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A toolkit for evaluating a model’s fit

• The fit of a dsge model is often evaluated by comparing
its marginal density with the marginal density of a bvar

model, considered as more general.

• This comparison suffers from several limits:

1. The var model is not really more general

dsge ∈ varma /∈ var

2. Some guidance is missing to choose the priors of the
bvar model.

3. Comparison of marginal densities is uninformative
about the directions where the dsge model is successful
(in terms of fit) or unsuccessful.

• Del Negro & Schorfheide (IER, 2004) answer to limits 2
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A toolkit for evaluating a model’s fit

and 3... They build the priors of a bvar model from a
dsge model and evaluate the optimal weight of the dsge

prior.
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Bvar model (I)

yt
1×m

=
p∑

k=1

yt−k Ak
m×m

+ xt
1×q

C
q×m

+ εt

with εt ∼ N (0, Σε). (Ak)i,j is the coefficient associated to the
the variable i at lag k in equation j. Equivalently we have:

Y
T×m

= Z
T×(mp+q)

A+ E

with A = (A′
1, ...,A

′
p,C

′)′, or:

y = (Im ⊗ Z)a + e

where y = vecY , a = vecA, ....
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Bvar model (II, likelihood) – a –

• Our VAR is a gaussian linear model...

L(A,Σ;Y) = (2π)−
mT
2 |Σ⊗ IT |−

1
2 e−

1
2 (y−(Im⊗Z)a)′Σ−1⊗IT (y−(Im⊗Z)a)

• Or more compactly:

L(A,Σ;Y) = (2π)−
mT
2 |Σ|−T

2 e−
1
2
tr{(Y−ZA)Σ−1(Y−ZA)′}

• The ML estimator (or OLS) is given by:

Â = (Z ′Z)−1Z ′Y

Σ̂ = T−1(Y − ZÂ)′(Y − ZÂ)

July 3, 2007 Université du Maine, GAINS & CEPREMAP Page 5



Bvar model (II, likelihood) – b –

• One can show that the likelihood may be written as:

L(A,Σ;Y) = (2π)−
mT
2 × |Σ|− k

2 e−
1
2 tr{Σ−1(A− bA)′Z′Z(A− bA)}

× |Σ|−T−k
2 e−

1
2 tr{Σ−1(Y−Z bA)′(Y−Z bA)}

• or equivalently:

L(A, Σ;Y) = (2π)
−mT

2 × (2π)
km
2
˛̨
˛Z′Z

˛̨
˛−

m
2 fMNk,m

(A; bA, (Z
′
Z)
−1

, Σ)

×
2

νm
2 π

m(m−1)
4

Qm
i=1 Γ

“
ν+m−i

2

”

|(Y − Z bA)′(Y − Z bA)|
ν
2

× fiWm (Σ; (Y − Z bA)
′
(Y − Z bA), ν)

where ν = T − k −m− 1 is the degree of freedom.
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Matricvariate normal

• A multivariate random variable X is said to be distributed
as amatricvariate normal, X ∼ MNp,q(M,P,Q) where M,
Q and P are p× q, q × q and p× p matrices, with P and Q
symmetric and positive definite, if

vecX ∼ Npq (vecM,Q⊗P)

• The density function is given by:

fMNp,q (X;M, P, Q) = (2π)
− pq

2 |Q|−
p
2 |P|−

q
2 e
− 1

2 tr
n
Q−1(X−M)′P−1(X−M)

o
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Inverted Wishart

• A multivariate random variable X is said to be distributed
as an inverted wishart, X ∼ iWq(Q, ν) where Q is a q × q

symmetric and positive definite matrix, if X−1 ∼
Wq(Q−1, ν), a Wishart random variable (→ multivariate
chi squared distribution).

• The density function is defined as follows:

fiWq (X;Q, ν) =
|Q| ν

2 |X|− ν+q+1
2

2
νq
2 π

q(q−1)
4

∏q
i=1 Γ

(
ν+q−i

2

)e−
1
2 tr{X−1Q}
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Bvar model (II, likelihood) – c –

• → The likelihood is proportional to the product of the
density of an inverted Wishart and the density of a
matricvariate normal.

• We have:

L(A, Σ;Y) ∝ fMNk,m
(A; Â, (Z ′Z)−1, Σ)

×fiWm(Σ; (Y − ZÂ)′(Y − ZÂ), ν)

• ... This property gives us some hints to carefully choose
the shape of our priors → conjugate priors.
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Bvar with a non informative prior

The Jeffrey’s flat prior for our Bvar model is:

p0 (A, Σ) = |Σ|−m+1
2

The posterior density is:

p (A, Σ|Y?
T ) ∝(2π)−

mT
2 × (2π)

km
2

∣∣Z ′Z∣∣−m
2

× fMNk,m
(A; Â, (Z ′Z)−1, Σ)

× 2
νm
2 π

m(m−1)
4 |Ŝ|− ν

2

m∏

i=1

Γ
(

ν + 1− i

2

)

× fiWm(Σ; Ŝ, ν)× |Σ|−m+1
2
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Bvar with a non informative prior

We have:

p(A,Σ;Y?
T ) ∝ fMNk,m

(A; Â, (Z ′Z)−1, Σ)

×fiWm(Σ; Ŝ, ν̃)
(1)

with ν̃ = T − k. So that the posterior density may be written
as:

A|Σ,Y?
T ∼ MNk,m

(
Â, Σ, (Z ′Z)−1

)

Σ|Y?
T ∼ iWm

(
Ŝ, ν̃

) (2)

# The posterior mean of A is the ML estimator of A.
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Bvar with an informative prior

• Suppose our prior for A is:

p0(vec A) ∼ N (a0,Ω0)

where Ω0 is an mp×mp symmetric positive definite matrix.

• Suppose also that our prior for Σ is degenerate, Σ = Σ̂
with certainty.

• We can show that the posterior distribution of vec A is
gaussian with mean a1 and covariance matrix Ω1:

Ω1 =
(
Ω−1

0 + Σ−1 ⊗ Z ′Z
)−1

a1 = Ω1

[
Ω−1

0 a0 +
(
Σ−1 ⊗ Z ′Z

)
vecÂ

]
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Bvar with an informative prior

Proof
The posterior kernel is:

K(A|Y?
T ) = exp


−1

2

h
(vecA− a0)′Ω−1

0 (vecA− a0) + tr
“
Σ−1(A− bA)′Z′Z(A− bA)

”iff

× (2π)−
km
2 |Ω0|−

1
2 (2π)−

mT
2 |Σ|−T

2 e−
1
2 trΣ−1 bS

Let a = vec A, â = vec Â and

B(a) = (vecA−a0)′Ω−1
0 (vecA−a0)+tr

(
Σ−1(A− Â)′Z ′Z(A− Â)

)

we have:

B(a) = (a− a0)′Ω−1
0 (a− a0) + (a− â)′

(
Σ−1 ⊗ Z ′Z

)
(a− â)

⇔ B(a) =a′Ω−1
0 a + a′0Ω

−1
0 a0 − 2a′Ω−1

0 a0

+ a′
(
Σ−1 ⊗ Z ′Z

)
a + â′

(
Σ−1 ⊗ Z ′Z

)
â− 2a′

(
Σ−1 ⊗ Z ′Z

)
â
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Bvar with an informative prior

⇔ B(a) = a′
(
Ω−1

0 + Σ−1 ⊗ Z ′Z
)
a− 2a′

(
Ω−1

0 a0 +
(
Σ−1 ⊗ Z ′Z

)
â
)

+ a′0Ω
−1
0 a0 + â′

(
Σ−1 ⊗ Z ′Z

)
â

⇔ B(a) = (a−a1)′Ω−1
1 (a−a1)−a′1Ω

−1
1 a1+a′0Ω

−1
0 a0+â′

(
Σ−1 ⊗ Z ′Z

)
â

By substitution in the posterior kernel:

K(A|Y?
T ) = exp

{
−1

2
(a− a1)′Ω−1

1 (a− a1)
}

× exp
{
−1

2
[
a′0Ω

−1
0 a0 + â′

(
Σ−1 ⊗ Z ′Z

)
â− a′1Ω

−1
1 a1

]}

× (2π)−
km
2 |Ω0|−

1
2 (2π)−

mT
2 |Σ|−T

2 e−
1
2
trΣ−1 bS

Only the first term depends on a. Thus the posterior
distribution is gaussian. Integrating with respect to a we
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Bvar with an informative prior

obtain the marginal density:

p(Y?
T ) =

∫
K(A|Y?

T )dA

= (2π)
km
2 |Ω1|

1
2

× exp
{
−1

2
[
a′0Ω

−1
0 a0 + â′

(
Σ−1 ⊗ Z ′Z

)
â− a′1Ω

−1
1 a1

]}

× (2π)−
km
2 |Ω0|−

1
2 (2π)−

mT
2 |Σ|−T

2 e−
1
2
trΣ−1 bS
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Minnesota prior (I)

• How should we choose the prior means and variances?

• A famous prior, known to be quite good in forecasting, is
the Minnesota prior.

• According to this prior, {Yt}t∈N is generated by m

uncorrelated random walks.

• For instance, if we choose the normal prior shape
(considering Σ as diagonal and known) the prior mean is
defined as:

A0 = (Im, 0m,m(p−1)+q)
′
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Minnesota prior (II)

• And the prior variance is as follows:

– Ω0 is diagonal (priors over different autoregressive
parameters are independent)

– For the autoregressive parameters we have:

V [(Ak)i,j ] =





γ1

kγ2 if i = j
σ2

j

σ2
i

γ3

kγ2 otherwise.

for k = 1, . . . , p and (i, j) ∈ {1, 2, . . . , m}2.

– ... and a nearly diffuse prior is assumed for the
deterministic part (γ4 →∞).

V[Ci,j ] = γ4σ
2
j
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Minnesota prior (III)

• A standard calibration for the hyper-parameters γi is:

γ1 γ2 γ3 γ4

5.0× 10−2 5.0× 10−3 1 or 2 1.0× 105

Table 1: From Kadiyala & Karlsson (JAE, 1997)

• σ2
i , for i = 1, . . . , m, is set to s2

i , the estimated residual
variance of a p-lag univariate auto-regression for variable i.
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In practice

• Compute the posterior mode.

• Compute the marginal density & Comparison with a
DSGE model.

• Forecasts & Irfs with “error bands” acknowledging the
uncertainty on the VAR model. This can be done

– using the posterior densities obtained analytically
previously, or

– using Metropolis-Hastings or Gibbs sampling algorithm.

• The posterior mode may be obtained using an optimization
package or a mixed estimation strategy (Theil &
Goldberger, Sims).
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BVAR models & dummy variables (I)

• The likelihood of a VAR(p) is:

p (Y,A, Σ) ∝ |Σ|−T
2 e−

1
2
tr[Σ−1(Y ′Y−A′Z′Y−Y ′XA+A′Z′ZA)]

• An alternative way of introducing priors is to augment the
sample with artificial data generated by a model consistent
with our prior.

• Let (Y ∗, Z∗) be the artificial data, its likelihood is:

p (Y ∗,A, Σ) ∝ |Σ|−λT
2 e

− 1
2 tr
h
Σ−1

“
Y ∗
′
Y ∗−A′Z∗′Y ∗−Y ∗

′
X∗A+A′Z∗′Z∗A

”i

where λ ∈ R+ gives the weight of our prior compared to
the likelihood associated to real data (T ∗ = λT is the size
of the artificial sample).

July 3, 2007 Université du Maine, GAINS & CEPREMAP Page 20



BVAR models & dummy variables (II)

• For instance, we implement minnesota priors by building
matrices (Y ∗, Z∗) from the simulations of independent
random walks.

• Intuition: By augmenting the sample with random walk
artificial data, the ML (or OLS) estimator is shrunk
towards the unit root. We would obtain the same result by
mixing the likelihood (on real data) with a gaussian unit
root prior.

• Del Negro & Schorfheide follow this strategy, but they use
artificial data from a dsge model...
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BVAR models & dummy variables (III)

• More formally, the joint density of artificial data and real
data (conditional on model’s parameter) is:

p (Y ∗(θ), Y |A, Σ) = p (Y ∗(θ)|A, Σ)× p (Y |A,Σ)

• θ is a vector of parameters defining the Data Generating
Process of the artificial data (a unit root VAR model or a
dsge model).

• The first term on the RHS may be viewed as a prior
density for A and Σ.

July 3, 2007 Université du Maine, GAINS & CEPREMAP Page 22



Sims’ BVAR model (I)

• Uses a dummy variable approach.

• Priors close to Minnesota.

• All computations (posterior distribution and posterior
marginal density) may be done analytically
(Normal–Wishart prior shape).

• Implemented in dynare : dyn_bvar and dyn_bvar2.

• The likelihood associated to artificial data is combined
with a diffuse (Jeffrey’s) prior... The prior is given by:

p (Y ∗,A, Σ) =(2π)−
mλT

2 |Σ|−λT
2 |Σ|−n+1

2

e
− 1

2 tr
h
Σ−1

“
Y ∗
′
Y ∗−A′Z∗′Y ∗−Y ∗

′
X∗A+A′Z∗′Z∗A

”i
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Sims’ BVAR model (II)

• m “unit root” dummies, weighted by the hyper-parameter
µ [2]. If strongly weighted, the posterior mode will be close
to the unit root.

• a “co-integration” dummy, weighted by the
hyper-parameter λ [5]. Forces the appearance of at least
one common stochastic trend.

• mp “minnesota” dummies, weighted by the
hyper-parameter ζ [3].
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Sims’ BVAR model (III)

• VAR(2) model: yt
1×2

= c + yt−1φ1 + yt−2φ2 + ut.

• “minnesota” dummies for φ1:


 ζσ1 0

0 ζσ2


 =


 ζσ1 0 0 0 0

0 ζσ2 0 0 0







φ1

φ2

c


 + ut

From the first dummy observation we have:

φ1,11 ∼ N
(

1,
Σu,11

ζ2σ2
1

)
and φ1,12 ∼ N

(
0,

Σu,22

ζ2σ2
1

)
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Sims’ BVAR model (IV)

• “minnesota” dummies for φ2:


 0 0

0 0


 =


 0 0 ζσ12d 0 0

0 0 0 ζσ22d 0







φ1

φ2

c


 + ut

From the first dummy observation we have:

φ2,11 ∼ N
(

0,
Σu,11

ζ2σ2
122d

)
and φ2,12 ∼ N

(
0,

Σu,22

ζ2σ2
122d

)

• The default value for d is 0.5.
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Sims’ BVAR model (V)

• “unit root” dummies:


 µȳ1 0

0 µȳ2


 =


 µȳ1 0 µȳ1 0 0

0 µȳ2 0 µȳ2 0







φ1

φ2

c


+ut

From the first dummy observation we have:

1− φ1,11 − φ2,11 ∼ N
(

0,
Σu,11

µ2ȳ2
1

)

and

φ1,12 + φ2,12 ∼ N
(

0,
Σu,22

µ2ȳ2
1

)
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Sims’ BVAR model (VI)

• How should we choose the hyper-parameters ?

– dyn_bvar implements Sims’ hyper-parameters by
default. σi is the standard deviation of variable i

estimated over the initial conditions.

– dyn_bvar2 implements Smets & Wouter’s
hyper-parameters by default. {σi} are the residual
standard deviation from the estimation of a VAR(p)
model on a pre-sample.

• Experience shows that the results, with respect to the
marginal density estimation, are quite sensitive to the way
the user choose the hyper-parameters.
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BVAR model (model comparison)

• The high sensitivity of the marginal density estimates is
problematic if we use bvar models to evaluate the fit of
dsge model (as in SW)

• Conclusions might be easily reversed by changing the
hyper-parameters.

• A comparison exercise would be meaningless if the dsge

model beats a “ill specified” bvar model.

• As the var’s parameter are not (directly) economically
interpretable we may use a data-driven choice of the bvar’s
hyper-parameters → we choose the hyper-parameters in
order to get the best forecasts from the bvar model.
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Phillips & Ploberger’s PIC criterion

• Minnesota bvar with normal prior as defined earlier.

• Phillips (Econometrica, 1996) shows that the minimization
of the following function with respect to the
hyper-parameters

PIC = log |Σ̂|+ 1
T

log
|Ω−1

0 + Σ−1 ⊗ Z ′Z|
|Ω−1

0 + Σ−1 ⊗ Z ′0Z0|
leads to the best bvar model, among the Minnesota
bvars, in terms of predictions.

• It would be more appropriate to compare our dsge models
to this type of data determined model.
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Del Negro & Schorfheide (2004, I)

• Another idea is to use a structural model as a prior for the
bvar model instead of an a-theoretical Minnesota prior.

• This is quite simple to implement trough the use of
artificial data from a dsge model.

• The question is: What is the optimal weight (T ∗) of
the dsge prior in the bvar model ?

• If we find that T ∗ (artificial sample size) is important
relative to T , it means that the dsge model imposes useful
restrictions to improve the forecasts abilities of the bvar

model.
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Del Negro & Schorfheide (2004, II)

• They use the theoretical counterparts of the moments
instead of artificial data moments in the likelihood
associated to the dummy variables.

• For instance, they replace Y ∗′(θ)Y ∗(θ) by

λTE
[
y∗
′
(θ)y∗(θ)

]
= λTΓ∗yy(θ)

where Γ∗yy(θ) is the theoretical covariance matrix of the
observed variables implied by the dsge model.
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Del Negro & Schorfheide (2004, III)

• The dsge prior of the bvar model, ie the likelihood
associated to the artificial data, is (adding a Jeffrey’s prior
⇒ Normal–Wishart prior):

p(A, Σ|θ) =c(θ)−1|Σ|−λT+m+1
2

× e−
1
2
tr[T ∗Σ−1(Γ∗yy(θ)−A′Γ∗zy(θ)−Γ∗yz(θ)A+A′Γ∗zz(θ)A)]

where c(θ) is a constant of integration.

• Let

– A∗(θ) = [Γ∗zz(θ)]
−1 Γ∗zy(θ)

– Σ∗(θ) = Γ∗yy(θ)− Γ∗yz(θ) [Γ∗zz(θ)]
−1 Γ∗zy(θ)
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Del Negro & Schorfheide (2004, IV)

• Conditionally on θ (the deep parameters of the dsge

model), we have a Normal-Wishart prior:



A|Σ, θ ∼ MNk,m

(
A∗(θ), Σ, [λTΓ∗zz(θ)]

−1
)

Σ|θ ∼ iWm (λTΣ∗(θ), λT − k −m)

• To complete our priors we need to specify a prior
distribution over the deep parameters (θ). Finally the
bvar-dsge model has the following prior:

p0(A, Σ, θ) = p0(A, Σ|θ)× p0(θ)

for an implicit value of λ.
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Del Negro & Schorfheide (2004, V)

• The moments of the posterior density, which is also
Normal-Wishart, are obtained by considering the ML
estimate (with real and artificial data):

Ã(θ) = V (θ)−1
(
λTΓ∗zz(θ)A∗(θ) + Z ′ZÂ

)

Σ̃(θ) =
1

(1 + λ)T

[(
λTΓ∗yy(θ) + Y ′Y

)

− (
λTΓ∗yz(θ) + Y ′Z

)
V (θ)−1

(
λTΓ∗zy(θ) + Z ′Y

)]

With V (θ) = (λTΓ∗zz(θ) + X ′X)
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Del Negro & Schorfheide (2004, VI)

• Finally:



A|Σ, θ,Y ∼ MNk,m

(
Ã(θ),Σ, V (θ)−1

)

Σ|θ,Y ∼ iWm

(
(λ + 1)T Σ̃(θ), (λ + 1)T − k − n

)

• How should we choose λ ?...

• ... Del Negro and Schorfheide choose the value of λ that
maximises the marginal density. They estimate, say, 10
bvar-dsge models with different values of λ. For each
model they also estimate the marginal density. In the end
they select the model (ie the value of λ) with the highest
marginal density.
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Dynare implementation (I)

• This is not the way we implement bvar-dsge in dynare.

• Instead of doing a loop over values of λ (each time
estimating the model and its marginal density), we
estimate λ as another parameter.

• We may have a prior on λ (on the ability of the dsge

model to fit the data)... dynare compute the posterior
distribution of this ability.

• Our joint prior over A, Σ, λ and θ is given by:

p0 (A, Σ, λ, θ) = p0(A, Σ|θ, λ)p0(θ)p0(λ)

a priori we have θ ⊥ λ.
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Dynare implementation (II)

• ... But it is quite hard to find the posterior mode of the
bvar-dsge model with a standard optimization routine.

• Doesn’t seem to work with mode_compute=1,...,5.

• I have added a new optimization routine:
mode_compute =6 that I use to initialize the
Metropolis-Hastings algorithm.

July 3, 2007 Université du Maine, GAINS & CEPREMAP Page 38



Dynare implementation (III)

• To estimate a bvar-dsge model with dynare

– you have to declare the parameter dsge_prior_weight
in the preamble of the *.mod file.

– you may give a value to this parameter, as for any
parameter of the dsge model (necessary if you want to
estimate the bvar-dsge model calibrating the dsge

prior weight as Del Negro & Schorfheide).

– you have to specify a prior distribution for
dsge_prior_weight in the estimated_params block.
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A simpler way for evaluating the fit of a dsge model...

l

• Add measurement errors in the measurement equation...

• ... These errors may be modeled as a var model.

• We can then evaluate the fit of the dsge model by
comparing the (second order) moments of the observed
variables with the moments of the measurement errors.

• The share of the variance of observed inflation unexplained
by the measurement errors, is the share explained by the
dsge model (measurement errors and structural shocks are
orthogonal).
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