begin{array}{cc}
0 & f_{y_{+}} \\
I & 0
\end{array}\right]\left[\begin{array}{c}
I \\
g_{y}
\end{array}\right] g_{y} \hat{y}=\left[\begin{array}{cc}
-f_{y_{-}} & -f_{y} \\
0 & I
\end{array}\right]\left[\begin{array}{c}
I \\
g_{y}
\end{array}\right] \hat{y}
$$

or

$$
\left[\begin{array}{cc}
0 & f_{y_{+}} \\
I & 0
\end{array}\right]\left[\begin{array}{c}
y_{t}-\bar{y} \\
y_{t+1}-\bar{y}
\end{array}\right]=\left[\begin{array}{cc}
-f_{y_{-}} & -f_{y} \\
0 & I
\end{array}\right]\left[\begin{array}{c}
y_{t-1}-\bar{y} \\
y_{t}-\bar{y}
\end{array}\right]
$$

Because g_{y} is the marginal effect of y_{t-1} on y_{t}.

$$
D x_{t+1}=E x_{t}
$$

with

$$
x_{t+1}=\left[\begin{array}{c}
y_{t}-\bar{y} \\
y_{t+1}-\bar{y}
\end{array}\right] \quad x_{t}=\left[\begin{array}{c}
y_{t-1}-\bar{y} \\
y_{t}-\bar{y}
\end{array}\right]
$$

- There is an infinity of solutions but we want a unique stable one.
- Matrix D may be singular.

Taking the real generalized Schur decomposition of the pencil $<E, D>$:

$$
\begin{aligned}
D & =Q T Z \\
E & =Q S Z
\end{aligned}
$$

with T, upper triangular, S quasi-upper triangular, $Q^{\prime} Q=I$ and $Z^{\prime} Z=I$.

Definition: Generalized eigenvalues

λ_{i} solves

$$
\lambda_{i} D v_{i}=E v_{i}
$$

For diagonal blocks on S of dimension 1×1 :

- $T_{i i} \neq 0: \lambda_{i}=\frac{S_{i i}}{T_{i i}}$
- $T_{i i}=0, S_{i i}>0: \lambda=+\infty$
- $T_{i i}=0, S_{i i}<0: \lambda=-\infty$
- $T_{i i}=0, S_{i i}=0: \lambda \in \mathcal{C}$

Applying the Schur decomposition and multiplying by Q^{\prime} we obtain:

$$
\begin{aligned}
& D\left[\begin{array}{c}
I \\
g_{y}
\end{array}\right] g_{y} \hat{y}=E\left[\begin{array}{c}
I \\
g_{y}
\end{array}\right] \hat{y} \\
& {\left[\begin{array}{cc}
T_{11} & T_{12} \\
0 & T_{22}
\end{array}\right]\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right]\left[\begin{array}{c}
I \\
g_{y}
\end{array}\right] g_{y} \hat{y} } \\
&=\left[\begin{array}{cc}
S_{11} & S_{12} \\
0 & S_{22}
\end{array}\right]\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right]\left[\begin{array}{c}
I \\
g_{y}
\end{array}\right] \hat{y}
\end{aligned}
$$

Where S and T are arranged in such a way that the stable eigenvalues comes first.
g_{y} is recovered by selecting the stable path. To exclude explosive trajectories, one must impose

$$
Z_{21}+Z_{22} g_{y}=0
$$

or equivalently:

$$
g_{y}=-Z_{22}^{-1} Z_{21}
$$

A unique stable trajectory exists if Z_{22} is square and non-singular. With Blanchard and Kahn's words: there are as many roots larger than one in modulus as there are forward-looking variables in the model and the rank condition is satisfied.

With a second order Taylor expansion of F around \bar{y} :

$$
\begin{aligned}
& F^{(2)}\left(y_{-}, u, u_{+}, \sigma\right)=F^{(1)}\left(y_{-}, u, u_{+}, \sigma\right) \\
& +\frac{1}{2}\left(F_{y_{-} y_{-}}(\hat{y} \otimes \hat{y})+F_{u u}(u \otimes u)+F_{u_{+} u_{+}}\left(u_{+} \otimes u_{+}\right)+F_{\sigma \sigma} \sigma^{2}\right) \\
& +F_{y_{-} u}(\hat{y} \otimes u)+F_{y_{-} u_{+}}\left(\hat{y} \otimes u_{+}\right)+F_{y_{-} \sigma} \hat{y} \sigma \\
& +F_{u u_{+}}\left(u \otimes u_{+}\right)+F_{u \sigma} u \sigma+F_{u_{+} \sigma} u_{+} \sigma
\end{aligned}
$$

and taking the time t conditional expectation, we get:

$$
\begin{aligned}
0 & \simeq \mathbb{E}_{t}\left[F^{(1)}\left(y_{-}, u, u_{+}, \sigma\right)\right] \\
& +\frac{1}{2}\left(F_{y_{-} y_{-}}(\hat{y} \otimes \hat{y})+F_{u u}(u \otimes u)+F_{u_{+} u_{+}}\left(\sigma^{2} \vec{\Sigma}_{\epsilon}\right)+F_{\sigma \sigma} \sigma^{2}\right) \\
& +F_{y_{-} u}(\hat{y} \otimes u)+F_{y_{-} \sigma} \hat{y} \sigma+F_{u \sigma} u \sigma
\end{aligned}
$$

We have six more unknowns: $g_{y y}, g_{y u}, g_{u u}, g_{y \sigma}, g_{u \sigma}$ and $g_{\sigma \sigma}$.

The second order derivatives of a vector of multivariate functions is a three dimensional object. We use the following notation

$$
\frac{\partial^{2} F}{\partial x \partial x}=\left[\begin{array}{cccccc}
\frac{\partial^{2} F_{1}}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} F_{1}}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} F_{1}}{\partial x_{2} \partial x_{1}} & \cdots & \frac{\partial^{2} F_{1}}{\partial x_{n} \partial x_{n}} \\
\frac{\partial^{2} F_{2}}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} F_{2}}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} F_{2}}{\partial x_{2} \partial x_{1}} & \cdots & \frac{\partial^{2} F_{2}}{\partial x_{n} \partial x_{n}} \\
\vdots & \vdots \ddots & \vdots & \ddots & \vdots & \\
\frac{\partial^{2} F_{m}}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} F_{m}}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} F_{m}}{\partial x_{2} \partial x_{1}} & \cdots & \frac{\partial^{2} F_{m}}{\partial x_{n} \partial x_{n}}
\end{array}\right]
$$

Let

$$
\begin{aligned}
y & =g(s) \\
f(y) & =f(g(s))
\end{aligned}
$$

then,

$$
\frac{\partial^{2} f}{\partial s \partial s}=\frac{\partial f}{\partial y} \frac{\partial^{2} g}{\partial s \partial s}+\frac{\partial^{2} f}{\partial y \partial y}\left(\frac{\partial g}{\partial s} \otimes \frac{\partial g}{\partial s}\right)
$$

Assuming we have already solved for g_{y}, we must have:

$$
\begin{aligned}
F_{y_{-} y_{-}} & =f_{y_{+}}\left(g_{y y}\left(g_{y} \otimes g_{y}\right)+g_{y} g_{y y}\right)+f_{y} g_{y y}+\mathcal{B} \\
& =0
\end{aligned}
$$

where \mathcal{B} is a term that doesn't contain second order derivatives of function g.

The equation can be rearranged:

$$
\left(f_{y_{+}} g_{y}+f_{y}\right) g_{y y}+f_{y_{+}} g_{y y}\left(g_{y} \otimes g_{y}\right)=-\mathcal{B}
$$

This is a Sylvester type of equation and must be solved with an appropriate algorithm.

We must have:

$$
\begin{aligned}
F_{y_{-} u} & =f_{y_{+}}\left(g_{y y}\left(g_{y} \otimes g_{u}\right)+g_{y} g_{y u}\right)+f_{y} g_{y u}+\mathcal{B} \\
& =0
\end{aligned}
$$

where \mathcal{B} is a term that doesn't contain second order derivatives of function g.

This is a standard linear problem:

$$
g_{y u}=-\left(f_{y_{+}} g_{y}+f_{y}\right)^{-1}\left(\mathcal{B}+f_{y_{+}} g_{y y}\left(g_{y} \otimes g_{u}\right)\right)
$$

We must have:

$$
\begin{aligned}
F_{u u} & =f_{y_{+}}\left(g_{y y}\left(g_{u} \otimes g_{u}\right)+g_{y} g_{u u}\right)+f_{y} g_{u u}+\mathcal{B} \\
& =0
\end{aligned}
$$

where \mathcal{B} is a term that doesn't contain second order derivatives of function g.

This is a standard linear problem:

$$
g_{u u}=-\left(f_{y_{+}} g_{y}+f_{y}\right)^{-1}\left(\mathcal{B}+f_{y_{+}} g_{y y}\left(g_{u} \otimes g_{u}\right)\right)
$$

$\underline{\text { Second Order Approximation (VII, Recovering } g_{y \sigma} \text { And } g_{u \sigma} \text {) }}$

We must have:

$$
\begin{aligned}
F_{y-\sigma} & =f_{y_{+}} g_{y} g_{y \sigma}+f_{y} g_{y \sigma} \\
& =0 \\
F_{u \sigma} & =f_{y_{+}} g_{y} g_{u \sigma}+f_{y} g_{u \sigma} \\
& =0
\end{aligned}
$$

as $g_{\sigma}=0$. Then:

$$
g_{y \sigma}=g_{u \sigma}=0
$$

The size of the structural innovations do not affect the marginal effect of y_{t-1} and u_{t} on y_{t}.

We must have:

$$
\begin{aligned}
F_{\sigma \sigma}+F_{u_{+} u_{+}} \Sigma_{\epsilon}= & f_{y_{+}}\left(g_{\sigma \sigma}+g_{y} g_{\sigma \sigma}\right)+f_{y} g_{\sigma \sigma} \\
& +\left(f_{y_{+} y_{+}}\left(g_{u} \otimes g_{u}\right)+f_{y_{+}} g_{u u}\right) \vec{\Sigma}_{\epsilon} \\
= & 0
\end{aligned}
$$

taking into account $g_{\sigma}=0$.
This is a standard linear problem:

$$
g_{\sigma \sigma}=-\left(f_{y_{+}}\left(I+g_{y}\right)+f_{y}\right)^{-1}\left(f_{y_{+} y_{+}}\left(g_{u} \otimes g_{u}\right)+f_{y_{+}} g_{u u}\right) \vec{\Sigma}_{\epsilon}
$$

We have lost the certainty equivalence property!

$$
y_{t}=\bar{y}+0.5 g_{\sigma \sigma} \sigma^{2}+g_{y} \hat{y}+g_{u} u+0.5\left(g_{y y}(\hat{y} \otimes \hat{y})+g_{u u}(u \otimes u)\right)+g_{y u}(\hat{y} \otimes u)
$$

We can fix $\sigma=1$.

Second order accurate moments:

$$
\begin{aligned}
\Sigma_{y} & =g_{y} \Sigma_{y} g_{y}^{\prime}+\sigma^{2} g_{u} \Sigma_{\epsilon} g_{u}^{\prime} \\
\mathbb{E}\left[y_{t}\right] & =\bar{y}+\left(I-g_{y}\right)^{-1}\left(0.5\left(g_{\sigma \sigma}+g_{y y} \vec{\Sigma}_{y}+g_{u u} \vec{\Sigma}_{\epsilon}\right)\right)
\end{aligned}
$$

- For large shocks second order approximation simulation may explode
- pruning algorithm (Sims)
- truncate normal distribution (Judd)
- The model has to be defined by $f \in \mathcal{C}^{k}$.
- The approximated solution is local so we cannot analyse transitions from one steady state to another.

A global approximation of the unknown function g is needed...
But to keep things tractable we also need (somehow) to "project" this infinite dimensional problem in a finite dimensional space.

A Simple example (I)

- Suppose we want to solve the following dynamic problem:

$$
\dot{y}(t)=y(t)
$$

for $t \in[0, T]$ given the initial condition $y(0)=1$ (backward looking dynamic) where $y \in \mathcal{C}^{1}$.

- This problem is trivial, the solution is $y(t)=e^{t}$, but let us assume that we don't know how to solve a differential equation.
- Define the operator \mathcal{L} by

$$
\mathcal{L} f \equiv \dot{f}-f
$$

a mapping from \mathcal{C}^{1} to \mathcal{C}^{0}.

- The dynamic problem can now be formulated as a "fixed point" problem in the space \mathcal{C}^{1} of functions:

$$
\mathcal{L} y=0
$$

- The idea is to approximate the unknown y by a weighted sum of monomial terms on the interval $[0, T]$:

$$
\hat{y}(t ; \mathbf{a}) \equiv a_{0}+\sum_{i=1}^{n} a_{i} t^{i}
$$

where obviously $a_{0}=1$ (to fit the initial condition), so we redefine $\mathbf{a} \equiv\left(a_{1}, \ldots, a_{n}\right)^{\prime}$. Our infinite dimensional problem is reduced to a finite dimensional problem with n unknowns. We just need to find $\mathbf{a} \in \mathbb{R}^{n}$ which provides an acceptable approximation of y.

Theorem (Weierstrass) If $f \in \mathcal{C}[a, b]$, then for all $\epsilon>0$, there exist a polynomial $p(x)$ such that:

$$
\forall x \in[a, b], \quad|f(x)-p(x)| \leq \epsilon
$$

If $f \in \mathcal{C}^{k}[a, b]$, then there exists a sequence of order n polynomials, p_{n}, such that:

$$
\lim _{n \rightarrow \infty} \max _{x \in[a, b]}\left|f^{(l)}(x)-p_{n}^{(l)}(x)\right|=0
$$

for $l \leq k$.

A simple example (IV)

- Let:

$$
\begin{aligned}
R(t ; \mathbf{a}) & \equiv \mathcal{L} \hat{y}(t ; \mathbf{a}) \\
& =a_{1}-1+\sum_{i=2}^{n} a_{i} i t^{i-1}-\sum_{i=1}^{n} a_{i} t^{i}
\end{aligned}
$$

be a residual function defined for $t \in[0, T]$.

- The idea is to choose a to make the residual as small as possible (given n).
- A first try would be:

$$
\mathbf{a}=\arg \min _{\mathbf{a}} \int_{0}^{T} R(t, \mathbf{a}) \mathrm{d} t
$$

\rightarrow NLLS, L^{2} norm.

- Other approaches can be considered:
- Method of collocation: $\mathbf{a} \in \mathbb{R}^{n}$ is such that the residual is exactly zero on n points $\left\{t_{i}\right\}_{i=1}^{n}$ in $[0, T]$:

$$
R\left(t_{i} ; \mathbf{a}\right)=0 \text { for } i=1, \ldots, n
$$

- Method of moments: the true solution is such that for any arbitrary function $p(t)$ we have $\int_{0}^{T} p(t) \mathcal{L} y(t) \mathrm{d} t=0$. We can choose $\mathbf{a} \in \mathbb{R}^{n}$ so that for a sequence of arbitray functions $\left\{p_{i}(t)\right\}_{i=1}^{n}$ we have exactly:

$$
\int_{0}^{T} p_{i}(t) \mathcal{L} \hat{y}(t ; \mathbf{a}) \mathrm{d} t \equiv \int_{0}^{T} p_{i}(t) R(t ; \mathbf{a}) \mathrm{d} t=0
$$

Usually we consider $p_{i}(t)=t^{i}$.

- To solve a differential equation we need:
- To express it as a zero of some operator.
- To define a parameterized approximation function as a weighted sum of simple functions.
- To identify the parameters of the approximation function by matching some conditions fullfilled by the true solution.
- Remaining issues:
- What is the value of n ?
- What kind of "simple functions" should be choosen?
- How should we solve for the parameters of the approximation function?
- Suppose that the unknown function is the solution of the following operator equation:

$$
\mathcal{N}(f)
$$

where $\mathcal{N}: B \rightarrow B, B$ is a Banach space of functions $f: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

- Trivial example. In the previous example we have $D=[0, T], f: D \rightarrow \mathbb{R}$ and

$$
\mathcal{N}=\frac{\mathrm{d}}{\mathrm{~d} t}-I
$$

where I is the identity operator.

- Economic example. For a discrete time Ramsey growth model, D is the space of the state variable (capital stock k), the unknown function f is the policy rule (consumption as a function of $k, c(k)$), \mathcal{N} is the Euler equation (so we have $n=m=1$):

$$
\mathcal{N}(c) \equiv u^{\prime}(c(k))-\beta u^{\prime}(c(h(k)-c(k)))\left(f^{\prime}(h(k)-c(k))\right)
$$

where $h(k)=f(k)+(1-\delta) k, u$ is the utility function and f is the production function.

1. Choose a basis $\Phi=\left\{\varphi_{i}\right\}_{i=1}^{n}$ and an inner product:
$<\varphi_{i}, \varphi_{j}>=\int_{D} \varphi_{i}(x) \varphi_{j}(x) \omega(x) \mathrm{d} x$.
2. Choose a degree of approximation: n.

$$
\hat{f}=\sum_{i=1}^{n} a_{i} \varphi_{i}(x)
$$

3. For a guess \mathbf{a}_{j} evaluate the approximation of f and the residual:

$$
R\left(x ; \mathbf{a}_{j}\right)=(\mathcal{N}(\hat{f}))(x)
$$

4. Choose a sequence of n functions, $p_{i}: D \rightarrow \mathbb{R}^{m}$ and for each guess of \mathbf{a}_{j} evaluate the n projections:

$$
P_{i}=<R(., \mathbf{a}), p_{i}(.)>
$$

- Each element, φ_{i}, of the basis should be simple to compute.
- Elements of the basis should be similar in size.
- Each element of the basis should bring a specific information.
- Ideally φ_{i} is orthogonal to φ_{j} with respect to the chosen inner product

$$
<\varphi_{i}, \varphi_{j}>=0
$$

- Defined over $[-1,1]$ by:

$$
T_{n}(x) \equiv \cos (n \arccos x)
$$

- Can be evaluated using the folowing recursion:

$$
\begin{aligned}
T_{0}(x) & =1 \\
T_{1}(x) & =x \\
T_{n+1}(x) & =2 x T_{n}(x)-T_{n-1}(x)
\end{aligned}
$$

Chebyshev polynomials (II)

$$
\begin{aligned}
& T_{0}(x)=1 \\
& T_{1}(x)=x \\
& T_{2}(x)=2 x^{2}-1 \\
& T_{3}(x)=4 x^{3}-3 x \\
& T_{4}(x)=8 x^{4}-8 x^{2}+1 \\
& T_{5}(x)=16 x^{5}-20 x^{3}+5 x \\
& T_{6}(x)=32 x^{6}-48 x^{4}+18 x^{2} \\
& T_{7}(x)=64 x^{7}-112 x^{5}+56 x^{3}-7 x \\
& T_{8}(x)=128 x^{8}-256 x^{6}+160 x^{4}-32 x^{2}+1
\end{aligned}
$$

- The Chebyshev polynomials are orthogonal with respect to the inner product defined by the weighting function $\left(1-x^{2}\right)^{-\frac{1}{2}}$:

$$
\int_{-1}^{1} T_{n}(x) T_{m}(x) \frac{\mathrm{d} x}{\sqrt{1-x^{2}}}=\left\{\begin{array}{cc}
0 & \text { if } n \neq m \\
\pi & \text { if } n=m=0 \\
\pi / 2 & \text { if } n=m \neq 0
\end{array}\right.
$$

- Let z be a root of the order n Chebyshev polynomial, $T_{n}(z)=0$. The n zeroes of T_{n} are given by:

$$
z_{n, h}=\cos \left(\frac{(2 h-1) \pi}{2 n}\right) \text { for } h=1, \ldots, n
$$

- Suppose $f \in \mathcal{C}^{k}[a, b]$.
- Define:

$$
c_{j}=\frac{2}{n} \sum_{k=1}^{n} f\left(z_{n, k}\right) T_{j}\left(z_{n, k}\right)
$$

and

$$
\hat{f}_{n}(x)=-\frac{1}{2} c_{0}+\sum_{k=1}^{n} c_{k} T_{k}(x)
$$

- There exists some d_{k} such that for all n

$$
\|f-\hat{f}\|_{\infty} \leq\left(\frac{2}{\pi} \log (n+1)+2\right) \frac{d_{k}}{n^{k}}\left\|f^{(k)}\right\|_{\infty}
$$

```
Chebyshev polynomials (V, multivariate extension)
```

- If we have more than one state variable:
- Tensor product basis.
- Complete basis.
- Curse of dimensionality...
- We have to choose a which makes the residual small.
- NNLS (L^{2} norm of the residuals) is a natural choice.
- More generaly, define the inner product as

$$
<f, g>=\int_{D} f(x) g(x) w(x) \mathrm{d} x
$$

where $w(x)$ is an arbitrary waighting function.

- If a solves NNLS then we have:

$$
\mathbf{a}=\max _{\vec{a}}<R(., \vec{a}), R(., \vec{a})>
$$

with $w(x)=1$ for all x .

- Aternatively we can fix n projections and and choose a such that the resulting residual in each of these n projections is zero.
- NNLS \leftrightarrow GMM. So we choose a such that

$$
\left\langle R(, \mathbf{a}), \frac{\partial R}{\partial a_{i}}(., \mathbf{a})\right\rangle=0
$$

for $i=1, \ldots, n$.

- More generally we can replace the partial derivates of R by any collection of arbitrary function $\left\{p_{i}\right\}_{i=1}^{n}$ and choose a such that:

$$
\left\langle R, p_{i}\right\rangle=0
$$

for $i=1, \ldots, n$.

- Galerkin
- Method of moments, collocation,...
- Orthogonal collocation.

