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DSGE Models with Local Approximation

Let y be a n× 1 vector of endogenous variables, u is a q × 1
vector of exogenous stochastic shocks. We consider the
following type of model:

Et [f(yt+1, yt, yt−1, ut)] = 0

with:

ut = σεt

E[εt] = 0

E[εtε
′
t] = Σε

where σ is a scale parameter, ε is a vector of auxiliary random
variables.

Assumption f : R3n+q → Rn is a differentiable function in Ck.
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Solution function

yt = g(yt−1, ut, σ)

The unknown function g collects the policy rules and transition
equations.

Then,

yt+1 = g(yt, ut+1, σ)

= g(g(yt−1, ut, σ), ut+1, σ)

and we define:

Fg(yt−1, ut, ut+1, σ) = f(g(g(yt−1, ut, σ), ut+1, σ), g(yt−1, ut, σ), yt−1, ut)

Our problem may be then written as:

Et [Fg(yt−1, ut, ut+1, σ)] = 0
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Steady state

• A deterministic steady state, ȳ, for the model satisfies

f(ȳ, ȳ, ȳ, 0) = 0

• A model can have several steady states, but only one of
them will be used for approximation.

• Furthermore, the solution function satisfies:

ȳ = g(ȳ, 0, 0)

December 13, 2007 Université du Maine, GAINS & CEPREMAP Page 4



First Order Approximation (I)

Let ŷ = yt−1 − ȳ, u = ut, u+ = ut+1, fy+ = ∂f
∂yt+1

, fy = ∂f
∂yt

,

fy− = ∂f
∂yt−1

, fu = ∂f
∂ut

, gy = ∂g
∂yt−1

, gu = ∂g
∂ut

, gσ = ∂g
∂σ . Where

all the derivates are evaluated at the deterministic steady state.

With a first order Taylor expansion of F around ȳ:

0 ' Fg
(1)(y−, u, u+, σ) =

fy+ (gy (gyŷ + guu + gσσ) + guu+ + gσσ)

+ fy (gyŷ + guu + gσσ) + fy− ŷ + fuu

What has changed? We now have three unknown
“parameters” (gy, gu and gσ) instead of an infinite number of
parameters (function g).
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First Order Approximation (II)

Taking the expectation conditional on the information at time
t, we have:

0 'fy+ (gy (gyŷ + guu + gσσ) + guEt[u+] + gσσ)

+ fy (gyŷ + guu + gσσ) + fy− ŷ + fuu

or equivalently:

0 ' (
fy+gygy + fygy + fy−

)
ŷ +

(
fy+gygu + fygu + fu

)
u

+
(
fy+gygσ + fy+gσ + fygσ

)
σ

This “equality” must hold for any value of (ŷ, u, σ), so that the
terms between parenthesis must be zero. We have three
(multivariate) equations and three (multivariate) unknowns.

December 13, 2007 Université du Maine, GAINS & CEPREMAP Page 6



First Order Approximation (III, Certainty equivalence)

Let us assume that gy is known. We must have:

fy+gygσ + fy+gσ + fygσ = 0

Solving for gσ, we obtain

gσ = 0

This is a manifestation of the certainty equivalence property of
first order approximation: the policy rule does not depend on
the size of the structural shocks.
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First Order Approximation (IV, Recovering gu)

Let us assume again that gy is known. We must have:

fy+gygu + fygu + fu = 0

Solving for gu, we obtain

gu = − (
fy+gy + fy

)−1
fu

gu gives the marginal effect of the structural innovations on the
endogenous (jumping and states) variables.

December 13, 2007 Université du Maine, GAINS & CEPREMAP Page 8



First Order Approximation (V, Recovering gy)

We must have:
(
fy+gygy + fygy + fy−

)
ŷ = 0

Structural state space representation:

 0 fy+

I 0





 I

gy


 gyŷ =


 −fy− −fy

0 I





 I

gy


 ŷ

or

 0 fy+

I 0





 yt − ȳ

yt+1 − ȳ


 =


 −fy− −fy

0 I





 yt−1 − ȳ

yt − ȳ




Because gy is the marginal effect of yt−1 on yt.
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First Order Approximation (VI, Recovering gy)

Dxt+1 = Ext

with

xt+1 =


 yt − ȳ

yt+1 − ȳ


 xt =


 yt−1 − ȳ

yt − ȳ




• There is an infinity of solutions but we want a unique
stable one.

• Matrix D may be singular.
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First Order Approximation (VII, Recovering gy)

Taking the real generalized Schur decomposition of the pencil
< E, D >:

D = QTZ

E = QSZ

with T , upper triangular, S quasi-upper triangular, Q′Q = I

and Z ′Z = I.
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First Order Approximation (VIII, Recovering gy)

Definition: Generalized eigenvalues

λi solves

λiDvi = Evi

For diagonal blocks on S of dimension 1 x 1:

• Tii 6= 0: λi = Sii
Tii

• Tii = 0, Sii > 0: λ = +∞
• Tii = 0, Sii < 0: λ = −∞
• Tii = 0, Sii = 0: λ ∈ C
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First Order Approximation (IX, Recovering gy)

Applying the Schur decomposition and multiplying by Q′ we
obtain:

D


 I

gy


 gyŷ = E


 I

gy


 ŷ


 T11 T12

0 T22





 Z11 Z12

Z21 Z22





 I

gy


 gyŷ

=


 S11 S12

0 S22





 Z11 Z12

Z21 Z22





 I

gy


 ŷ

Where S and T are arranged in such a way that the stable
eigenvalues comes first.
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First Order Approximation (X, Recovering gy)

gy is recovered by selecting the stable path. To exclude
explosive trajectories, one must impose

Z21 + Z22gy = 0

or equivalently:

gy = −Z−1
22 Z21

A unique stable trajectory exists if Z22 is square and
non-singular. With Blanchard and Kahn’s words: there are as
many roots larger than one in modulus as there are
forward–looking variables in the model and the rank condition
is satisfied.
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Second Order Approximation (I)

With a second order Taylor expansion of F around ȳ:

F (2)(y−, u, u+, σ) = F (1)(y−, u, u+, σ)

+
1
2

(
Fy−y−(ŷ ⊗ ŷ) + Fuu(u⊗ u) + Fu+u+(u+ ⊗ u+) + Fσσσ2

)

+ Fy−u(ŷ ⊗ u) + Fy−u+(ŷ ⊗ u+) + Fy−σŷσ

+ Fuu+(u⊗ u+) + Fuσuσ + Fu+σu+σ

and taking the time t conditional expectation, we get:

0 ' Et

[
F (1)(y−, u, u+, σ)

]

+
1
2

(
Fy−y−(ŷ ⊗ ŷ) + Fuu(u⊗ u) + Fu+u+(σ2~Σε) + Fσσσ2

)

+ Fy−u(ŷ ⊗ u) + Fy−σŷσ + Fuσuσ

We have six more unknowns: gyy, gyu, guu, gyσ, guσ and gσσ.
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Second Order Approximation (II)

The second order derivatives of a vector of multivariate
functions is a three dimensional object. We use the following
notation

∂2F

∂x∂x
=




∂2F1
∂x1∂x1

∂2F1
∂x1∂x2

. . . ∂2F1
∂x2∂x1

. . . ∂2F1
∂xn∂xn

∂2F2
∂x1∂x1

∂2F2
∂x1∂x2

. . . ∂2F2
∂x2∂x1

. . . ∂2F2
∂xn∂xn

...
...
. . .

...
. . .

...
∂2Fm

∂x1∂x1

∂2Fm
∂x1∂x2

. . . ∂2Fm
∂x2∂x1

. . . ∂2Fm
∂xn∂xn
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Second Order Approximation (III, Composition rule)

Let

y = g(s)

f(y) = f(g(s))

then,
∂2f

∂s∂s
=

∂f

∂y

∂2g

∂s∂s
+

∂2f

∂y∂y

(
∂g

∂s
⊗ ∂g

∂s

)
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Second Order Approximation (IV, Recovering gyy)

Assuming we have already solved for gy, we must have:

Fy−y− = fy+ (gyy(gy ⊗ gy) + gygyy) + fygyy + B
= 0

where B is a term that doesn’t contain second order derivatives
of function g.

The equation can be rearranged:
(
fy+gy + fy

)
gyy + fy+gyy(gy ⊗ gy) = −B

This is a Sylvester type of equation and must be solved with an
appropriate algorithm.
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Second Order Approximation (V, Recovering gyu)

We must have:

Fy−u = fy+ (gyy(gy ⊗ gu) + gygyu) + fygyu + B
= 0

where B is a term that doesn’t contain second order derivatives
of function g.

This is a standard linear problem:

gyu = − (
fy+gy + fy

)−1 (B + fy+gyy(gy ⊗ gu)
)
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Second Order Approximation (VI, Recovering guu)

We must have:

Fuu = fy+ (gyy(gu ⊗ gu) + gyguu) + fyguu + B
= 0

where B is a term that doesn’t contain second order derivatives
of function g.

This is a standard linear problem:

guu = − (
fy+gy + fy

)−1 (B + fy+gyy(gu ⊗ gu)
)
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Second Order Approximation (VII, Recovering gyσ and guσ)

We must have:

Fy−σ = fy+gygyσ + fygyσ

= 0

Fuσ = fy+gyguσ + fyguσ

= 0

as gσ = 0. Then:

gyσ = guσ = 0

The size of the structural innovations do not affect the
marginal effect of yt−1 and ut on yt.
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Second Order Approximation (VIII, Recovering gσσ)

We must have:

Fσσ + Fu+u+Σε = fy+ (gσσ + gygσσ) + fygσσ

+
(
fy+y+(gu ⊗ gu) + fy+guu

)
~Σε

= 0

taking into account gσ = 0.

This is a standard linear problem:

gσσ = − (
fy+(I + gy) + fy

)−1 (
fy+y+(gu ⊗ gu) + fy+guu

)
~Σε

We have lost the certainty equivalence property!
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Second Order Approximation (IX, decision function)

yt = ȳ + 0.5gσσσ
2

+ gy ŷ + guu + 0.5
`
gyy(ŷ ⊗ ŷ) + guu(u⊗ u)

´
+ gyu(ŷ ⊗ u)

We can fix σ = 1.

Second order accurate moments:

Σy = gyΣyg
′
y + σ2guΣεg

′
u

E [yt] = ȳ + (I − gy)
−1

(
0.5

(
gσσ + gyy

~Σy + guu
~Σε

))

December 13, 2007 Université du Maine, GAINS & CEPREMAP Page 23



Further issues

• For large shocks second order approximation simulation
may explode

– pruning algorithm (Sims)

– truncate normal distribution (Judd)

• The model has to be defined by f ∈ Ck.

• The approximated solution is local so we cannot analyse
transitions from one steady state to another.

A global approximation of the unknown function g is needed...

But to keep things tractable we also need (somehow) to
“project” this infinite dimensional problem in a finite
dimensional space.
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A simple example (I)

• Suppose we want to solve the following dynamic problem:

ẏ(t) = y(t)

for t ∈ [0, T ] given the initial condition y(0) = 1 (backward
looking dynamic) where y ∈ C1.

• This problem is trivial, the solution is y(t) = et, but let us
assume that we don’t know how to solve a differential
equation.

• Define the operator L by

Lf ≡ ḟ − f

a mapping from C1 to C0.
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A simple example (II)

• The dynamic problem can now be formulated as a “fixed
point” problem in the space C1 of functions:

Ly = 0

• The idea is to approximate the unknown y by a weighted
sum of monomial terms on the interval [0, T ]:

ŷ(t;a) ≡ a0 +
n∑

i=1

ait
i

where obviously a0 = 1 (to fit the initial condition), so we
redefine a ≡ (a1, . . . , an)′. Our infinite dimensional
problem is reduced to a finite dimensional problem with n

unknowns. We just need to find a ∈ Rn which provides an
acceptable approximation of y.
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A simple example (III)

Theorem (Weierstrass) If f ∈ C[a, b], then for all ε > 0,
there exist a polynomial p(x) such that:

∀x ∈ [a, b], |f(x)− p(x)| ≤ ε

If f ∈ Ck[a, b], then there exists a sequence of order n

polynomials, pn, such that:

lim
n→∞ max

x∈[a,b]
|f (l)(x)− p(l)

n (x)| = 0

for l ≤ k.
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A simple example (IV)

• Let:

R(t;a) ≡ Lŷ(t;a)

= a1 − 1 +
n∑

i=2

aiit
i−1 −

n∑

i=1

ait
i

be a residual function defined for t ∈ [0, T ].

• The idea is to choose a to make the residual as small as
possible (given n).

• A first try would be:

a = arg min
a

∫ T

0
R(t,a)dt

→ NLLS, L2 norm.
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A simple example (V)

• Other approaches can be considered:

– Method of collocation: a ∈ Rn is such that the
residual is exactly zero on n points {ti}n

i=1 in [0, T ]:

R(ti;a) = 0 for i = 1, . . . , n

– Method of moments: the true solution is such that
for any arbitrary function p(t) we have R T

0 p(t)Ly(t)dt = 0.
We can choose a ∈ Rn so that for a sequence of arbitray
functions {pi(t)}n

i=1 we have exactly:
∫ T

0
pi(t)Lŷ(t;a)dt ≡

∫ T

0
pi(t)R(t;a)dt = 0

Usually we consider pi(t) = ti.
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A simple example (VI)

• To solve a differential equation we need:

– To express it as a zero of some operator.

– To define a parameterized approximation function as a
weighted sum of simple functions.

– To identify the parameters of the approximation
function by matching some conditions fullfilled by the
true solution.

• Remaining issues:

– What is the value of n?

– What kind of “simple functions” should be choosen?

– How should we solve for the parameters of the
approximation function?
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General problem

• Suppose that the unknown function is the solution of the
following operator equation:

N (f)

where N : B → B, B is a Banach space of functions
f : D ⊆ Rn → Rm.

• Trivial example. In the previous example we have
D = [0, T ], f : D → R and

N =
d
dt
− I

where I is the identity operator.
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General problem

• Economic example. For a discrete time Ramsey growth
model, D is the space of the state variable (capital stock
k), the unknown function f is the policy rule (consumption
as a function of k, c(k)), N is the Euler equation (so we
have n = m = 1):

N (c) ≡ u′(c(k))− βu′
(
c(h(k)− c(k))

)(
f ′

(
h(k)− c(k)

))

where h(k) = f(k) + (1− δ)k, u is the utility function and
f is the production function.

December 13, 2007 Université du Maine, GAINS & CEPREMAP Page 32



Five steps approach

1. Choose a basis Φ = {ϕi}n
i=1 and an inner product:

< ϕi, ϕj >=
∫
D ϕi(x)ϕj(x)ω(x)dx.

2. Choose a degree of approximation: n.

f̂ =
n∑

i=1

aiϕi(x)

3. For a guess aj evaluate the approximation of f and the
residual:

R(x;aj) =
(
N (

f̂
))

(x)

4. Choose a sequence of n functions, pi : D → Rm and for
each guess of aj evaluate the n projections:

Pi =< R(.,a), pi(.) >
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Choice of a basis

• Each element, ϕi, of the basis should be simple to compute.

• Elements of the basis should be similar in size.

• Each element of the basis should bring a specific
information.

• Ideally ϕi is orthogonal to ϕj with respect to the chosen
inner product

< ϕi, ϕj >= 0
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Chebyshev polynomials (I)

• Defined over [-1,1] by:

Tn(x) ≡ cos(n arccos x)

• Can be evaluated using the folowing recursion:

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x)
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Chebyshev polynomials (II)

T0(x) = 1

T1(x) = x

T2(x) = 2x
2 − 1

T3(x) = 4x
3 − 3x

T4(x) = 8x
4 − 8x

2
+ 1

T5(x) = 16x
5 − 20x

3
+ 5x

T6(x) = 32x
6 − 48x

4
+ 18x

2

T7(x) = 64x
7 − 112x

5
+ 56x

3 − 7x

T8(x) = 128x
8 − 256x

6
+ 160x

4 − 32x
2

+ 1
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Chebyshev polynomials (III)

• The Chebyshev polynomials are orthogonal with respect to
the inner product defined by the weighting function
(1− x2)−

1
2 :

∫ 1

−1
Tn(x)Tm(x)

dx√
1− x2

=





0 if n 6= m

π if n = m = 0

π/2 if n = m 6= 0

• Let z be a root of the order n Chebyshev polynomial,
Tn(z) = 0. The n zeroes of Tn are given by:

zn,h = cos
(

(2h− 1)π
2n

)
for h = 1, . . . , n
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Chebyshev polynomials (IV, interpolation theorem)

• Suppose f ∈ Ck[a, b].

• Define:

cj =
2
n

n∑

k=1

f(zn,k)Tj(zn,k)

and

f̂n(x) = −1
2
c0 +

n∑

k=1

ckTk(x)

• There exists some dk such that for all n

||f − f̂ ||∞ ≤
(

2
π

log(n + 1) + 2
)

dk

nk
||f (k)||∞
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Chebyshev polynomials (V, multivariate extension)

• If we have more than one state variable:

– Tensor product basis.

– Complete basis.

• Curse of dimensionality...
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Choice of a projection condition (I)

• We have to choose a which makes the residual small.

• NNLS (L2 norm of the residuals) is a natural choice.

• More generaly, define the inner product as

< f, g >=
∫

D
f(x)g(x)w(x)dx

where w(x) is an arbitrary waighting function.

• If a solves NNLS then we have:

a = max
~a

< R(.,~a), R(.,~a) >

with w(x) = 1 for all x.
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Choice of a projection condition (II)

• Aternatively we can fix n projections and and choose a
such that the resulting residual in each of these n

projections is zero.

• NNLS ↔ GMM. So we choose a such that
〈

R(,a),
∂R

∂ai
(.,a)

〉
= 0

for i = 1, . . . , n.

• More generally we can replace the partial derivates of R by
any collection of arbitrary function {pi}n

i=1 and choose a
such that:

〈R, pi〉 = 0

for i = 1, . . . , n.
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Choice of a projection condition (III)

• Galerkin

• Method of moments, collocation,...

• Orthogonal collocation.
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