preprocessor/src/Shocks.cc

632 lines
23 KiB
C++

/*
* Copyright (C) 2003-2017 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cassert>
#include <cstdlib>
#include <iostream>
#include "Shocks.hh"
AbstractShocksStatement::AbstractShocksStatement(bool mshocks_arg,
bool overwrite_arg,
const det_shocks_t &det_shocks_arg,
const SymbolTable &symbol_table_arg) :
mshocks(mshocks_arg),
overwrite(overwrite_arg),
det_shocks(det_shocks_arg),
symbol_table(symbol_table_arg)
{
}
void
AbstractShocksStatement::writeDetShocks(ostream &output) const
{
int exo_det_length = 0;
for (det_shocks_t::const_iterator it = det_shocks.begin();
it != det_shocks.end(); it++)
{
int id = symbol_table.getTypeSpecificID(it->first) + 1;
bool exo_det = (symbol_table.getType(it->first) == eExogenousDet);
for (size_t i = 0; i < it->second.size(); i++)
{
const int &period1 = it->second[i].period1;
const int &period2 = it->second[i].period2;
const expr_t value = it->second[i].value;
output << "M_.det_shocks = [ M_.det_shocks;" << endl
<< "struct('exo_det'," << (int) exo_det
<< ",'exo_id'," << id
<< ",'multiplicative'," << (int) mshocks
<< ",'periods'," << period1 << ":" << period2
<< ",'value',";
value->writeOutput(output);
output << ") ];" << endl;
if (exo_det && (period2 > exo_det_length))
exo_det_length = period2;
}
}
output << "M_.exo_det_length = " << exo_det_length << ";\n";
}
void
AbstractShocksStatement::writeJsonDetShocks(ostream &output) const
{
deriv_node_temp_terms_t tef_terms;
output << "\"deterministic_shocks\": [";
for (det_shocks_t::const_iterator it = det_shocks.begin();
it != det_shocks.end(); it++)
{
if (it != det_shocks.begin())
output << ", ";
output << "{\"var\": \"" << symbol_table.getName(it->first) << "\", "
<< "\"values\": [";
for (vector<DetShockElement>::const_iterator it1 = it->second.begin();
it1 != it->second.end(); it1++)
{
if (it1 != it->second.begin())
output << ", ";
output << "{\"period1\": " << it1->period1 << ", "
<< "\"period2\": " << it1->period2 << ", "
<< "\"value\": \"";
it1->value->writeJsonOutput(output, temporary_terms_t(), tef_terms);
output << "\"}";
}
output << "]}";
}
output << "]";
}
ShocksStatement::ShocksStatement(bool overwrite_arg,
const det_shocks_t &det_shocks_arg,
const var_and_std_shocks_t &var_shocks_arg,
const var_and_std_shocks_t &std_shocks_arg,
const covar_and_corr_shocks_t &covar_shocks_arg,
const covar_and_corr_shocks_t &corr_shocks_arg,
const SymbolTable &symbol_table_arg) :
AbstractShocksStatement(false, overwrite_arg, det_shocks_arg, symbol_table_arg),
var_shocks(var_shocks_arg),
std_shocks(std_shocks_arg),
covar_shocks(covar_shocks_arg),
corr_shocks(corr_shocks_arg)
{
}
void
ShocksStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
output << "%" << endl
<< "% SHOCKS instructions" << endl
<< "%" << endl;
if (overwrite)
{
output << "M_.det_shocks = [];" << endl;
output << "M_.Sigma_e = zeros(" << symbol_table.exo_nbr() << ", "
<< symbol_table.exo_nbr() << ");" << endl
<< "M_.Correlation_matrix = eye(" << symbol_table.exo_nbr() << ", "
<< symbol_table.exo_nbr() << ");" << endl;
if (has_calibrated_measurement_errors())
output << "M_.H = zeros(" << symbol_table.observedVariablesNbr() << ", "
<< symbol_table.observedVariablesNbr() << ");" << endl
<< "M_.Correlation_matrix_ME = eye(" << symbol_table.observedVariablesNbr() << ", "
<< symbol_table.observedVariablesNbr() << ");" << endl;
else
output << "M_.H = 0;" << endl
<< "M_.Correlation_matrix_ME = 1;" << endl;
}
writeDetShocks(output);
writeVarAndStdShocks(output);
writeCovarAndCorrShocks(output);
/* M_.sigma_e_is_diagonal is initialized to 1 by ModFile.cc.
If there are no off-diagonal elements, and we are not in overwrite mode,
then we don't reset it to 1, since there might be previous shocks blocks
with off-diagonal elements. */
if (covar_shocks.size()+corr_shocks.size() > 0)
output << "M_.sigma_e_is_diagonal = 0;" << endl;
else if (overwrite)
output << "M_.sigma_e_is_diagonal = 1;" << endl;
}
void
ShocksStatement::writeJsonOutput(ostream &output) const
{
deriv_node_temp_terms_t tef_terms;
output << "{\"statementName\": \"shocks\""
<< ", \"overwrite\": ";
if (overwrite)
output << "true";
else
output << "false";
if (!det_shocks.empty())
{
output << ", ";
writeJsonDetShocks(output);
}
output<< ", \"variance\": [";
for (var_and_std_shocks_t::const_iterator it = var_shocks.begin(); it != var_shocks.end(); it++)
{
if (it != var_shocks.begin())
output << ", ";
output << "{\"name\": \"" << symbol_table.getName(it->first) << "\", "
<< "\"variance\": \"";
it->second->writeJsonOutput(output, temporary_terms_t(), tef_terms);
output << "\"}";
}
output << "]"
<< ", \"stderr\": [";
for (var_and_std_shocks_t::const_iterator it = std_shocks.begin(); it != std_shocks.end(); it++)
{
if (it != std_shocks.begin())
output << ", ";
output << "{\"name\": \"" << symbol_table.getName(it->first) << "\", "
<< "\"stderr\": \"";
it->second->writeJsonOutput(output, temporary_terms_t(), tef_terms);
output << "\"}";
}
output << "]"
<< ", \"covariance\": [";
for (covar_and_corr_shocks_t::const_iterator it = covar_shocks.begin(); it != covar_shocks.end(); it++)
{
if (it != covar_shocks.begin())
output << ", ";
output << "{"
<< "\"name\": \"" << symbol_table.getName(it->first.first) << "\", "
<< "\"name2\": \"" << symbol_table.getName(it->first.second) << "\", "
<< "\"covariance\": \"";
it->second->writeJsonOutput(output, temporary_terms_t(), tef_terms);
output << "\"}";
}
output << "]"
<< ", \"correlation\": [";
for (covar_and_corr_shocks_t::const_iterator it = corr_shocks.begin(); it != corr_shocks.end(); it++)
{
if (it != corr_shocks.begin())
output << ", ";
output << "{"
<< "\"name\": \"" << symbol_table.getName(it->first.first) << "\", "
<< "\"name2\": \"" << symbol_table.getName(it->first.second) << "\", "
<< "\"correlation\": \"";
it->second->writeJsonOutput(output, temporary_terms_t(), tef_terms);
output << "\"}";
}
output << "]"
<< "}";
}
void
ShocksStatement::writeVarOrStdShock(ostream &output, var_and_std_shocks_t::const_iterator &it,
bool stddev) const
{
SymbolType type = symbol_table.getType(it->first);
assert(type == eExogenous || symbol_table.isObservedVariable(it->first));
int id;
if (type == eExogenous)
{
output << "M_.Sigma_e(";
id = symbol_table.getTypeSpecificID(it->first) + 1;
}
else
{
output << "M_.H(";
id = symbol_table.getObservedVariableIndex(it->first) + 1;
}
output << id << ", " << id << ") = ";
if (stddev)
output << "(";
it->second->writeOutput(output);
if (stddev)
output << ")^2";
output << ";" << endl;
}
void
ShocksStatement::writeVarAndStdShocks(ostream &output) const
{
var_and_std_shocks_t::const_iterator it;
for (it = var_shocks.begin(); it != var_shocks.end(); it++)
writeVarOrStdShock(output, it, false);
for (it = std_shocks.begin(); it != std_shocks.end(); it++)
writeVarOrStdShock(output, it, true);
}
void
ShocksStatement::writeCovarOrCorrShock(ostream &output, covar_and_corr_shocks_t::const_iterator &it,
bool corr) const
{
SymbolType type1 = symbol_table.getType(it->first.first);
SymbolType type2 = symbol_table.getType(it->first.second);
assert((type1 == eExogenous && type2 == eExogenous)
|| (symbol_table.isObservedVariable(it->first.first) && symbol_table.isObservedVariable(it->first.second)));
string matrix, corr_matrix;
int id1, id2;
if (type1 == eExogenous)
{
matrix = "M_.Sigma_e";
corr_matrix = "M_.Correlation_matrix";
id1 = symbol_table.getTypeSpecificID(it->first.first) + 1;
id2 = symbol_table.getTypeSpecificID(it->first.second) + 1;
}
else
{
matrix = "M_.H";
corr_matrix = "M_.Correlation_matrix_ME";
id1 = symbol_table.getObservedVariableIndex(it->first.first) + 1;
id2 = symbol_table.getObservedVariableIndex(it->first.second) + 1;
}
output << matrix << "(" << id1 << ", " << id2 << ") = ";
it->second->writeOutput(output);
if (corr)
output << "*sqrt(" << matrix << "(" << id1 << ", " << id1 << ")*"
<< matrix << "(" << id2 << ", " << id2 << "))";
output << ";" << endl
<< matrix << "(" << id2 << ", " << id1 << ") = "
<< matrix << "(" << id1 << ", " << id2 << ");" << endl;
if (corr)
{
output << corr_matrix << "(" << id1 << ", " << id2 << ") = ";
it->second->writeOutput(output);
output << ";" << endl
<< corr_matrix << "(" << id2 << ", " << id1 << ") = "
<< corr_matrix << "(" << id1 << ", " << id2 << ");" << endl;
}
}
void
ShocksStatement::writeCovarAndCorrShocks(ostream &output) const
{
covar_and_corr_shocks_t::const_iterator it;
for (it = covar_shocks.begin(); it != covar_shocks.end(); it++)
writeCovarOrCorrShock(output, it, false);
for (it = corr_shocks.begin(); it != corr_shocks.end(); it++)
writeCovarOrCorrShock(output, it, true);
}
void
ShocksStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
/* Error out if variables are not of the right type. This must be done here
and not at parsing time (see #448).
Also Determine if there is a calibrated measurement error */
for (var_and_std_shocks_t::const_iterator it = var_shocks.begin();
it != var_shocks.end(); it++)
{
if (symbol_table.getType(it->first) != eExogenous
&& !symbol_table.isObservedVariable(it->first))
{
cerr << "shocks: setting a variance on '"
<< symbol_table.getName(it->first) << "' is not allowed, because it is neither an exogenous variable nor an observed endogenous variable" << endl;
exit(EXIT_FAILURE);
}
}
for (var_and_std_shocks_t::const_iterator it = std_shocks.begin();
it != std_shocks.end(); it++)
{
if (symbol_table.getType(it->first) != eExogenous
&& !symbol_table.isObservedVariable(it->first))
{
cerr << "shocks: setting a standard error on '"
<< symbol_table.getName(it->first) << "' is not allowed, because it is neither an exogenous variable nor an observed endogenous variable" << endl;
exit(EXIT_FAILURE);
}
}
for (covar_and_corr_shocks_t::const_iterator it = covar_shocks.begin();
it != covar_shocks.end(); it++)
{
int symb_id1 = it->first.first;
int symb_id2 = it->first.second;
if (!((symbol_table.getType(symb_id1) == eExogenous
&& symbol_table.getType(symb_id2) == eExogenous)
|| (symbol_table.isObservedVariable(symb_id1)
&& symbol_table.isObservedVariable(symb_id2))))
{
cerr << "shocks: setting a covariance between '"
<< symbol_table.getName(symb_id1) << "' and '"
<< symbol_table.getName(symb_id2) << "'is not allowed; covariances can only be specified for exogenous or observed endogenous variables of same type" << endl;
exit(EXIT_FAILURE);
}
}
for (covar_and_corr_shocks_t::const_iterator it = corr_shocks.begin();
it != corr_shocks.end(); it++)
{
int symb_id1 = it->first.first;
int symb_id2 = it->first.second;
if (!((symbol_table.getType(symb_id1) == eExogenous
&& symbol_table.getType(symb_id2) == eExogenous)
|| (symbol_table.isObservedVariable(symb_id1)
&& symbol_table.isObservedVariable(symb_id2))))
{
cerr << "shocks: setting a correlation between '"
<< symbol_table.getName(symb_id1) << "' and '"
<< symbol_table.getName(symb_id2) << "'is not allowed; correlations can only be specified for exogenous or observed endogenous variables of same type" << endl;
exit(EXIT_FAILURE);
}
}
// Determine if there is a calibrated measurement error
mod_file_struct.calibrated_measurement_errors |= has_calibrated_measurement_errors();
// Fill in mod_file_struct.parameters_with_shocks_values (related to #469)
for (var_and_std_shocks_t::const_iterator it = var_shocks.begin();
it != var_shocks.end(); ++it)
it->second->collectVariables(eParameter, mod_file_struct.parameters_within_shocks_values);
for (var_and_std_shocks_t::const_iterator it = std_shocks.begin();
it != std_shocks.end(); ++it)
it->second->collectVariables(eParameter, mod_file_struct.parameters_within_shocks_values);
for (covar_and_corr_shocks_t::const_iterator it = covar_shocks.begin();
it != covar_shocks.end(); ++it)
it->second->collectVariables(eParameter, mod_file_struct.parameters_within_shocks_values);
for (covar_and_corr_shocks_t::const_iterator it = corr_shocks.begin();
it != corr_shocks.end(); ++it)
it->second->collectVariables(eParameter, mod_file_struct.parameters_within_shocks_values);
}
bool
ShocksStatement::has_calibrated_measurement_errors() const
{
for (var_and_std_shocks_t::const_iterator it = var_shocks.begin();
it != var_shocks.end(); it++)
if (symbol_table.isObservedVariable(it->first))
return true;
for (var_and_std_shocks_t::const_iterator it = std_shocks.begin();
it != std_shocks.end(); it++)
if (symbol_table.isObservedVariable(it->first))
return true;
for (covar_and_corr_shocks_t::const_iterator it = covar_shocks.begin();
it != covar_shocks.end(); it++)
if (symbol_table.isObservedVariable(it->first.first)
|| symbol_table.isObservedVariable(it->first.second))
return true;
for (covar_and_corr_shocks_t::const_iterator it = corr_shocks.begin();
it != corr_shocks.end(); it++)
if (symbol_table.isObservedVariable(it->first.first)
|| symbol_table.isObservedVariable(it->first.second))
return true;
return false;
}
MShocksStatement::MShocksStatement(bool overwrite_arg,
const det_shocks_t &det_shocks_arg,
const SymbolTable &symbol_table_arg) :
AbstractShocksStatement(true, overwrite_arg, det_shocks_arg, symbol_table_arg)
{
}
void
MShocksStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
output << "%" << endl
<< "% MSHOCKS instructions" << endl
<< "%" << endl;
if (overwrite)
output << "M_.det_shocks = [];" << endl;
writeDetShocks(output);
}
ConditionalForecastPathsStatement::ConditionalForecastPathsStatement(const AbstractShocksStatement::det_shocks_t &paths_arg,
const SymbolTable &symbol_table_arg) :
paths(paths_arg),
symbol_table(symbol_table_arg),
path_length(-1)
{
}
void
ConditionalForecastPathsStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
for (AbstractShocksStatement::det_shocks_t::const_iterator it = paths.begin();
it != paths.end(); it++)
{
int this_path_length = 0;
const vector<AbstractShocksStatement::DetShockElement> &elems = it->second;
for (int i = 0; i < (int) elems.size(); i++)
// Period1 < Period2, as enforced in ParsingDriver::add_period()
this_path_length = max(this_path_length, elems[i].period2);
if (path_length == -1)
path_length = this_path_length;
else if (path_length != this_path_length)
{
cerr << "conditional_forecast_paths: all constrained paths must have the same length!" << endl;
exit(EXIT_FAILURE);
}
}
}
void
ConditionalForecastPathsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
assert(path_length > 0);
output << "constrained_vars_ = [];" << endl
<< "constrained_paths_ = zeros(" << paths.size() << ", " << path_length << ");" << endl;
int k = 1;
for (AbstractShocksStatement::det_shocks_t::const_iterator it = paths.begin();
it != paths.end(); it++, k++)
{
if (it == paths.begin())
output << "constrained_vars_ = " << symbol_table.getTypeSpecificID(it->first) + 1 << ";" << endl;
else
output << "constrained_vars_ = [constrained_vars_; " << symbol_table.getTypeSpecificID(it->first) + 1 << "];" << endl;
const vector<AbstractShocksStatement::DetShockElement> &elems = it->second;
for (int i = 0; i < (int) elems.size(); i++)
for (int j = elems[i].period1; j <= elems[i].period2; j++)
{
output << "constrained_paths_(" << k << "," << j << ")=";
elems[i].value->writeOutput(output);
output << ";" << endl;
}
}
}
MomentCalibration::MomentCalibration(const constraints_t &constraints_arg,
const SymbolTable &symbol_table_arg)
: constraints(constraints_arg), symbol_table(symbol_table_arg)
{
}
void
MomentCalibration::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
output << "options_.endogenous_prior_restrictions.moment = {" << endl;
for (size_t i = 0; i < constraints.size(); i++)
{
const Constraint &c = constraints[i];
output << "'" << symbol_table.getName(c.endo1) << "', "
<< "'" << symbol_table.getName(c.endo2) << "', "
<< c.lags << ", "
<< "[ " << c.lower_bound << ", " << c.upper_bound << " ];"
<< endl;
}
output << "};" << endl;
}
void
MomentCalibration::writeJsonOutput(ostream &output) const
{
output << "{\"statementName\": \"moment_calibration\""
<< ", \"moment_calibration_criteria\": [";
for (constraints_t::const_iterator it = constraints.begin(); it != constraints.end(); it++)
{
if (it != constraints.begin())
output << ", ";
output << "{\"endogenous1\": \"" << symbol_table.getName(it->endo1) << "\""
<< ", \"endogenous2\": \"" << symbol_table.getName(it->endo2) << "\""
<< ", \"lags\": \"" << it->lags << "\""
<< ", \"lower_bound\": \"" << it->lower_bound << "\""
<< ", \"upper_bound\": \"" << it->upper_bound << "\""
<< "}";
}
output << "]"
<< "}";
}
IrfCalibration::IrfCalibration(const constraints_t &constraints_arg,
const SymbolTable &symbol_table_arg,
const OptionsList &options_list_arg)
: constraints(constraints_arg), symbol_table(symbol_table_arg), options_list(options_list_arg)
{
}
void
IrfCalibration::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
options_list.writeOutput(output);
output << "options_.endogenous_prior_restrictions.irf = {" << endl;
for (size_t i = 0; i < constraints.size(); i++)
{
const Constraint &c = constraints[i];
output << "'" << symbol_table.getName(c.endo) << "', "
<< "'" << symbol_table.getName(c.exo) << "', "
<< c.periods << ", "
<< "[ " << c.lower_bound << ", " << c.upper_bound << " ];"
<< endl;
}
output << "};" << endl;
}
void
IrfCalibration::writeJsonOutput(ostream &output) const
{
output << "{\"statementName\": \"irf_calibration\"";
if (options_list.getNumberOfOptions())
{
output << ", ";
options_list.writeJsonOutput(output);
}
output << ", \"irf_restrictions\": [";
for (constraints_t::const_iterator it = constraints.begin(); it != constraints.end(); it++)
{
if (it != constraints.begin())
output << ", ";
output << "{\"endogenous\": \"" << symbol_table.getName(it->endo) << "\""
<< ", \"exogenous\": \"" << symbol_table.getName(it->exo) << "\""
<< ", \"periods\": \"" << it->periods << "\""
<< ", \"lower_bound\": \"" << it->lower_bound << "\""
<< ", \"upper_bound\": \"" << it->upper_bound << "\""
<< "}";
}
output << "]"
<< "}";
}
ShockGroupsStatement::ShockGroupsStatement(const group_t &shock_groups_arg, const string &name_arg)
: shock_groups(shock_groups_arg), name(name_arg)
{
}
void
ShockGroupsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
int i = 1;
bool unique_label = true;
for (vector<Group>::const_iterator it = shock_groups.begin(); it != shock_groups.end(); it++, unique_label = true)
{
for (vector<Group>::const_iterator it1 = it+1; it1 != shock_groups.end(); it1++)
if (it->name == it1->name)
{
unique_label = false;
cerr << "Warning: shock group label '" << it->name << "' has been reused. "
<< "Only using the last definition." << endl;
break;
}
if (unique_label)
{
output << "M_.shock_groups." << name
<< ".group" << i << ".label = '" << it->name << "';" << endl
<< "M_.shock_groups." << name
<< ".group" << i << ".shocks = {";
for (vector<string>::const_iterator it1 = it->list.begin(); it1 != it->list.end(); it1++)
output << " '" << *it1 << "'";
output << "};" << endl;
i++;
}
}
}