preprocessor/src/ModelTree.cc

2129 lines
74 KiB
C++

/*
* Copyright © 2003-2021 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <https://www.gnu.org/licenses/>.
*/
#include "ModelTree.hh"
#include "VariableDependencyGraph.hh"
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wold-style-cast"
#pragma GCC diagnostic ignored "-Wsign-compare"
#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/max_cardinality_matching.hpp>
#include <boost/graph/topological_sort.hpp>
#pragma GCC diagnostic pop
#ifdef __APPLE__
# include <mach-o/dyld.h>
#endif
#include <regex>
#include <utility>
void
ModelTree::copyHelper(const ModelTree &m)
{
auto f = [this](expr_t e) { return e->clone(*this); };
// Equations
for (const auto &it : m.equations)
equations.push_back(dynamic_cast<BinaryOpNode *>(f(it)));
for (const auto &it : m.aux_equations)
aux_equations.push_back(dynamic_cast<BinaryOpNode *>(f(it)));
auto convert_deriv_map = [f](map<vector<int>, expr_t> dm)
{
map<vector<int>, expr_t> dm2;
for (const auto &it : dm)
dm2.emplace(it.first, f(it.second));
return dm2;
};
// Derivatives
for (const auto &it : m.derivatives)
derivatives.push_back(convert_deriv_map(it));
for (const auto &it : m.params_derivatives)
params_derivatives[it.first] = convert_deriv_map(it.second);
auto convert_temporary_terms_t = [f](temporary_terms_t tt)
{
temporary_terms_t tt2;
for (const auto &it : tt)
tt2.insert(f(it));
return tt2;
};
// Temporary terms
for (const auto &it : m.temporary_terms_mlv)
temporary_terms_mlv[dynamic_cast<VariableNode *>(f(it.first))] = f(it.second);
for (const auto &it : m.temporary_terms_derivatives)
temporary_terms_derivatives.push_back(convert_temporary_terms_t(it));
for (const auto &it : m.temporary_terms_idxs)
temporary_terms_idxs[f(it.first)] = it.second;
for (const auto &it : m.params_derivs_temporary_terms)
params_derivs_temporary_terms[it.first] = convert_temporary_terms_t(it.second);
for (const auto &it : m.params_derivs_temporary_terms_idxs)
params_derivs_temporary_terms_idxs[f(it.first)] = it.second;
// Other stuff
for (const auto &it : m.trend_symbols_map)
trend_symbols_map[it.first] = f(it.second);
for (const auto &it : m.nonstationary_symbols_map)
nonstationary_symbols_map[it.first] = {it.second.first, f(it.second.second)};
for (const auto &it : m.equation_type_and_normalized_equation)
equation_type_and_normalized_equation.emplace_back(it.first, dynamic_cast<BinaryOpNode *>(f(it.second)));
for (const auto &it : m.blocks_derivatives)
{
map<tuple<int, int, int>, expr_t> v;
for (const auto &it2 : it)
v[it2.first] = f(it2.second);
blocks_derivatives.push_back(v);
}
auto convert_vector_tt = [f](vector<temporary_terms_t> vtt)
{
vector<temporary_terms_t> vtt2;
for (const auto &tt : vtt)
{
temporary_terms_t tt2;
for (const auto &it : tt)
tt2.insert(f(it));
vtt2.push_back(tt2);
}
return vtt2;
};
for (const auto &it : m.blocks_temporary_terms)
blocks_temporary_terms.push_back(convert_vector_tt(it));
for (const auto &it : m.blocks_temporary_terms_idxs)
blocks_temporary_terms_idxs[f(it.first)] = it.second;
}
ModelTree::ModelTree(SymbolTable &symbol_table_arg,
NumericalConstants &num_constants_arg,
ExternalFunctionsTable &external_functions_table_arg,
bool is_dynamic_arg) :
DataTree{symbol_table_arg, num_constants_arg, external_functions_table_arg, is_dynamic_arg},
derivatives(4),
NNZDerivatives(4, 0),
temporary_terms_derivatives(4)
{
}
ModelTree::ModelTree(const ModelTree &m) :
DataTree{m},
user_set_add_flags{m.user_set_add_flags},
user_set_subst_flags{m.user_set_subst_flags},
user_set_add_libs{m.user_set_add_libs},
user_set_subst_libs{m.user_set_subst_libs},
user_set_compiler{m.user_set_compiler},
equations_lineno{m.equations_lineno},
equation_tags{m.equation_tags},
computed_derivs_order{m.computed_derivs_order},
NNZDerivatives{m.NNZDerivatives},
eq_idx_block2orig{m.eq_idx_block2orig},
endo_idx_block2orig{m.endo_idx_block2orig},
eq_idx_orig2block{m.eq_idx_orig2block},
endo_idx_orig2block{m.endo_idx_orig2block},
blocks{m.blocks},
endo2block{m.endo2block},
eq2block{m.eq2block},
endo2eq{m.endo2eq},
cutoff{m.cutoff},
mfs{m.mfs}
{
copyHelper(m);
}
ModelTree &
ModelTree::operator=(const ModelTree &m)
{
DataTree::operator=(m);
equations.clear();
equations_lineno = m.equations_lineno;
aux_equations.clear();
equation_tags = m.equation_tags;
computed_derivs_order = m.computed_derivs_order;
NNZDerivatives = m.NNZDerivatives;
derivatives.clear();
params_derivatives.clear();
temporary_terms_mlv.clear();
temporary_terms_derivatives.clear();
params_derivs_temporary_terms.clear();
params_derivs_temporary_terms_idxs.clear();
trend_symbols_map.clear();
nonstationary_symbols_map.clear();
eq_idx_block2orig = m.eq_idx_block2orig;
endo_idx_block2orig = m.endo_idx_block2orig;
eq_idx_orig2block = m.eq_idx_orig2block;
endo_idx_orig2block = m.endo_idx_orig2block;
equation_type_and_normalized_equation.clear();
blocks_derivatives.clear();
blocks = m.blocks;
endo2block = m.endo2block;
eq2block = m.eq2block;
blocks_temporary_terms.clear();
blocks_temporary_terms_idxs.clear();
endo2eq = m.endo2eq;
cutoff = m.cutoff;
mfs = m.mfs;
user_set_add_flags = m.user_set_add_flags;
user_set_subst_flags = m.user_set_subst_flags;
user_set_add_libs = m.user_set_add_libs;
user_set_subst_libs = m.user_set_subst_libs;
user_set_compiler = m.user_set_compiler;
copyHelper(m);
return *this;
}
bool
ModelTree::computeNormalization(const jacob_map_t &contemporaneous_jacobian, bool verbose)
{
const int n = equations.size();
assert(n == symbol_table.endo_nbr());
using BipartiteGraph = boost::adjacency_list<boost::vecS, boost::vecS, boost::undirectedS>;
/*
Vertices 0 to n-1 are for endogenous (using type specific ID)
Vertices n to 2*n-1 are for equations (using equation no.)
*/
BipartiteGraph g(2 * n);
// Fill in the graph
for (const auto &[eq_and_endo, val] : contemporaneous_jacobian)
add_edge(eq_and_endo.first + n, eq_and_endo.second, g);
// Compute maximum cardinality matching
vector<int> mate_map(2*n);
bool check = checked_edmonds_maximum_cardinality_matching(g, &mate_map[0]);
assert(check);
#ifdef DEBUG
for (int i = 0; i < n; i++)
cout << "Endogenous " << symbol_table.getName(symbol_table.getID(eEndogenous, i))
<< " matched with equation " << (mate_map[i]-n+1) << endl;
#endif
// Create the resulting map, by copying the n first elements of mate_map, and substracting n to them
endo2eq.resize(equations.size());
transform(mate_map.begin(), mate_map.begin() + n, endo2eq.begin(), [=](int i) { return i-n; });
// Check if all variables are normalized
if (auto it = find(mate_map.begin(), mate_map.begin() + n, boost::graph_traits<BipartiteGraph>::null_vertex());
it != mate_map.begin() + n)
{
if (verbose)
cerr << "ERROR: Could not normalize the model. Variable "
<< symbol_table.getName(symbol_table.getID(SymbolType::endogenous, it - mate_map.begin()))
<< " is not in the maximum cardinality matching." << endl;
check = false;
}
return check;
}
void
ModelTree::computeNonSingularNormalization(const jacob_map_t &contemporaneous_jacobian)
{
cout << "Normalizing the model..." << endl;
int n = equations.size();
// Compute the maximum value of each row of the contemporaneous Jacobian matrix
vector<double> max_val(n, 0.0);
for (const auto &[eq_and_endo, val] : contemporaneous_jacobian)
max_val[eq_and_endo.first] = max(max_val[eq_and_endo.first], fabs(val));
// Compute normalized contemporaneous Jacobian
jacob_map_t normalized_contemporaneous_jacobian(contemporaneous_jacobian);
for (auto &[eq_and_endo, val] : normalized_contemporaneous_jacobian)
val /= max_val[eq_and_endo.first];
// We start with the highest value of the cutoff and try to normalize the model
double current_cutoff = 0.99999999;
const double cutoff_lower_limit = 1e-19;
bool found_normalization = false;
int last_suppressed = 0;
while (!found_normalization && current_cutoff > cutoff_lower_limit)
{
// Drop elements below cutoff from normalized contemporaneous Jacobian
jacob_map_t normalized_contemporaneous_jacobian_above_cutoff;
int suppressed = 0;
for (const auto &[eq_and_endo, val] : normalized_contemporaneous_jacobian)
if (fabs(val) > max(current_cutoff, cutoff))
normalized_contemporaneous_jacobian_above_cutoff[eq_and_endo] = val;
else
suppressed++;
if (suppressed != last_suppressed)
found_normalization = computeNormalization(normalized_contemporaneous_jacobian_above_cutoff, false);
last_suppressed = suppressed;
if (!found_normalization)
{
current_cutoff /= 2;
// In this last case try to normalize with the complete jacobian
if (current_cutoff <= cutoff_lower_limit)
found_normalization = computeNormalization(normalized_contemporaneous_jacobian, false);
}
}
if (!found_normalization)
{
cout << "Normalization failed with cutoff, trying symbolic normalization..." << endl;
/* If no non-singular normalization can be found, try to find a
normalization even with a potential singularity.
TODO: Explain why symbolic_jacobian is not contemporaneous. */
auto symbolic_jacobian = computeSymbolicJacobian();
found_normalization = computeNormalization(symbolic_jacobian, true);
}
if (!found_normalization)
{
cerr << "No normalization could be computed. Aborting." << endl;
exit(EXIT_FAILURE);
}
}
ModelTree::jacob_map_t
ModelTree::evaluateAndReduceJacobian(const eval_context_t &eval_context) const
{
jacob_map_t contemporaneous_jacobian;
for (const auto &[indices, d1] : derivatives[1])
{
int deriv_id = indices[1];
if (getTypeByDerivID(deriv_id) == SymbolType::endogenous)
{
int eq = indices[0];
int symb = getSymbIDByDerivID(deriv_id);
int var = symbol_table.getTypeSpecificID(symb);
int lag = getLagByDerivID(deriv_id);
double val = 0;
try
{
val = d1->eval(eval_context);
}
catch (ExprNode::EvalExternalFunctionException &e)
{
val = 1;
}
catch (ExprNode::EvalException &e)
{
cerr << "ERROR: evaluation of Jacobian failed for equation " << eq+1 << " (line " << equations_lineno[eq] << ") and variable " << symbol_table.getName(symb) << "(" << lag << ") [" << symb << "] !" << endl;
d1->writeOutput(cerr, ExprNodeOutputType::matlabDynamicModel, {}, {});
cerr << endl;
exit(EXIT_FAILURE);
}
if ((isnan(val) || fabs(val) >= cutoff) && lag == 0)
contemporaneous_jacobian[{ eq, var }] = val;
}
}
return contemporaneous_jacobian;
}
pair<int, int>
ModelTree::computePrologueAndEpilogue()
{
const int n = equations.size();
/* Initialize “eq_idx_block2orig” and “endo_idx_block2orig” to the identity
permutation. */
eq_idx_block2orig.resize(n);
endo_idx_block2orig.resize(n);
for (int i = 0; i < n; i++)
{
eq_idx_block2orig[i] = i;
endo_idx_block2orig[endo2eq[i]] = i;
}
/* Compute incidence matrix, equations in rows, variables in columns. Row
(resp. column) indices are to be interpreted according to
“eq_idx_block2orig” (resp. “endo_idx_block2orig”). Stored in row-major
order. */
vector<bool> IM(n*n, false);
for (int i = 0; i < n; i++)
{
set<pair<int, int>> endos_and_lags;
equations[i]->collectEndogenous(endos_and_lags);
for (auto [endo, lag] : endos_and_lags)
IM[i * n + endo2eq[endo]] = true;
}
bool something_has_been_done;
// Find the prologue equations and place first the AR(1) shock equations first
int prologue = 0;
do
{
something_has_been_done = false;
int new_prologue = prologue;
for (int i = prologue; i < n; i++)
{
int nze = 0;
int k = 0;
for (int j = new_prologue; j < n; j++)
if (IM[i * n + j])
{
nze++;
k = j;
}
if (nze == 1)
{
// Swap equations indexed by “new_prologue” and i
for (int j = 0; j < n; j++)
swap(IM[new_prologue * n + j], IM[i * n + j]);
swap(eq_idx_block2orig[new_prologue], eq_idx_block2orig[i]);
// Swap variables indexed by “new_prologue” and k (in the matching)
for (int j = 0; j < n; j++)
swap(IM[j * n + new_prologue], IM[j * n + k]);
swap(endo_idx_block2orig[new_prologue], endo_idx_block2orig[k]);
new_prologue++;
something_has_been_done = true;
}
}
prologue = new_prologue;
}
while (something_has_been_done);
// Find the epilogue equations
int epilogue = 0;
do
{
something_has_been_done = false;
int new_epilogue = epilogue;
for (int i = prologue; i < n - epilogue; i++)
{
int nze = 0;
int k = 0;
for (int j = prologue; j < n - new_epilogue; j++)
if (IM[j * n + i])
{
nze++;
k = j;
}
if (nze == 1)
{
for (int j = 0; j < n; j++)
swap(IM[(n - 1 - new_epilogue) * n + j], IM[k * n + j]);
swap(eq_idx_block2orig[n - 1 - new_epilogue], eq_idx_block2orig[k]);
for (int j = 0; j < n; j++)
swap(IM[j * n + n - 1 - new_epilogue], IM[j * n + i]);
swap(endo_idx_block2orig[n - 1 - new_epilogue], endo_idx_block2orig[i]);
new_epilogue++;
something_has_been_done = true;
}
}
epilogue = new_epilogue;
}
while (something_has_been_done);
updateReverseVariableEquationOrderings();
return { prologue, epilogue };
}
void
ModelTree::equationTypeDetermination(const map<tuple<int, int, int>, expr_t> &first_order_endo_derivatives, int mfs)
{
equation_type_and_normalized_equation.clear();
equation_type_and_normalized_equation.resize(equations.size());
for (int i = 0; i < static_cast<int>(equations.size()); i++)
{
int eq = eq_idx_block2orig[i];
int var = endo_idx_block2orig[i];
expr_t lhs = equations[eq]->arg1;
EquationType Equation_Simulation_Type = EquationType::solve;
BinaryOpNode *normalized_eq = nullptr;
if (auto it = first_order_endo_derivatives.find({ eq, var, 0 });
it != first_order_endo_derivatives.end())
{
expr_t derivative = it->second;
// Determine whether the equation can be evaluated rather than solved
if (lhs->isVariableNodeEqualTo(SymbolType::endogenous, endo_idx_block2orig[i], 0)
&& derivative->isNumConstNodeEqualTo(1))
Equation_Simulation_Type = EquationType::evaluate;
else
{
set<pair<int, int>> result;
derivative->collectEndogenous(result);
bool variable_not_in_derivative = result.find({ var, 0 }) == result.end();
try
{
normalized_eq = equations[eq]->normalizeEquation(symbol_table.getID(SymbolType::endogenous, var), 0);
if ((mfs == 2 && variable_not_in_derivative) || mfs == 3)
Equation_Simulation_Type = EquationType::evaluateRenormalized;
}
catch (ExprNode::NormalizationFailed &e)
{
}
}
}
equation_type_and_normalized_equation[eq] = { Equation_Simulation_Type, normalized_eq };
}
}
void
ModelTree::computeDynamicStructureOfBlock(int blk)
{
vector<pair<int, int>> max_endo_lag_lead(blocks[blk].size, { 0, 0 });
blocks[blk].max_endo_lag = blocks[blk].max_endo_lead = 0;
blocks[blk].max_other_endo_lag = blocks[blk].max_other_endo_lead = 0;
blocks[blk].max_exo_lag = blocks[blk].max_exo_lead = 0;
blocks[blk].max_exo_det_lag = blocks[blk].max_exo_det_lead = 0;
for (int eq = 0; eq < blocks[blk].size; eq++)
{
set<pair<int, int>> endos_and_lags;
expr_t e = getBlockEquationExpr(blk, eq);
/* Compute max lags/leads for endogenous. Also fill per-variable structure
for endos belonging to this block */
e->collectEndogenous(endos_and_lags);
for (auto [endo, lag] : endos_and_lags)
if (endo2block[endo] == blk)
{
blocks[blk].max_endo_lag = max(blocks[blk].max_endo_lag, -lag);
blocks[blk].max_endo_lead = max(blocks[blk].max_endo_lead, lag);
auto &[max_endo_lag, max_endo_lead] = max_endo_lag_lead[getBlockInitialVariableID(blk, endo)];
max_endo_lag = max(max_endo_lag, -lag);
max_endo_lead = max(max_endo_lead, lag);
}
else
{
blocks[blk].max_other_endo_lag = max(blocks[blk].max_other_endo_lag, -lag);
blocks[blk].max_other_endo_lead = max(blocks[blk].max_other_endo_lead, lag);
}
// Compute max lags/leads for exogenous
blocks[blk].max_exo_lag = max(e->maxExoLag(), blocks[blk].max_exo_lag);
blocks[blk].max_exo_lead = max(e->maxExoLead(), blocks[blk].max_exo_lead);
// Compute max lags/leads for deterministic exogenous
set<pair<int, int>> dynvars;
e->collectDynamicVariables(SymbolType::exogenousDet, dynvars);
for (auto [symb_id, lag] : dynvars)
{
blocks[blk].max_exo_det_lag = max(-lag, blocks[blk].max_exo_det_lag);
blocks[blk].max_exo_det_lead = max(lag, blocks[blk].max_exo_det_lead);
}
}
// Compute max lags/leads over all variables
blocks[blk].max_lag = max(blocks[blk].max_endo_lag, max(blocks[blk].max_other_endo_lag,
max(blocks[blk].max_exo_lag,
blocks[blk].max_exo_det_lag)));
blocks[blk].max_lead = max(blocks[blk].max_endo_lead, max(blocks[blk].max_other_endo_lead,
max(blocks[blk].max_exo_lead,
blocks[blk].max_exo_det_lead)));
// Categorize endos that belong to the block
blocks[blk].n_mixed = blocks[blk].n_forward = blocks[blk].n_backward = blocks[blk].n_static = 0;
for (int var = 0; var < blocks[blk].size; var++)
{
auto [max_lag, max_lead] = max_endo_lag_lead[var];
if (max_lag != 0 && max_lead != 0)
blocks[blk].n_mixed++;
else if (max_lag == 0 && max_lead != 0)
blocks[blk].n_forward++;
else if (max_lag != 0 && max_lead == 0)
blocks[blk].n_backward++;
else
blocks[blk].n_static++;
}
}
void
ModelTree::computeSimulationTypeOfBlock(int blk)
{
auto &type = blocks[blk].simulation_type;
if (blocks[blk].max_endo_lag > 0 && blocks[blk].max_endo_lead > 0)
{
if (blocks[blk].size == 1)
type = BlockSimulationType::solveTwoBoundariesSimple;
else
type = BlockSimulationType::solveTwoBoundariesComplete;
}
else if (blocks[blk].size > 1)
{
if (blocks[blk].max_endo_lead > 0)
type = BlockSimulationType::solveBackwardComplete;
else
type = BlockSimulationType::solveForwardComplete;
}
else
{
bool can_eval = (getBlockEquationType(blk, 0) == EquationType::evaluate
|| getBlockEquationType(blk, 0) == EquationType::evaluateRenormalized);
if (blocks[blk].max_endo_lead > 0)
type = can_eval ? BlockSimulationType::evaluateBackward :
BlockSimulationType::solveBackwardSimple;
else
type = can_eval ? BlockSimulationType::evaluateForward :
BlockSimulationType::solveForwardSimple;
}
}
pair<lag_lead_vector_t, lag_lead_vector_t>
ModelTree::getVariableLeadLagByBlock() const
{
int nb_endo = symbol_table.endo_nbr();
lag_lead_vector_t variable_lag_lead(nb_endo, { 0, 0 }), equation_lag_lead(nb_endo, { 0, 0 });
for (int eq = 0; eq < nb_endo; eq++)
{
set<pair<int, int>> endos_and_lags;
equations[eq]->collectEndogenous(endos_and_lags);
for (auto [endo, lag] : endos_and_lags)
if (endo2block[endo] == eq2block[eq])
{
variable_lag_lead[endo].first = max(variable_lag_lead[endo].first, -lag);
variable_lag_lead[endo].second = max(variable_lag_lead[endo].second, lag);
equation_lag_lead[eq].first = max(equation_lag_lead[eq].first, -lag);
equation_lag_lead[eq].second = max(equation_lag_lead[eq].second, lag);
}
}
return { equation_lag_lead, variable_lag_lead };
}
void
ModelTree::computeBlockDecomposition(int prologue, int epilogue)
{
int nb_var = symbol_table.endo_nbr();
int nb_simvars = nb_var - prologue - epilogue;
/* Construct the graph representing the dependencies between all
variables that do not belong to the prologue or the epilogue.
For detecting dependencies between variables, use the symbolic adjacency
matrix */
VariableDependencyGraph G(nb_simvars);
for (const auto &[key, value] : computeSymbolicJacobian())
{
auto [eq, endo] = key;
if (eq_idx_orig2block[eq] >= prologue
&& eq_idx_orig2block[eq] < nb_var - epilogue
&& endo_idx_orig2block[endo] >= prologue
&& endo_idx_orig2block[endo] < nb_var - epilogue
&& eq != endo2eq[endo])
add_edge(vertex(eq_idx_orig2block[endo2eq[endo]]-prologue, G),
vertex(eq_idx_orig2block[eq]-prologue, G), G);
}
/* Identify the simultaneous blocks. Each simultaneous block is given an
index, starting from 0, in recursive order */
auto [num_simblocks, simvar2simblock] = G.sortedStronglyConnectedComponents();
int num_blocks = prologue+num_simblocks+epilogue;
blocks.clear();
blocks.resize(num_blocks);
endo2block.resize(nb_var);
eq2block.resize(nb_var);
// Initialize size and mfs_size for prologue and epilogue, plus eq/endo→block mappings
for (int blk = 0; blk < num_blocks; blk++)
if (blk < prologue || blk >= num_blocks-epilogue)
{
int var_eq = (blk < prologue ? blk : blk-num_simblocks+nb_simvars);
blocks[blk].size = 1;
blocks[blk].mfs_size = 1;
blocks[blk].first_equation = var_eq;
endo2block[endo_idx_block2orig[var_eq]] = blk;
eq2block[eq_idx_block2orig[var_eq]] = blk;
}
// Initialize size for simultaneous blocks, plus eq/endo→block mappings
vector<vector<int>> simblock2simvars(num_simblocks);
for (int i = 0; i < static_cast<int>(simvar2simblock.size()); i++)
{
simblock2simvars[simvar2simblock[i]].push_back(i);
int blk = prologue+simvar2simblock[i];
blocks[blk].size++;
endo2block[endo_idx_block2orig[prologue+i]] = blk;
eq2block[eq_idx_block2orig[prologue+i]] = blk;
}
// Determine the dynamic structure of each block
auto [equation_lag_lead, variable_lag_lead] = getVariableLeadLagByBlock();
/* For each simultaneous block, the minimum set of feedback variable is computed.
Then, the variables within the blocks are reordered so that recursive
(non-feedback) appear first, to get a sub-recursive block without feedback variables.
Within each of the two sub-blocks, variables are reordered depending
on their dynamic status: static first, then backward, mixed and forward. */
/* First, add a loop on vertices which could not be normalized or vertices
related to lead/lag variables. This forces those vertices to belong to the
feedback set */
for (int i = 0; i < nb_simvars; i++)
if (equation_type_and_normalized_equation[eq_idx_block2orig[i+prologue]].first == EquationType::solve
|| variable_lag_lead[endo_idx_block2orig[i+prologue]].first > 0
|| variable_lag_lead[endo_idx_block2orig[i+prologue]].second > 0
|| equation_lag_lead[eq_idx_block2orig[i+prologue]].first > 0
|| equation_lag_lead[eq_idx_block2orig[i+prologue]].second > 0
|| mfs == 0)
add_edge(vertex(i, G), vertex(i, G), G);
const vector<int> old_eq_idx_block2orig(eq_idx_block2orig), old_endo_idx_block2orig(endo_idx_block2orig);
int ordidx = prologue;
for (int blk = prologue; blk < prologue+num_simblocks; blk++)
{
blocks[blk].first_equation = (blk == 0 ? 0 : blocks[blk-1].first_equation + blocks[blk-1].size);
auto subG = G.extractSubgraph(simblock2simvars[blk-prologue]);
auto feed_back_vertices = subG.minimalSetOfFeedbackVertices();
blocks[blk].mfs_size = feed_back_vertices.size();
auto recursive_vertices = subG.reorderRecursiveVariables(feed_back_vertices);
auto v_index1 = get(boost::vertex_index1, subG);
const vector<pair<int, int>> dynamic_order{ make_pair(0, 0), make_pair(1, 0),
make_pair(1, 1), make_pair(0, 1) };
// First the recursive equations conditional on feedback variables
for (auto max_lag_lead : dynamic_order)
for (int vtx : recursive_vertices)
if (int simvar = v_index1[vertex(vtx, subG)];
variable_lag_lead[old_endo_idx_block2orig[simvar+prologue]] == max_lag_lead)
{
eq_idx_block2orig[ordidx] = old_eq_idx_block2orig[simvar+prologue];
endo_idx_block2orig[ordidx] = old_endo_idx_block2orig[simvar+prologue];
ordidx++;
}
// Then the equations related to the feedback variables
for (auto max_lag_lead : dynamic_order)
for (int vtx : feed_back_vertices)
if (int simvar = v_index1[vertex(vtx, subG)];
variable_lag_lead[old_endo_idx_block2orig[simvar+prologue]] == max_lag_lead)
{
eq_idx_block2orig[ordidx] = old_eq_idx_block2orig[simvar+prologue];
endo_idx_block2orig[ordidx] = old_endo_idx_block2orig[simvar+prologue];
ordidx++;
}
}
updateReverseVariableEquationOrderings();
for (int blk = 0; blk < static_cast<int>(blocks.size()); blk++)
{
computeDynamicStructureOfBlock(blk);
computeSimulationTypeOfBlock(blk);
}
}
void
ModelTree::printBlockDecomposition() const
{
int largest_block = 0, Nb_SimulBlocks = 0, Nb_feedback_variable = 0;
int Nb_TotalBlocks = blocks.size();
for (int block = 0; block < Nb_TotalBlocks; block++)
if (BlockSimulationType simulation_type = blocks[block].simulation_type;
simulation_type == BlockSimulationType::solveForwardComplete
|| simulation_type == BlockSimulationType::solveBackwardComplete
|| simulation_type == BlockSimulationType::solveTwoBoundariesComplete)
{
Nb_SimulBlocks++;
if (int size = blocks[block].size;
size > largest_block)
{
largest_block = size;
Nb_feedback_variable = blocks[block].mfs_size;
}
}
int Nb_RecursBlocks = Nb_TotalBlocks - Nb_SimulBlocks;
cout << Nb_TotalBlocks << " block(s) found:" << endl
<< " " << Nb_RecursBlocks << " recursive block(s) and " << Nb_SimulBlocks << " simultaneous block(s)." << endl
<< " the largest simultaneous block has " << largest_block << " equation(s)" << endl
<< " and " << Nb_feedback_variable << " feedback variable(s)." << endl;
}
void
ModelTree::reduceBlockDecomposition()
{
for (int blk = 1; blk < static_cast<int>(blocks.size()); blk++)
if (blocks[blk].size == 1)
{
/* Try to merge this block with the previous one.
This is only possible if the two blocks can simply be evaluated
(in the same direction), and if the merge does not break the
restrictions on leads/lags. */
set<pair<int, int>> endos_and_lags;
getBlockEquationExpr(blk, 0)->collectEndogenous(endos_and_lags);
bool is_lead = false, is_lag = false;
for (int var = 0; var < blocks[blk-1].size; var++)
{
is_lag = is_lag || endos_and_lags.find({ getBlockVariableID(blk-1, var), -1 }) != endos_and_lags.end();
is_lead = is_lead || endos_and_lags.find({ getBlockVariableID(blk-1, var), 1 }) != endos_and_lags.end();
}
if ((blocks[blk-1].simulation_type == BlockSimulationType::evaluateForward
&& blocks[blk].simulation_type == BlockSimulationType::evaluateForward
&& !is_lead)
|| (blocks[blk-1].simulation_type == BlockSimulationType::evaluateBackward
&& blocks[blk].simulation_type == BlockSimulationType::evaluateBackward
&& !is_lag))
{
// Merge the current block into the previous one
blocks[blk-1].size++;
blocks[blk-1].mfs_size = blocks[blk-1].size;
computeDynamicStructureOfBlock(blk-1);
blocks.erase(blocks.begin()+blk);
for (auto &b : endo2block)
if (b >= blk)
b--;
for (auto &b : eq2block)
if (b >= blk)
b--;
blk--;
continue;
}
}
}
void
ModelTree::determineLinearBlocks()
{
// Note that field “linear” in class BlockInfo defaults to true
for (int blk = 0; blk < static_cast<int>(blocks.size()); blk++)
switch (blocks[blk].simulation_type)
{
case BlockSimulationType::solveBackwardComplete:
case BlockSimulationType::solveForwardComplete:
for (const auto &[indices, d1] : blocks_derivatives[blk])
{
int lag = get<2>(indices);
if (lag == 0)
{
set<pair<int, int>> endogenous;
d1->collectEndogenous(endogenous);
for (int l = 0; l < blocks[blk].size; l++)
if (endogenous.find({ endo_idx_block2orig[blocks[blk].first_equation+l], 0 })
!= endogenous.end())
{
blocks[blk].linear = false;
goto the_end;
}
}
}
the_end:
break;
case BlockSimulationType::solveTwoBoundariesComplete:
case BlockSimulationType::solveTwoBoundariesSimple:
for (const auto &[indices, d1] : blocks_derivatives[blk])
{
int lag = get<2>(indices);
set<pair<int, int>> endogenous;
d1->collectEndogenous(endogenous);
for (int l = 0; l < blocks[blk].size; l++)
if (endogenous.find({ endo_idx_block2orig[blocks[blk].first_equation+l], lag })
!= endogenous.end())
{
blocks[blk].linear = false;
goto the_end2;
}
}
the_end2:
break;
default:
break;
}
}
int
ModelTree::equation_number() const
{
return (equations.size());
}
void
ModelTree::writeDerivative(ostream &output, int eq, int symb_id, int lag,
ExprNodeOutputType output_type,
const temporary_terms_t &temporary_terms) const
{
if (auto it = derivatives[1].find({ eq, getDerivID(symb_id, lag) });
it != derivatives[1].end())
it->second->writeOutput(output, output_type, temporary_terms, {});
else
output << 0;
}
void
ModelTree::computeDerivatives(int order, const set<int> &vars)
{
assert(order >= 1);
computed_derivs_order = order;
// Do not shrink the vectors, since they have a minimal size of 4 (see constructor)
derivatives.resize(max(static_cast<size_t>(order+1), derivatives.size()));
NNZDerivatives.resize(max(static_cast<size_t>(order+1), NNZDerivatives.size()), 0);
// First-order derivatives
for (int var : vars)
for (int eq = 0; eq < static_cast<int>(equations.size()); eq++)
{
expr_t d1 = equations[eq]->getDerivative(var);
if (d1 == Zero)
continue;
derivatives[1][{ eq, var }] = d1;
++NNZDerivatives[1];
}
// Higher-order derivatives
for (int o = 2; o <= order; o++)
for (const auto &it : derivatives[o-1])
for (int var : vars)
{
if (it.first.back() > var)
continue;
expr_t d = it.second->getDerivative(var);
if (d == Zero)
continue;
vector<int> indices{it.first};
indices.push_back(var);
// At this point, indices of endogenous variables are sorted in non-decreasing order
derivatives[o][indices] = d;
// We output symmetric elements at order = 2
if (o == 2 && indices[1] != indices[2])
NNZDerivatives[o] += 2;
else
NNZDerivatives[o]++;
}
}
void
ModelTree::computeTemporaryTerms(bool is_matlab, bool no_tmp_terms)
{
/* Collect all model local variables appearing in equations (and only those,
because printing unused model local variables can lead to a crash,
see Dynare/dynare#101).
Then store them in a dedicated structure (temporary_terms_mlv), that will
be treated as the rest of temporary terms. */
temporary_terms_mlv.clear();
set<int> used_local_vars;
for (auto &equation : equations)
equation->collectVariables(SymbolType::modelLocalVariable, used_local_vars);
for (int used_local_var : used_local_vars)
{
VariableNode *v = AddVariable(used_local_var);
temporary_terms_mlv[v] = local_variables_table.find(used_local_var)->second;
}
// Compute the temporary terms in equations and derivatives
map<pair<int, int>, temporary_terms_t> temp_terms_map;
map<expr_t, pair<int, pair<int, int>>> reference_count;
for (auto &equation : equations)
equation->computeTemporaryTerms({ 0, 0 },
temp_terms_map,
reference_count,
is_matlab);
for (int order = 1; order < static_cast<int>(derivatives.size()); order++)
for (const auto &it : derivatives[order])
it.second->computeTemporaryTerms({ 0, order },
temp_terms_map,
reference_count,
is_matlab);
/* If the user has specified the notmpterms option, clear all temporary
terms, except those that correspond to external functions (since they are
not optional) */
if (no_tmp_terms)
for (auto &it : temp_terms_map)
// The following loop can be simplified with std::erase_if() in C++20
for (auto it2 = it.second.begin(); it2 != it.second.end();)
if (!dynamic_cast<AbstractExternalFunctionNode *>(*it2))
it2 = it.second.erase(it2);
else
++it2;
// Fill the structures
temporary_terms_derivatives.clear();
temporary_terms_derivatives.resize(derivatives.size());
for (int order = 0; order < static_cast<int>(derivatives.size()); order++)
temporary_terms_derivatives[order] = move(temp_terms_map[{ 0, order }]);
// Compute indices in MATLAB/Julia vector
int idx = 0;
for (auto [mlv, value] : temporary_terms_mlv)
temporary_terms_idxs[mlv] = idx++;
for (int order = 0; order < static_cast<int>(derivatives.size()); order++)
for (auto it : temporary_terms_derivatives[order])
temporary_terms_idxs[it] = idx++;
}
void
ModelTree::computeBlockTemporaryTerms()
{
int nb_blocks = blocks.size();
blocks_temporary_terms.resize(nb_blocks);
map<expr_t, tuple<int, int, int>> reference_count;
for (int blk = 0; blk < nb_blocks; blk++)
{
blocks_temporary_terms[blk].resize(blocks[blk].size + 1);
for (int eq = 0; eq < blocks[blk].size; eq++)
{
if (eq < blocks[blk].getRecursiveSize() && isBlockEquationRenormalized(blk, eq))
getBlockEquationRenormalizedExpr(blk, eq)->computeBlockTemporaryTerms(blk, eq, blocks_temporary_terms, reference_count);
else
getBlockEquationExpr(blk, eq)->computeBlockTemporaryTerms(blk, eq, blocks_temporary_terms, reference_count);
}
for (const auto &[ignore, d] : blocks_derivatives[blk])
d->computeBlockTemporaryTerms(blk, blocks[blk].size, blocks_temporary_terms, reference_count);
additionalBlockTemporaryTerms(blk, blocks_temporary_terms, reference_count);
}
// Compute indices in the temporary terms vector
int idx = 0;
blocks_temporary_terms_idxs.clear();
for (auto &blk_tt : blocks_temporary_terms)
for (auto &eq_tt : blk_tt)
for (auto tt : eq_tt)
blocks_temporary_terms_idxs[tt] = idx++;
}
void
ModelTree::additionalBlockTemporaryTerms(int blk,
vector<vector<temporary_terms_t>> &blocks_temporary_terms,
map<expr_t, tuple<int, int, int>> &reference_count) const
{
}
void
ModelTree::writeModelLocalVariableTemporaryTerms(temporary_terms_t &temp_term_union,
const temporary_terms_idxs_t &tt_idxs,
ostream &output, ExprNodeOutputType output_type,
deriv_node_temp_terms_t &tef_terms) const
{
temporary_terms_t tto;
for (auto [mlv, value] : temporary_terms_mlv)
tto.insert(mlv);
for (auto [mlv, value] : temporary_terms_mlv)
{
value->writeExternalFunctionOutput(output, output_type, temp_term_union, tt_idxs, tef_terms);
if (isJuliaOutput(output_type))
output << " @inbounds const ";
mlv->writeOutput(output, output_type, tto, tt_idxs, tef_terms);
output << " = ";
value->writeOutput(output, output_type, temp_term_union, tt_idxs, tef_terms);
if (isCOutput(output_type) || isMatlabOutput(output_type))
output << ";";
output << endl;
/* We put in temp_term_union the VariableNode corresponding to the MLV,
not its definition, so that when equations use the MLV,
T(XXX) is printed instead of the MLV name */
temp_term_union.insert(mlv);
}
}
void
ModelTree::writeTemporaryTerms(const temporary_terms_t &tt,
temporary_terms_t &temp_term_union,
const temporary_terms_idxs_t &tt_idxs,
ostream &output, ExprNodeOutputType output_type, deriv_node_temp_terms_t &tef_terms) const
{
for (auto it : tt)
{
if (dynamic_cast<AbstractExternalFunctionNode *>(it))
it->writeExternalFunctionOutput(output, output_type, temp_term_union, tt_idxs, tef_terms);
if (isJuliaOutput(output_type))
output << " @inbounds ";
it->writeOutput(output, output_type, tt, tt_idxs, tef_terms);
output << " = ";
it->writeOutput(output, output_type, temp_term_union, tt_idxs, tef_terms);
if (isCOutput(output_type) || isMatlabOutput(output_type))
output << ";";
output << endl;
temp_term_union.insert(it);
}
}
void
ModelTree::writeJsonTemporaryTerms(const temporary_terms_t &tt,
temporary_terms_t &temp_term_union,
ostream &output,
deriv_node_temp_terms_t &tef_terms, const string &concat) const
{
// Local var used to keep track of temp nodes already written
bool wrote_term = false;
temporary_terms_t tt2 = temp_term_union;
output << R"("external_functions_temporary_terms_)" << concat << R"(": [)";
for (auto it : tt)
{
if (dynamic_cast<AbstractExternalFunctionNode *>(it))
{
if (wrote_term)
output << ", ";
vector<string> efout;
it->writeJsonExternalFunctionOutput(efout, tt2, tef_terms);
for (auto it1 = efout.begin(); it1 != efout.end(); ++it1)
{
if (it1 != efout.begin())
output << ", ";
output << *it1;
}
wrote_term = true;
}
tt2.insert(it);
}
wrote_term = false;
output << "]"
<< R"(, "temporary_terms_)" << concat << R"(": [)";
for (const auto &it : tt)
{
if (wrote_term)
output << ", ";
output << R"({"temporary_term": ")";
it->writeJsonOutput(output, tt, tef_terms);
output << R"(")"
<< R"(, "value": ")";
it->writeJsonOutput(output, temp_term_union, tef_terms);
output << R"("})" << endl;
wrote_term = true;
temp_term_union.insert(it);
}
output << "]";
}
void
ModelTree::fixNestedParenthesis(ostringstream &output, map<string, string> &tmp_paren_vars, bool &message_printed) const
{
string str = output.str();
if (!testNestedParenthesis(str))
return;
int open = 0;
int first_open_paren = 0;
int matching_paren = 0;
bool hit_limit = false;
int i1 = 0;
for (size_t i = 0; i < str.length(); i++)
{
if (str.at(i) == '(')
{
if (open == 0)
first_open_paren = i;
open++;
}
else if (str.at(i) == ')')
{
open--;
if (open == 0)
matching_paren = i;
}
if (open > 32)
hit_limit = true;
if (hit_limit && open == 0)
{
if (!message_printed)
{
cerr << "Warning: A .m file created by Dynare will have more than 32 nested parenthesis. MATLAB cannot support this. " << endl
<< " We are going to modify, albeit inefficiently, this output to have fewer than 32 nested parenthesis. " << endl
<< " It would hence behoove you to use the use_dll option of the model block to circumnavigate this problem." << endl
<< " If you have not yet set up a compiler on your system, see the MATLAB documentation for doing so." << endl
<< " For Windows, see: https://www.mathworks.com/help/matlab/matlab_external/install-mingw-support-package.html" << endl << endl;
message_printed = true;
}
string str1 = str.substr(first_open_paren, matching_paren - first_open_paren + 1);
string repstr, varname;
while (testNestedParenthesis(str1))
{
size_t open_paren_idx = string::npos;
size_t match_paren_idx = string::npos;
size_t last_open_paren = string::npos;
for (size_t j = 0; j < str1.length(); j++)
{
if (str1.at(j) == '(')
{
// don't match, e.g. y(1)
if (size_t idx = str1.find_last_of("*/-+", j - 1);
j == 0 || (idx != string::npos && idx == j - 1))
open_paren_idx = j;
last_open_paren = j;
}
else if (str1.at(j) == ')')
{
// don't match, e.g. y(1)
if (size_t idx = str1.find_last_not_of("0123456789", j - 1);
idx != string::npos && idx != last_open_paren)
match_paren_idx = j;
}
if (open_paren_idx != string::npos && match_paren_idx != string::npos)
{
string val = str1.substr(open_paren_idx, match_paren_idx - open_paren_idx + 1);
if (auto it = tmp_paren_vars.find(val);
it == tmp_paren_vars.end())
{
ostringstream ptvstr;
ptvstr << i1++;
varname = "paren32_tmp_var_" + ptvstr.str();
repstr = repstr + varname + " = " + val + ";\n";
tmp_paren_vars[val] = varname;
}
else
varname = it->second;
str1.replace(open_paren_idx, match_paren_idx - open_paren_idx + 1, varname);
break;
}
}
}
if (auto it = tmp_paren_vars.find(str1);
it == tmp_paren_vars.end())
{
ostringstream ptvstr;
ptvstr << i1++;
varname = "paren32_tmp_var_" + ptvstr.str();
repstr = repstr + varname + " = " + str1 + ";\n";
}
else
varname = it->second;
str.replace(first_open_paren, matching_paren - first_open_paren + 1, varname);
size_t insertLoc = str.find_last_of("\n", first_open_paren);
str.insert(insertLoc + 1, repstr);
hit_limit = false;
i = -1;
first_open_paren = matching_paren = open = 0;
}
}
output.str(str);
}
bool
ModelTree::testNestedParenthesis(const string &str) const
{
int open = 0;
for (char i : str)
{
if (i == '(')
open++;
else if (i == ')')
open--;
if (open > 32)
return true;
}
return false;
}
void
ModelTree::compileTemporaryTerms(ostream &code_file, unsigned int &instruction_number, bool dynamic, bool steady_dynamic, temporary_terms_t &temporary_terms_union, const temporary_terms_idxs_t &temporary_terms_idxs) const
{
// To store the functions that have already been written in the form TEF* = ext_fun();
deriv_node_temp_terms_t tef_terms;
for (auto [tt, idx] : temporary_terms_idxs)
{
if (dynamic_cast<AbstractExternalFunctionNode *>(tt))
tt->compileExternalFunctionOutput(code_file, instruction_number, false, temporary_terms_union, temporary_terms_idxs, dynamic, steady_dynamic, tef_terms);
FNUMEXPR_ fnumexpr(ExpressionType::TemporaryTerm, idx);
fnumexpr.write(code_file, instruction_number);
tt->compile(code_file, instruction_number, false, temporary_terms_union, temporary_terms_idxs, dynamic, steady_dynamic, tef_terms);
if (dynamic)
{
FSTPT_ fstpt(idx);
fstpt.write(code_file, instruction_number);
}
else
{
FSTPST_ fstpst(idx);
fstpst.write(code_file, instruction_number);
}
}
}
void
ModelTree::writeJsonModelLocalVariables(ostream &output, bool write_tef_terms, deriv_node_temp_terms_t &tef_terms) const
{
/* Collect all model local variables appearing in equations, and print only
them. Printing unused model local variables can lead to a crash (see
ticket #101). */
set<int> used_local_vars;
for (auto equation : equations)
equation->collectVariables(SymbolType::modelLocalVariable, used_local_vars);
output << R"("model_local_variables": [)";
bool printed = false;
for (int id : local_variables_vector)
if (used_local_vars.find(id) != used_local_vars.end())
{
if (printed)
output << ", ";
else
printed = true;
expr_t value = local_variables_table.find(id)->second;
if (write_tef_terms)
{
vector<string> efout;
value->writeJsonExternalFunctionOutput(efout, {}, tef_terms);
for (auto it1 = efout.begin(); it1 != efout.end(); ++it1)
{
if (it1 != efout.begin())
output << ", ";
output << *it1;
}
if (!efout.empty())
output << ", ";
}
output << R"({"variable": ")" << symbol_table.getName(id)
<< R"(", "value": ")";
value->writeJsonOutput(output, {}, tef_terms);
output << R"("})" << endl;
}
output << "]";
}
void
ModelTree::writeModelEquations(ostream &output, ExprNodeOutputType output_type) const
{
temporary_terms_t tt;
temporary_terms_idxs_t ttidxs;
writeModelEquations(output, output_type, tt);
}
void
ModelTree::writeModelEquations(ostream &output, ExprNodeOutputType output_type,
const temporary_terms_t &temporary_terms) const
{
for (int eq = 0; eq < static_cast<int>(equations.size()); eq++)
{
BinaryOpNode *eq_node = equations[eq];
expr_t lhs = eq_node->arg1;
expr_t rhs = eq_node->arg2;
// Test if the right hand side of the equation is empty.
double vrhs = 1.0;
try
{
vrhs = rhs->eval(eval_context_t());
}
catch (ExprNode::EvalException &e)
{
}
if (vrhs != 0) // The right hand side of the equation is not empty ==> residual=lhs-rhs;
if (isJuliaOutput(output_type))
{
output << " @inbounds residual" << LEFT_ARRAY_SUBSCRIPT(output_type)
<< eq + ARRAY_SUBSCRIPT_OFFSET(output_type)
<< RIGHT_ARRAY_SUBSCRIPT(output_type)
<< " = (";
lhs->writeOutput(output, output_type, temporary_terms, temporary_terms_idxs);
output << ") - (";
rhs->writeOutput(output, output_type, temporary_terms, temporary_terms_idxs);
output << ")" << endl;
}
else
{
output << "lhs = ";
lhs->writeOutput(output, output_type, temporary_terms, temporary_terms_idxs);
output << ";" << endl
<< "rhs = ";
rhs->writeOutput(output, output_type, temporary_terms, temporary_terms_idxs);
output << ";" << endl
<< "residual" << LEFT_ARRAY_SUBSCRIPT(output_type)
<< eq + ARRAY_SUBSCRIPT_OFFSET(output_type)
<< RIGHT_ARRAY_SUBSCRIPT(output_type)
<< " = lhs - rhs;" << endl;
}
else // The right hand side of the equation is empty ==> residual=lhs;
{
if (isJuliaOutput(output_type))
output << " @inbounds ";
output << "residual" << LEFT_ARRAY_SUBSCRIPT(output_type)
<< eq + ARRAY_SUBSCRIPT_OFFSET(output_type)
<< RIGHT_ARRAY_SUBSCRIPT(output_type)
<< " = ";
lhs->writeOutput(output, output_type, temporary_terms, temporary_terms_idxs);
output << ";" << endl;
}
}
}
void
ModelTree::compileModelEquations(ostream &code_file, unsigned int &instruction_number, bool dynamic, bool steady_dynamic, const temporary_terms_t &temporary_terms_union, const temporary_terms_idxs_t &temporary_terms_idxs) const
{
for (int eq = 0; eq < static_cast<int>(equations.size()); eq++)
{
BinaryOpNode *eq_node = equations[eq];
expr_t lhs = eq_node->arg1;
expr_t rhs = eq_node->arg2;
FNUMEXPR_ fnumexpr(ExpressionType::ModelEquation, eq);
fnumexpr.write(code_file, instruction_number);
// Test if the right hand side of the equation is empty.
double vrhs = 1.0;
try
{
vrhs = rhs->eval(eval_context_t());
}
catch (ExprNode::EvalException &e)
{
}
if (vrhs != 0) // The right hand side of the equation is not empty ==> residual=lhs-rhs;
{
lhs->compile(code_file, instruction_number, false, temporary_terms_union, temporary_terms_idxs, dynamic, steady_dynamic);
rhs->compile(code_file, instruction_number, false, temporary_terms_union, temporary_terms_idxs, dynamic, steady_dynamic);
FBINARY_ fbinary{static_cast<int>(BinaryOpcode::minus)};
fbinary.write(code_file, instruction_number);
FSTPR_ fstpr(eq);
fstpr.write(code_file, instruction_number);
}
else // The right hand side of the equation is empty ==> residual=lhs;
{
lhs->compile(code_file, instruction_number, false, temporary_terms_union, temporary_terms_idxs, dynamic, steady_dynamic);
FSTPR_ fstpr(eq);
fstpr.write(code_file, instruction_number);
}
}
}
void
ModelTree::writeBytecodeBinFile(const string &filename, int &u_count_int, bool &file_open,
bool is_two_boundaries) const
{
int j;
std::ofstream SaveCode;
if (file_open)
SaveCode.open(filename, ios::out | ios::in | ios::binary | ios::ate);
else
SaveCode.open(filename, ios::out | ios::binary);
if (!SaveCode.is_open())
{
cerr << R"(Error : Can't open file ")" << filename << R"(" for writing)" << endl;
exit(EXIT_FAILURE);
}
u_count_int = 0;
for (const auto & [indices, d1] : derivatives[1])
{
int deriv_id = indices[1];
if (getTypeByDerivID(deriv_id) == SymbolType::endogenous)
{
int eq = indices[0];
int symb = getSymbIDByDerivID(deriv_id);
int var = symbol_table.getTypeSpecificID(symb);
int lag = getLagByDerivID(deriv_id);
SaveCode.write(reinterpret_cast<char *>(&eq), sizeof(eq));
int varr = var + lag * symbol_table.endo_nbr();
SaveCode.write(reinterpret_cast<char *>(&varr), sizeof(varr));
SaveCode.write(reinterpret_cast<char *>(&lag), sizeof(lag));
int u = u_count_int + symbol_table.endo_nbr();
SaveCode.write(reinterpret_cast<char *>(&u), sizeof(u));
u_count_int++;
}
}
if (is_two_boundaries)
u_count_int += symbol_table.endo_nbr();
for (j = 0; j < symbol_table.endo_nbr(); j++)
SaveCode.write(reinterpret_cast<char *>(&j), sizeof(j));
for (j = 0; j < symbol_table.endo_nbr(); j++)
SaveCode.write(reinterpret_cast<char *>(&j), sizeof(j));
SaveCode.close();
}
void
ModelTree::writeLatexModelFile(const string &mod_basename, const string &latex_basename, ExprNodeOutputType output_type, bool write_equation_tags) const
{
filesystem::create_directories(mod_basename + "/latex");
ofstream output, content_output;
string filename = mod_basename + "/latex/" + latex_basename + ".tex";
string content_filename = mod_basename + "/latex/" + latex_basename + "_content" + ".tex";
output.open(filename, ios::out | ios::binary);
if (!output.is_open())
{
cerr << "ERROR: Can't open file " << filename << " for writing" << endl;
exit(EXIT_FAILURE);
}
content_output.open(content_filename, ios::out | ios::binary);
if (!content_output.is_open())
{
cerr << "ERROR: Can't open file " << content_filename << " for writing" << endl;
exit(EXIT_FAILURE);
}
output << R"(\documentclass[10pt,a4paper]{article})" << endl
<< R"(\usepackage[landscape]{geometry})" << endl
<< R"(\usepackage{fullpage})" << endl
<< R"(\usepackage{amsfonts})" << endl
<< R"(\usepackage{breqn})" << endl
<< R"(\begin{document})" << endl
<< R"(\footnotesize)" << endl;
// Write model local variables
for (int id : local_variables_vector)
{
expr_t value = local_variables_table.find(id)->second;
content_output << R"(\begin{dmath*})" << endl
<< symbol_table.getTeXName(id) << " = ";
// Use an empty set for the temporary terms
value->writeOutput(content_output, output_type);
content_output << endl << R"(\end{dmath*})" << endl;
}
for (int eq = 0; eq < static_cast<int>(equations.size()); eq++)
{
content_output << "% Equation " << eq + 1 << endl;
if (write_equation_tags)
equation_tags.writeLatexOutput(content_output, eq);
content_output << R"(\begin{dmath})" << endl;
// Here it is necessary to cast to superclass ExprNode, otherwise the overloaded writeOutput() method is not found
dynamic_cast<ExprNode *>(equations[eq])->writeOutput(content_output, output_type);
content_output << endl << R"(\end{dmath})" << endl;
}
output << R"(\include{)" << latex_basename + "_content" << "}" << endl
<< R"(\end{document})" << endl;
output.close();
content_output.close();
}
void
ModelTree::addEquation(expr_t eq, int lineno)
{
auto beq = dynamic_cast<BinaryOpNode *>(eq);
assert(beq && beq->op_code == BinaryOpcode::equal);
equations.push_back(beq);
equations_lineno.push_back(lineno);
}
vector<int>
ModelTree::includeExcludeEquations(set<pair<string, string>> &eqs, bool exclude_eqs,
vector<BinaryOpNode *> &equations, vector<int> &equations_lineno,
EquationTags &equation_tags, bool static_equations) const
{
vector<int> excluded_vars;
if (equations.empty())
return excluded_vars;
// Get equation numbers of tags
set<int> tag_eqns;
for (auto it = eqs.begin(); it != eqs.end();)
if (auto tmp = equation_tags.getEqnsByTag(it->first, it->second);
!tmp.empty())
{
tag_eqns.insert(tmp.begin(), tmp.end());
it = eqs.erase(it);
}
else
++it;
if (tag_eqns.empty())
return excluded_vars;
set<int> eqns;
if (exclude_eqs)
eqns = tag_eqns;
else
for (size_t i = 0; i < equations.size(); i++)
if (tag_eqns.find(i) == tag_eqns.end())
eqns.insert(i);
// remove from equations, equations_lineno, equation_tags
vector<BinaryOpNode *> new_eqns;
vector<int> new_equations_lineno;
map<int, int> old_eqn_num_2_new;
for (size_t i = 0; i < equations.size(); i++)
if (eqns.find(i) != eqns.end())
{
if (auto tmp = equation_tags.getTagValueByEqnAndKey(i, "endogenous"); !tmp.empty())
excluded_vars.push_back(symbol_table.getID(tmp));
else
{
set<pair<int, int>> result;
equations[i]->arg1->collectDynamicVariables(SymbolType::endogenous, result);
if (result.size() == 1)
excluded_vars.push_back(result.begin()->first);
else
{
cerr << "ERROR: Equation " << i
<< " has been excluded but does not have a single variable on LHS or `endogenous` tag" << endl;
exit(EXIT_FAILURE);
}
}
}
else
{
new_eqns.emplace_back(equations[i]);
old_eqn_num_2_new[i] = new_eqns.size() - 1;
new_equations_lineno.emplace_back(equations_lineno[i]);
}
int n_excl = equations.size() - new_eqns.size();
equations = new_eqns;
equations_lineno = new_equations_lineno;
equation_tags.erase(eqns, old_eqn_num_2_new);
if (!static_equations)
for (size_t i = 0; i < excluded_vars.size(); i++)
for (size_t j = i+1; j < excluded_vars.size(); j++)
if (excluded_vars[i] == excluded_vars[j])
{
cerr << "Error: Variable " << symbol_table.getName(i) << " was excluded twice"
<< " via in/exclude_eqs option" << endl;
exit(EXIT_FAILURE);
}
cout << "Excluded " << n_excl << (static_equations ? " static " : " dynamic ")
<< "equation" << (n_excl > 1 ? "s" : "") << " via in/exclude_eqs option" << endl;
return excluded_vars;
}
void
ModelTree::simplifyEquations()
{
size_t last_subst_table_size = 0;
map<VariableNode *, NumConstNode *> subst_table;
// Equations with “mcp” tag are excluded, see dynare#1697
findConstantEquationsWithoutMcpTag(subst_table);
while (subst_table.size() != last_subst_table_size)
{
last_subst_table_size = subst_table.size();
for (auto &[id, definition] : local_variables_table)
definition = definition->replaceVarsInEquation(subst_table);
for (auto &equation : equations)
equation = dynamic_cast<BinaryOpNode *>(equation->replaceVarsInEquation(subst_table));
subst_table.clear();
findConstantEquationsWithoutMcpTag(subst_table);
}
}
void
ModelTree::findConstantEquationsWithoutMcpTag(map<VariableNode *, NumConstNode *> &subst_table) const
{
for (size_t i = 0; i < equations.size(); i++)
if (auto tags = getEquationTags(i);
tags.find("mcp") == tags.end())
equations[i]->findConstantEquations(subst_table);
}
void
ModelTree::addEquation(expr_t eq, int lineno, const map<string, string> &eq_tags)
{
equation_tags.add(equations.size(), eq_tags);
addEquation(eq, lineno);
}
void
ModelTree::addAuxEquation(expr_t eq)
{
auto beq = dynamic_cast<BinaryOpNode *>(eq);
assert(beq && beq->op_code == BinaryOpcode::equal);
aux_equations.push_back(beq);
}
void
ModelTree::addTrendVariables(const vector<int> &trend_vars, expr_t growth_factor) noexcept(false)
{
for (int id : trend_vars)
if (trend_symbols_map.find(id) != trend_symbols_map.end())
throw TrendException(symbol_table.getName(id));
else
trend_symbols_map[id] = growth_factor;
}
void
ModelTree::addNonstationaryVariables(const vector<int> &nonstationary_vars, bool log_deflator, expr_t deflator) noexcept(false)
{
for (int id : nonstationary_vars)
if (nonstationary_symbols_map.find(id) != nonstationary_symbols_map.end())
throw TrendException(symbol_table.getName(id));
else
nonstationary_symbols_map[id] = { log_deflator, deflator };
}
void
ModelTree::initializeVariablesAndEquations()
{
for (size_t j = 0; j < equations.size(); j++)
eq_idx_block2orig.push_back(j);
for (int j = 0; j < symbol_table.endo_nbr(); j++)
endo_idx_block2orig.push_back(j);
}
void
ModelTree::set_cutoff_to_zero()
{
cutoff = 0;
}
void
ModelTree::jacobianHelper(ostream &output, int eq_nb, int col_nb, ExprNodeOutputType output_type) const
{
if (isJuliaOutput(output_type))
output << " @inbounds ";
output << "g1" << LEFT_ARRAY_SUBSCRIPT(output_type);
if (isMatlabOutput(output_type) || isJuliaOutput(output_type))
output << eq_nb + 1 << "," << col_nb + 1;
else
output << eq_nb + col_nb *equations.size();
output << RIGHT_ARRAY_SUBSCRIPT(output_type);
}
void
ModelTree::computeParamsDerivatives(int paramsDerivsOrder)
{
assert(paramsDerivsOrder >= 1);
set<int> deriv_id_set;
addAllParamDerivId(deriv_id_set);
// First-order derivatives w.r.t. params
for (int param : deriv_id_set)
{
for (int eq = 0; eq < static_cast<int>(equations.size()); eq++)
{
expr_t d = equations[eq]->getDerivative(param);
if (d == Zero)
continue;
params_derivatives[{ 0, 1 }][{ eq, param }] = d;
}
for (int endoOrd = 1; endoOrd < static_cast<int>(derivatives.size()); endoOrd++)
for (const auto &[indices, dprev] : derivatives[endoOrd])
{
expr_t d = dprev->getDerivative(param);
if (d == Zero)
continue;
vector<int> new_indices = indices;
new_indices.push_back(param);
params_derivatives[{ endoOrd, 1 }][new_indices] = d;
}
}
// Higher-order derivatives w.r.t. parameters
for (int endoOrd = 0; endoOrd < static_cast<int>(derivatives.size()); endoOrd++)
for (int paramOrd = 2; paramOrd <= paramsDerivsOrder; paramOrd++)
for (const auto &[indices, dprev] : params_derivatives[{ endoOrd, paramOrd-1 }])
for (int param : deriv_id_set)
{
if (indices.back() > param)
continue;
expr_t d = dprev->getDerivative(param);
if (d == Zero)
continue;
vector<int> new_indices = indices;
new_indices.push_back(param);
// At this point, indices of both endogenous and parameters are sorted in non-decreasing order
params_derivatives[{ endoOrd, paramOrd }][new_indices] = d;
}
}
void
ModelTree::computeParamsDerivativesTemporaryTerms()
{
map<expr_t, pair<int, pair<int, int>>> reference_count;
/* The temp terms should be constructed in the same order as the for loops in
{Static,Dynamic}Model::write{Json,}ParamsDerivativesFile() */
params_derivs_temporary_terms.clear();
for (const auto &[order, derivs] : params_derivatives)
for (const auto &[indices, d] : derivs)
d->computeTemporaryTerms(order, params_derivs_temporary_terms,
reference_count, true);
int idx = 0;
for (auto &[mlv, value] : temporary_terms_mlv)
params_derivs_temporary_terms_idxs[mlv] = idx++;
for (const auto &[order, tts] : params_derivs_temporary_terms)
for (const auto &tt : tts)
params_derivs_temporary_terms_idxs[tt] = idx++;
}
bool
ModelTree::isNonstationary(int symb_id) const
{
return nonstationary_symbols_map.find(symb_id) != nonstationary_symbols_map.end();
}
void
ModelTree::writeJsonModelEquations(ostream &output, bool residuals) const
{
if (residuals)
output << endl << R"("residuals":[)" << endl;
else
output << endl << R"("model":[)" << endl;
for (int eq = 0; eq < static_cast<int>(equations.size()); eq++)
{
if (eq > 0)
output << ", ";
BinaryOpNode *eq_node = equations[eq];
expr_t lhs = eq_node->arg1;
expr_t rhs = eq_node->arg2;
if (residuals)
{
output << R"({"residual": {)"
<< R"("lhs": ")";
lhs->writeJsonOutput(output, {}, {});
output << R"(")";
output << R"(, "rhs": ")";
rhs->writeJsonOutput(output, {}, {});
output << R"(")";
try
{
// Test if the right hand side of the equation is empty.
if (rhs->eval({}) != 0)
{
output << R"(, "rhs": ")";
rhs->writeJsonOutput(output, {}, {});
output << R"(")";
}
}
catch (ExprNode::EvalException &e)
{
}
output << "}";
}
else
{
output << R"({"lhs": ")";
lhs->writeJsonOutput(output, {}, {});
output << R"(", "rhs": ")";
rhs->writeJsonOutput(output, {}, {});
output << R"(")"
<< R"(, "line": )" << equations_lineno[eq];
if (auto eqtags = getEquationTags(eq);
!eqtags.empty())
{
output << R"(, "tags": {)";
int i = 0;
for (const auto &[name, value] : eqtags)
{
if (i != 0)
output << ", ";
output << R"(")" << name << R"(": ")" << value << R"(")";
i++;
}
output << "}";
eqtags.clear();
}
}
output << "}" << endl;
}
output << endl << "]" << endl;
}
string
ModelTree::matlab_arch(const string &mexext)
{
if (mexext == "mexglx")
return "glnx86";
else if (mexext == "mexa64")
return "glnxa64";
if (mexext == "mexw32")
return "win32";
else if (mexext == "mexw64")
return "win64";
else if (mexext == "mexmaci")
{
cerr << "32-bit MATLAB not supported on macOS" << endl;
exit(EXIT_FAILURE);
}
else if (mexext == "mexmaci64")
return "maci64";
else
{
cerr << "ERROR: 'mexext' option to preprocessor incorrectly set, needed with 'use_dll'" << endl;
exit(EXIT_FAILURE);
}
}
void
ModelTree::compileMEX(const string &basename, const string &funcname, const string &mexext, const vector<filesystem::path> &src_files, const filesystem::path &matlabroot, const filesystem::path &dynareroot) const
{
const string opt_flags = "-O3 -g0 --param ira-max-conflict-table-size=1 -fno-forward-propagate -fno-gcse -fno-dce -fno-dse -fno-tree-fre -fno-tree-pre -fno-tree-cselim -fno-tree-dse -fno-tree-dce -fno-tree-pta -fno-gcse-after-reload";
filesystem::path compiler;
ostringstream flags;
string libs;
if (matlabroot.empty())
{
cerr << "ERROR: 'matlabroot' option to preprocessor is not set, needed with 'use_dll'" << endl;
exit(EXIT_FAILURE);
}
if (mexext == "mex")
{
// Octave
compiler = matlabroot / "bin" / "mkoctfile";
flags << "--mex";
}
else
{
// MATLAB
compiler = "gcc";
string arch = matlab_arch(mexext);
auto include_dir = matlabroot / "extern" / "include";
flags << "-I " << include_dir;
auto bin_dir = matlabroot / "bin" / arch;
flags << " -L " << bin_dir;
flags << " -fexceptions -DNDEBUG";
libs = "-lmex -lmx";
if (mexext == "mexa64")
{
// GNU/Linux
flags << " -D_GNU_SOURCE -fPIC -pthread"
<< " -shared -Wl,--no-undefined -Wl,-rpath-link," << bin_dir;
libs += " -lm";
}
else if (mexext == "mexw64")
{
// Windows
flags << " -static-libgcc -shared";
// Put the MinGW environment shipped with Dynare in the path
auto mingwpath = dynareroot / "mingw64" / "bin";
string newpath = "PATH=" + mingwpath.string() + ';' + string{getenv("PATH")};
if (putenv(const_cast<char *>(newpath.c_str())) != 0)
{
cerr << "Can't set PATH" << endl;
exit(EXIT_FAILURE);
}
}
#ifdef __APPLE__
else if (mexext == "mexmaci64")
{
// macOS
char dynare_m_path[PATH_MAX];
uint32_t size = PATH_MAX;
string gcc_relative_path;
if (_NSGetExecutablePath(dynare_m_path, &size) == 0)
{
string str = dynare_m_path;
gcc_relative_path = str.substr(0, str.find_last_of("/")) + "/../../.brew/bin/gcc-10";
}
if (filesystem::exists(gcc_relative_path))
compiler = gcc_relative_path;
else if (filesystem::exists("/usr/local/bin/gcc-10"))
compiler = "/usr/local/bin/gcc-10";
else
{
cerr << "ERROR: You must install gcc-10 on your system before using the `use_dll` option of Dynare. "
<< "You can do this via the Dynare installation package." << endl;
exit(EXIT_FAILURE);
}
flags << " -fno-common -Wl,-twolevel_namespace -undefined error -bundle";
libs += " -lm";
}
#endif
else
{
cerr << "ERROR: unsupported value '" << mexext << "' for 'mexext' option" << endl;
exit(EXIT_FAILURE);
}
}
filesystem::path mex_dir{"+" + basename};
filesystem::path binary{mex_dir / (funcname + "." + mexext)};
ostringstream cmd;
#ifdef _WIN32
/* On Windows, system() hands the command over to "cmd.exe /C". We need to
enclose the whole command line within double quotes if we want the inner
quotes to be correctly handled. See "cmd /?" for more details. */
cmd << '"';
#endif
if (user_set_compiler.empty())
cmd << compiler << " ";
else
if (!filesystem::exists(user_set_compiler))
{
cerr << "Error: The specified compiler '" << user_set_compiler << "' cannot be found on your system" << endl;
exit(EXIT_FAILURE);
}
else
cmd << user_set_compiler << " ";
if (user_set_subst_flags.empty())
cmd << opt_flags << " " << flags.str() << " ";
else
cmd << user_set_subst_flags << " ";
if (!user_set_add_flags.empty())
cmd << user_set_add_flags << " ";
for (auto &src : src_files)
cmd << src << " ";
cmd << "-o " << binary << " ";
if (user_set_subst_libs.empty())
cmd << libs;
else
cmd << user_set_subst_libs;
if (!user_set_add_libs.empty())
cmd << " " << user_set_add_libs;
#ifdef _WIN32
cmd << '"';
#endif
cout << "Compiling " << funcname << " MEX..." << endl << cmd.str() << endl;
if (system(cmd.str().c_str()))
{
cerr << "Compilation failed" << endl;
exit(EXIT_FAILURE);
}
}
void
ModelTree::reorderAuxiliaryEquations()
{
using namespace boost;
// Create the mapping between auxiliary variables and auxiliary equations
int n = static_cast<int>(aux_equations.size());
map<int, int> auxEndoToEq;
for (int i = 0; i < n; i++)
{
auto varexpr = dynamic_cast<VariableNode *>(aux_equations[i]->arg1);
assert(varexpr && symbol_table.getType(varexpr->symb_id) == SymbolType::endogenous);
auxEndoToEq[varexpr->symb_id] = i;
}
assert(static_cast<int>(auxEndoToEq.size()) == n);
/* Construct the directed acyclic graph where auxiliary equations are
vertices and edges represent dependency relationships. */
using Graph = adjacency_list<vecS, vecS, directedS>;
Graph g(n);
for (int i = 0; i < n; i++)
{
set<int> endos;
aux_equations[i]->collectVariables(SymbolType::endogenous, endos);
for (int endo : endos)
if (auto it = auxEndoToEq.find(endo);
it != auxEndoToEq.end() && it->second != i)
add_edge(i, it->second, g);
}
// Topological sort of the graph
using Vertex = graph_traits<Graph>::vertex_descriptor;
vector<Vertex> ordered;
topological_sort(g, back_inserter(ordered));
// Reorder auxiliary equations accordingly
auto aux_equations_old = aux_equations;
auto index = get(vertex_index, g); // Maps vertex descriptors to their index
for (int i = 0; i < n; i++)
aux_equations[i] = aux_equations_old[index[ordered[i]]];
}
map<tuple<int, int, int>, expr_t>
ModelTree::collectFirstOrderDerivativesEndogenous()
{
map<tuple<int, int, int>, expr_t> endo_derivatives;
for (auto &[indices, d1] : derivatives[1])
if (getTypeByDerivID(indices[1]) == SymbolType::endogenous)
{
int eq = indices[0];
int var = symbol_table.getTypeSpecificID(getSymbIDByDerivID(indices[1]));
int lag = getLagByDerivID(indices[1]);
endo_derivatives[{ eq, var, lag }] = d1;
}
return endo_derivatives;
}
ModelTree::jacob_map_t
ModelTree::computeSymbolicJacobian() const
{
jacob_map_t symbolic_jacobian;
for (int i = 0; i < static_cast<int>(equations.size()); i++)
{
set<pair<int, int>> endos_and_lags;
equations[i]->collectEndogenous(endos_and_lags);
for (const auto &[endo, lag] : endos_and_lags)
symbolic_jacobian[{ i, endo }] = 1;
}
return symbolic_jacobian;
}
void
ModelTree::updateReverseVariableEquationOrderings()
{
int n = equations.size();
eq_idx_orig2block.resize(n);
endo_idx_orig2block.resize(n);
for (int i = 0; i < n; i++)
{
endo_idx_orig2block[endo_idx_block2orig[i]] = i;
eq_idx_orig2block[eq_idx_block2orig[i]] = i;
}
}
bool
ModelTree::hasOccbinTags() const
{
return equation_tags.hasOccbinTags();
}