preprocessor/src/Shocks.cc

972 lines
34 KiB
C++

/*
* Copyright © 2003-2023 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <https://www.gnu.org/licenses/>.
*/
#include <cassert>
#include <cstdlib>
#include <iostream>
#include <utility>
#include "Shocks.hh"
AbstractShocksStatement::AbstractShocksStatement(bool overwrite_arg, ShockType type_arg,
det_shocks_t det_shocks_arg,
const SymbolTable& symbol_table_arg) :
overwrite {overwrite_arg},
type {type_arg},
det_shocks {move(det_shocks_arg)},
symbol_table {symbol_table_arg}
{
}
void
AbstractShocksStatement::writeDetShocks(ostream& output) const
{
int exo_det_length = 0;
for (const auto& [id, shock_vec] : det_shocks)
for (bool exo_det = (symbol_table.getType(id) == SymbolType::exogenousDet);
const auto& [period1, period2, value] : shock_vec)
{
output << "M_.det_shocks = [ M_.det_shocks;" << endl
<< boolalpha << "struct('exo_det'," << exo_det << ",'exo_id',"
<< symbol_table.getTypeSpecificID(id) + 1 << ",'type','" << typeToString(type) << "'"
<< ",'periods'," << period1 << ":" << period2 << ",'value',";
value->writeOutput(output);
output << ") ];" << endl;
if (exo_det && period2 > exo_det_length)
exo_det_length = period2;
}
output << "M_.exo_det_length = " << exo_det_length << ";\n";
}
void
AbstractShocksStatement::writeJsonDetShocks(ostream& output) const
{
output << R"("deterministic_shocks": [)";
for (bool printed_something {false}; const auto& [id, shock_vec] : det_shocks)
{
if (exchange(printed_something, true))
output << ", ";
output << R"({"var": ")" << symbol_table.getName(id) << R"(", )"
<< R"("values": [)";
for (bool printed_something2 {false}; const auto& [period1, period2, value] : shock_vec)
{
if (exchange(printed_something2, true))
output << ", ";
output << R"({"period1": )" << period1 << ", "
<< R"("period2": )" << period2 << ", "
<< R"("value": ")";
value->writeJsonOutput(output, {}, {});
output << R"("})";
}
output << "]}";
}
output << "]";
}
string
AbstractShocksStatement::typeToString(ShockType type)
{
switch (type)
{
case ShockType::level:
return "level";
case ShockType::multiplySteadyState:
return "multiply_steady_state";
case ShockType::multiplyInitialSteadyState:
return "multiply_initial_steady_state";
}
__builtin_unreachable(); // Silence GCC warning
}
ShocksStatement::ShocksStatement(bool overwrite_arg, det_shocks_t det_shocks_arg,
var_and_std_shocks_t var_shocks_arg,
var_and_std_shocks_t std_shocks_arg,
covar_and_corr_shocks_t covar_shocks_arg,
covar_and_corr_shocks_t corr_shocks_arg,
const SymbolTable& symbol_table_arg) :
AbstractShocksStatement {overwrite_arg, ShockType::level, move(det_shocks_arg),
symbol_table_arg},
var_shocks {move(var_shocks_arg)},
std_shocks {move(std_shocks_arg)},
covar_shocks {move(covar_shocks_arg)},
corr_shocks {move(corr_shocks_arg)}
{
}
void
ShocksStatement::writeOutput(ostream& output, [[maybe_unused]] const string& basename,
[[maybe_unused]] bool minimal_workspace) const
{
output << "%" << endl << "% SHOCKS instructions" << endl << "%" << endl;
if (overwrite)
{
output << "M_.det_shocks = [];" << endl;
output << "M_.Sigma_e = zeros(" << symbol_table.exo_nbr() << ", " << symbol_table.exo_nbr()
<< ");" << endl
<< "M_.Correlation_matrix = eye(" << symbol_table.exo_nbr() << ", "
<< symbol_table.exo_nbr() << ");" << endl;
if (has_calibrated_measurement_errors())
output << "M_.H = zeros(" << symbol_table.observedVariablesNbr() << ", "
<< symbol_table.observedVariablesNbr() << ");" << endl
<< "M_.Correlation_matrix_ME = eye(" << symbol_table.observedVariablesNbr() << ", "
<< symbol_table.observedVariablesNbr() << ");" << endl;
else
output << "M_.H = 0;" << endl << "M_.Correlation_matrix_ME = 1;" << endl;
}
writeDetShocks(output);
writeVarAndStdShocks(output);
writeCovarAndCorrShocks(output);
/* M_.sigma_e_is_diagonal is initialized to 1 by ModFile.cc.
If there are no off-diagonal elements, and we are not in overwrite mode,
then we don't reset it to 1, since there might be previous shocks blocks
with off-diagonal elements. */
if (covar_shocks.size() + corr_shocks.size() > 0)
output << "M_.sigma_e_is_diagonal = 0;" << endl;
else if (overwrite)
output << "M_.sigma_e_is_diagonal = 1;" << endl;
}
void
ShocksStatement::writeJsonOutput(ostream& output) const
{
output << R"({"statementName": "shocks")"
<< R"(, "overwrite": )" << boolalpha << overwrite;
if (!det_shocks.empty())
{
output << ", ";
writeJsonDetShocks(output);
}
output << R"(, "variance": [)";
for (bool printed_something {false}; auto& [id, value] : var_shocks)
{
if (exchange(printed_something, true))
output << ", ";
output << R"({"name": ")" << symbol_table.getName(id) << R"(", )"
<< R"("variance": ")";
value->writeJsonOutput(output, {}, {});
output << R"("})";
}
output << "]"
<< R"(, "stderr": [)";
for (bool printed_something {false}; auto& [id, value] : std_shocks)
{
if (exchange(printed_something, true))
output << ", ";
output << R"({"name": ")" << symbol_table.getName(id) << R"(", )"
<< R"("stderr": ")";
value->writeJsonOutput(output, {}, {});
output << R"("})";
}
output << "]"
<< R"(, "covariance": [)";
for (bool printed_something {false}; auto& [ids, value] : covar_shocks)
{
if (exchange(printed_something, true))
output << ", ";
output << "{"
<< R"("name": ")" << symbol_table.getName(ids.first) << R"(", )"
<< R"("name2": ")" << symbol_table.getName(ids.second) << R"(", )"
<< R"("covariance": ")";
value->writeJsonOutput(output, {}, {});
output << R"("})";
}
output << "]"
<< R"(, "correlation": [)";
for (bool printed_something {false}; auto& [ids, value] : corr_shocks)
{
if (exchange(printed_something, true))
output << ", ";
output << "{"
<< R"("name": ")" << symbol_table.getName(ids.first) << R"(", )"
<< R"("name2": ")" << symbol_table.getName(ids.second) << R"(", )"
<< R"("correlation": ")";
value->writeJsonOutput(output, {}, {});
output << R"("})";
}
output << "]"
<< "}";
}
void
ShocksStatement::writeVarOrStdShock(ostream& output, const pair<int, expr_t>& it, bool stddev) const
{
SymbolType type = symbol_table.getType(it.first);
assert(type == SymbolType::exogenous || symbol_table.isObservedVariable(it.first));
int id;
if (type == SymbolType::exogenous)
{
output << "M_.Sigma_e(";
id = symbol_table.getTypeSpecificID(it.first) + 1;
}
else
{
output << "M_.H(";
id = symbol_table.getObservedVariableIndex(it.first) + 1;
}
output << id << ", " << id << ") = ";
if (stddev)
output << "(";
it.second->writeOutput(output);
if (stddev)
output << ")^2";
output << ";" << endl;
}
void
ShocksStatement::writeVarAndStdShocks(ostream& output) const
{
for (const auto& it : var_shocks)
writeVarOrStdShock(output, it, false);
for (const auto& it : std_shocks)
writeVarOrStdShock(output, it, true);
}
void
ShocksStatement::writeCovarOrCorrShock(ostream& output, const pair<pair<int, int>, expr_t>& it,
bool corr) const
{
SymbolType type1 = symbol_table.getType(it.first.first);
SymbolType type2 = symbol_table.getType(it.first.second);
assert((type1 == SymbolType::exogenous && type2 == SymbolType::exogenous)
|| (symbol_table.isObservedVariable(it.first.first)
&& symbol_table.isObservedVariable(it.first.second)));
string matrix, corr_matrix;
int id1, id2;
if (type1 == SymbolType::exogenous)
{
matrix = "M_.Sigma_e";
corr_matrix = "M_.Correlation_matrix";
id1 = symbol_table.getTypeSpecificID(it.first.first) + 1;
id2 = symbol_table.getTypeSpecificID(it.first.second) + 1;
}
else
{
matrix = "M_.H";
corr_matrix = "M_.Correlation_matrix_ME";
id1 = symbol_table.getObservedVariableIndex(it.first.first) + 1;
id2 = symbol_table.getObservedVariableIndex(it.first.second) + 1;
}
output << matrix << "(" << id1 << ", " << id2 << ") = ";
it.second->writeOutput(output);
if (corr)
output << "*sqrt(" << matrix << "(" << id1 << ", " << id1 << ")*" << matrix << "(" << id2
<< ", " << id2 << "))";
output << ";" << endl
<< matrix << "(" << id2 << ", " << id1 << ") = " << matrix << "(" << id1 << ", " << id2
<< ");" << endl;
if (corr)
{
output << corr_matrix << "(" << id1 << ", " << id2 << ") = ";
it.second->writeOutput(output);
output << ";" << endl
<< corr_matrix << "(" << id2 << ", " << id1 << ") = " << corr_matrix << "(" << id1
<< ", " << id2 << ");" << endl;
}
}
void
ShocksStatement::writeCovarAndCorrShocks(ostream& output) const
{
for (const auto& it : covar_shocks)
writeCovarOrCorrShock(output, it, false);
for (const auto& it : corr_shocks)
writeCovarOrCorrShock(output, it, true);
}
void
ShocksStatement::checkPass(ModFileStructure& mod_file_struct,
[[maybe_unused]] WarningConsolidation& warnings)
{
/* Error out if variables are not of the right type. This must be done here
and not at parsing time (see #448).
Also Determine if there is a calibrated measurement error */
for (auto [id, val] : var_shocks)
{
if (symbol_table.getType(id) != SymbolType::exogenous && !symbol_table.isObservedVariable(id))
{
cerr << "shocks: setting a variance on '" << symbol_table.getName(id)
<< "' is not allowed, because it is neither an exogenous variable nor an observed "
"endogenous variable"
<< endl;
exit(EXIT_FAILURE);
}
}
for (auto [id, val] : std_shocks)
{
if (symbol_table.getType(id) != SymbolType::exogenous && !symbol_table.isObservedVariable(id))
{
cerr << "shocks: setting a standard error on '" << symbol_table.getName(id)
<< "' is not allowed, because it is neither an exogenous variable nor an observed "
"endogenous variable"
<< endl;
exit(EXIT_FAILURE);
}
}
for (const auto& [ids, val] : covar_shocks)
{
auto& [symb_id1, symb_id2] = ids;
if (!((symbol_table.getType(symb_id1) == SymbolType::exogenous
&& symbol_table.getType(symb_id2) == SymbolType::exogenous)
|| (symbol_table.isObservedVariable(symb_id1)
&& symbol_table.isObservedVariable(symb_id2))))
{
cerr << "shocks: setting a covariance between '" << symbol_table.getName(symb_id1)
<< "' and '" << symbol_table.getName(symb_id2)
<< "'is not allowed; covariances can only be specified for exogenous or observed "
"endogenous variables of same type"
<< endl;
exit(EXIT_FAILURE);
}
}
for (const auto& [ids, val] : corr_shocks)
{
auto& [symb_id1, symb_id2] = ids;
if (!((symbol_table.getType(symb_id1) == SymbolType::exogenous
&& symbol_table.getType(symb_id2) == SymbolType::exogenous)
|| (symbol_table.isObservedVariable(symb_id1)
&& symbol_table.isObservedVariable(symb_id2))))
{
cerr << "shocks: setting a correlation between '" << symbol_table.getName(symb_id1)
<< "' and '" << symbol_table.getName(symb_id2)
<< "'is not allowed; correlations can only be specified for exogenous or observed "
"endogenous variables of same type"
<< endl;
exit(EXIT_FAILURE);
}
}
// Determine if there is a calibrated measurement error
mod_file_struct.calibrated_measurement_errors |= has_calibrated_measurement_errors();
// Fill in mod_file_struct.parameters_with_shocks_values (related to #469)
for (auto [id, val] : var_shocks)
val->collectVariables(SymbolType::parameter, mod_file_struct.parameters_within_shocks_values);
for (auto [id, val] : std_shocks)
val->collectVariables(SymbolType::parameter, mod_file_struct.parameters_within_shocks_values);
for (const auto& [ids, val] : covar_shocks)
val->collectVariables(SymbolType::parameter, mod_file_struct.parameters_within_shocks_values);
for (const auto& [ids, val] : corr_shocks)
val->collectVariables(SymbolType::parameter, mod_file_struct.parameters_within_shocks_values);
}
bool
ShocksStatement::has_calibrated_measurement_errors() const
{
for (auto [id, val] : var_shocks)
if (symbol_table.isObservedVariable(id))
return true;
for (auto [id, val] : std_shocks)
if (symbol_table.isObservedVariable(id))
return true;
for (const auto& [ids, val] : covar_shocks)
if (symbol_table.isObservedVariable(ids.first) || symbol_table.isObservedVariable(ids.second))
return true;
for (const auto& [ids, val] : corr_shocks)
if (symbol_table.isObservedVariable(ids.first) || symbol_table.isObservedVariable(ids.second))
return true;
return false;
}
MShocksStatement::MShocksStatement(bool overwrite_arg, bool relative_to_initval_arg,
det_shocks_t det_shocks_arg,
const SymbolTable& symbol_table_arg) :
AbstractShocksStatement {overwrite_arg,
relative_to_initval_arg ? ShockType::multiplyInitialSteadyState
: ShockType::multiplySteadyState,
move(det_shocks_arg), symbol_table_arg},
relative_to_initval {relative_to_initval_arg}
{
}
void
MShocksStatement::writeOutput(ostream& output, [[maybe_unused]] const string& basename,
[[maybe_unused]] bool minimal_workspace) const
{
output << "%" << endl << "% MSHOCKS instructions" << endl << "%" << endl;
if (overwrite)
output << "M_.det_shocks = [];" << endl;
writeDetShocks(output);
}
void
MShocksStatement::writeJsonOutput(ostream& output) const
{
output << R"({"statementName": "mshocks")"
<< R"(, "overwrite": )" << boolalpha << overwrite << R"(, "relative_to_initval": )"
<< boolalpha << relative_to_initval;
if (!det_shocks.empty())
{
output << ", ";
writeJsonDetShocks(output);
}
output << "}";
}
ShocksSurpriseStatement::ShocksSurpriseStatement(
bool overwrite_arg, AbstractShocksStatement::det_shocks_t surprise_shocks_arg,
const SymbolTable& symbol_table_arg) :
overwrite {overwrite_arg},
surprise_shocks {move(surprise_shocks_arg)},
symbol_table {symbol_table_arg}
{
}
void
ShocksSurpriseStatement::checkPass(ModFileStructure& mod_file_struct,
[[maybe_unused]] WarningConsolidation& warnings)
{
mod_file_struct.shocks_surprise_present = true;
}
void
ShocksSurpriseStatement::writeOutput(ostream& output, [[maybe_unused]] const string& basename,
[[maybe_unused]] bool minimal_workspace) const
{
if (overwrite)
output << "M_.surprise_shocks = [" << endl;
else
output << "M_.surprise_shocks = [ M_.surprise_shocks;" << endl;
for (const auto& [id, shock_vec] : surprise_shocks)
for (const auto& [period1, period2, value] : shock_vec)
{
output << "struct('exo_id'," << symbol_table.getTypeSpecificID(id) + 1 << ",'periods',"
<< period1 << ":" << period2 << ",'value',";
value->writeOutput(output);
output << ");" << endl;
}
output << "];" << endl;
}
void
ShocksSurpriseStatement::writeJsonOutput(ostream& output) const
{
output << R"({"statementName": "shocks")"
<< R"(, "surprise": true)"
<< R"(, "surprise_shocks": [)";
for (bool printed_something {false}; const auto& [id, shock_vec] : surprise_shocks)
{
if (exchange(printed_something, true))
output << ", ";
output << R"({"var": ")" << symbol_table.getName(id) << R"(", )"
<< R"("values": [)";
for (bool printed_something2 {false}; const auto& [period1, period2, value] : shock_vec)
{
if (exchange(printed_something2, true))
output << ", ";
output << R"({"period1": )" << period1 << ", "
<< R"("period2": )" << period2 << ", "
<< R"("value": ")";
value->writeJsonOutput(output, {}, {});
output << R"("})";
}
output << "]}";
}
output << "]}";
}
ShocksLearntInStatement::ShocksLearntInStatement(int learnt_in_period_arg, bool overwrite_arg,
learnt_shocks_t learnt_shocks_arg,
const SymbolTable& symbol_table_arg) :
learnt_in_period {learnt_in_period_arg},
overwrite {overwrite_arg},
learnt_shocks {move(learnt_shocks_arg)},
symbol_table {symbol_table_arg}
{
}
void
ShocksLearntInStatement::checkPass(ModFileStructure& mod_file_struct,
[[maybe_unused]] WarningConsolidation& warnings)
{
mod_file_struct.shocks_learnt_in_present = true;
}
string
ShocksLearntInStatement::typeToString(LearntShockType type)
{
switch (type)
{
case LearntShockType::level:
return "level";
case LearntShockType::add:
return "add";
case LearntShockType::multiply:
return "multiply";
case LearntShockType::multiplySteadyState:
return "multiply_steady_state";
case LearntShockType::multiplyInitialSteadyState:
return "multiply_initial_steady_state";
}
__builtin_unreachable(); // Silence GCC warning
}
void
ShocksLearntInStatement::writeOutput(ostream& output, [[maybe_unused]] const string& basename,
[[maybe_unused]] bool minimal_workspace) const
{
if (overwrite)
output << "if ~isempty(M_.learnt_shocks)" << endl
<< " M_.learnt_shocks = M_.learnt_shocks([M_.learnt_shocks.learnt_in] ~= "
<< learnt_in_period << ");" << endl
<< "end" << endl;
output << "M_.learnt_shocks = [ M_.learnt_shocks;" << endl;
for (const auto& [id, shock_vec] : learnt_shocks)
for (const auto& [type, period1, period2, value] : shock_vec)
{
output << "struct('learnt_in'," << learnt_in_period << ",'exo_id',"
<< symbol_table.getTypeSpecificID(id) + 1 << ",'periods'," << period1 << ":"
<< period2 << ",'type','" << typeToString(type) << "'"
<< ",'value',";
value->writeOutput(output);
output << ");" << endl;
}
output << "];" << endl;
}
void
ShocksLearntInStatement::writeJsonOutput(ostream& output) const
{
output << R"({"statementName": "shocks")"
<< R"(, "learnt_in": )" << learnt_in_period << R"(, "overwrite": )" << boolalpha
<< overwrite << R"(, "learnt_shocks": [)";
for (bool printed_something {false}; const auto& [id, shock_vec] : learnt_shocks)
{
if (exchange(printed_something, true))
output << ", ";
output << R"({"var": ")" << symbol_table.getName(id) << R"(", )"
<< R"("values": [)";
for (bool printed_something2 {false}; const auto& [type, period1, period2, value] : shock_vec)
{
if (exchange(printed_something2, true))
output << ", ";
output << R"({"period1": )" << period1 << ", "
<< R"("period2": )" << period2 << ", "
<< R"("type": ")" << typeToString(type) << R"(", )"
<< R"("value": ")";
value->writeJsonOutput(output, {}, {});
output << R"("})";
}
output << "]}";
}
output << "]}";
}
ConditionalForecastPathsStatement::ConditionalForecastPathsStatement(
AbstractShocksStatement::det_shocks_t paths_arg, const SymbolTable& symbol_table_arg) :
paths {move(paths_arg)}, symbol_table {symbol_table_arg}, path_length {computePathLength(paths)}
{
}
int
ConditionalForecastPathsStatement::computePathLength(
const AbstractShocksStatement::det_shocks_t& paths)
{
int length {0};
for (const auto& [ignore, elems] : paths)
for (auto& [period1, period2, value] : elems)
// Period1 < Period2, as enforced in ParsingDriver::add_period()
length = max(length, period2);
return length;
}
void
ConditionalForecastPathsStatement::writeOutput(ostream& output,
[[maybe_unused]] const string& basename,
[[maybe_unused]] bool minimal_workspace) const
{
assert(path_length > 0);
output << "constrained_vars_ = [];" << endl
<< "constrained_paths_ = NaN(" << paths.size() << ", " << path_length << ");" << endl;
for (int k {1}; const auto& [id, elems] : paths)
{
if (k == 1)
output << "constrained_vars_ = " << symbol_table.getTypeSpecificID(id) + 1 << ";" << endl;
else
output << "constrained_vars_ = [constrained_vars_; "
<< symbol_table.getTypeSpecificID(id) + 1 << "];" << endl;
for (const auto& [period1, period2, value] : elems)
for (int j = period1; j <= period2; j++)
{
output << "constrained_paths_(" << k << "," << j << ")=";
value->writeOutput(output);
output << ";" << endl;
}
k++;
}
}
void
ConditionalForecastPathsStatement::writeJsonOutput(ostream& output) const
{
output << R"({"statementName": "conditional_forecast_paths")"
<< R"(, "paths": [)";
for (bool printed_something {false}; const auto& [id, elems] : paths)
{
if (exchange(printed_something, true))
output << ", ";
output << R"({"var": ")" << symbol_table.getName(id) << R"(", )"
<< R"("values": [)";
for (bool printed_something2 {false}; const auto& [period1, period2, value] : elems)
{
if (exchange(printed_something2, true))
output << ", ";
output << R"({"period1": )" << period1 << ", "
<< R"("period2": )" << period2 << ", "
<< R"("value": ")";
value->writeJsonOutput(output, {}, {});
output << R"("})";
}
output << "]}";
}
output << "]}";
}
MomentCalibration::MomentCalibration(constraints_t constraints_arg,
const SymbolTable& symbol_table_arg) :
constraints {move(constraints_arg)}, symbol_table {symbol_table_arg}
{
}
void
MomentCalibration::writeOutput(ostream& output, [[maybe_unused]] const string& basename,
[[maybe_unused]] bool minimal_workspace) const
{
output << "options_.endogenous_prior_restrictions.moment = {" << endl;
for (const auto& c : constraints)
{
output << "'" << symbol_table.getName(c.endo1) << "', "
<< "'" << symbol_table.getName(c.endo2) << "', " << c.lags << ", "
<< "[ ";
c.lower_bound->writeOutput(output);
output << ", ";
c.upper_bound->writeOutput(output);
output << " ];" << endl;
}
output << "};" << endl;
}
void
MomentCalibration::writeJsonOutput(ostream& output) const
{
output << R"({"statementName": "moment_calibration")"
<< R"(, "moment_calibration_criteria": [)";
for (bool printed_something {false}; const auto& c : constraints)
{
if (exchange(printed_something, true))
output << ", ";
output << R"({"endogenous1": ")" << symbol_table.getName(c.endo1) << R"(")"
<< R"(, "endogenous2": ")" << symbol_table.getName(c.endo2) << R"(")"
<< R"(, "lags": ")" << c.lags << R"(")"
<< R"(, "lower_bound": ")";
c.lower_bound->writeJsonOutput(output, {}, {});
output << R"(")"
<< R"(, "upper_bound": ")";
c.upper_bound->writeJsonOutput(output, {}, {});
output << R"(")"
<< "}";
}
output << "]"
<< "}";
}
IrfCalibration::IrfCalibration(constraints_t constraints_arg, const SymbolTable& symbol_table_arg,
OptionsList options_list_arg) :
constraints {move(constraints_arg)},
symbol_table {symbol_table_arg},
options_list {move(options_list_arg)}
{
}
void
IrfCalibration::writeOutput(ostream& output, [[maybe_unused]] const string& basename,
[[maybe_unused]] bool minimal_workspace) const
{
options_list.writeOutput(output);
output << "options_.endogenous_prior_restrictions.irf = {" << endl;
for (const auto& c : constraints)
{
output << "'" << symbol_table.getName(c.endo) << "', "
<< "'" << symbol_table.getName(c.exo) << "', " << c.periods << ", "
<< "[ ";
c.lower_bound->writeOutput(output);
output << ", ";
c.upper_bound->writeOutput(output);
output << " ];" << endl;
}
output << "};" << endl;
}
void
IrfCalibration::writeJsonOutput(ostream& output) const
{
output << R"({"statementName": "irf_calibration")";
if (!options_list.empty())
{
output << ", ";
options_list.writeJsonOutput(output);
}
output << R"(, "irf_restrictions": [)";
for (bool printed_something {false}; const auto& c : constraints)
{
if (exchange(printed_something, true))
output << ", ";
output << R"({"endogenous": ")" << symbol_table.getName(c.endo) << R"(")"
<< R"(, "exogenous": ")" << symbol_table.getName(c.exo) << R"(")"
<< R"(, "periods": ")" << c.periods << R"(")"
<< R"(, "lower_bound": ")";
c.lower_bound->writeJsonOutput(output, {}, {});
output << R"(")";
output << R"(, "upper_bound": ")";
c.upper_bound->writeJsonOutput(output, {}, {});
output << R"(")"
<< "}";
}
output << "]"
<< "}";
}
ShockGroupsStatement::ShockGroupsStatement(group_t shock_groups_arg, string name_arg) :
shock_groups {move(shock_groups_arg)}, name {move(name_arg)}
{
}
void
ShockGroupsStatement::writeOutput(ostream& output, [[maybe_unused]] const string& basename,
[[maybe_unused]] bool minimal_workspace) const
{
int i = 1;
for (auto it = shock_groups.begin(); it != shock_groups.end(); ++it)
{
bool unique_label {true};
for (auto it1 = it + 1; it1 != shock_groups.end(); ++it1)
if (it->name == it1->name)
{
unique_label = false;
cerr << "Warning: shock group label '" << it->name << "' has been reused. "
<< "Only using the last definition." << endl;
break;
}
if (unique_label)
{
output << "M_.shock_groups." << name << ".group" << i << ".label = '" << it->name << "';"
<< endl
<< "M_.shock_groups." << name << ".group" << i << ".shocks = {";
for (const auto& it1 : it->list)
output << " '" << it1 << "'";
output << "};" << endl;
i++;
}
}
}
void
ShockGroupsStatement::writeJsonOutput(ostream& output) const
{
output << R"({"statementName": "shock_groups", "name": ")" << name << R"(", "groups": [)";
bool printed_something {false};
for (auto it = shock_groups.begin(); it != shock_groups.end(); ++it)
{
bool unique_label {true};
for (auto it1 = it + 1; it1 != shock_groups.end(); ++it1)
if (it->name == it1->name)
{
unique_label = false;
break;
}
if (unique_label)
{
if (exchange(printed_something, true))
output << ", ";
output << R"({"group_name": ")" << it->name << R"(",)"
<< R"("shocks": [)";
for (bool printed_something2 {false}; const auto& it1 : it->list)
{
if (exchange(printed_something2, true))
output << ", ";
output << R"(")" << it1 << R"(")";
}
output << "]}";
}
}
output << "]}";
}
Init2shocksStatement::Init2shocksStatement(vector<pair<int, int>> init2shocks_arg, string name_arg,
const SymbolTable& symbol_table_arg) :
init2shocks {move(init2shocks_arg)}, name {move(name_arg)}, symbol_table {symbol_table_arg}
{
}
void
Init2shocksStatement::checkPass([[maybe_unused]] ModFileStructure& mod_file_struct,
[[maybe_unused]] WarningConsolidation& warnings)
{
for (size_t i = 0; i < init2shocks.size(); i++)
for (size_t j = i + 1; j < init2shocks.size(); j++)
if (init2shocks.at(i).first == init2shocks.at(j).first)
{
cerr << "Init2shocks(" << name << "): enogenous variable '"
<< symbol_table.getName(init2shocks.at(i).first)
<< "' appears more than once in the init2shocks statement" << endl;
exit(EXIT_FAILURE);
}
}
void
Init2shocksStatement::writeOutput(ostream& output, [[maybe_unused]] const string& basename,
[[maybe_unused]] bool minimal_workspace) const
{
output << "M_.init2shocks." << name << " = {" << endl;
for (const auto& [id1, id2] : init2shocks)
output << "{'" << symbol_table.getName(id1) << "', '" << symbol_table.getName(id2) << "'};"
<< endl;
output << "};" << endl;
}
void
Init2shocksStatement::writeJsonOutput(ostream& output) const
{
output << R"({"statementName": "init2shocks", "name": ")" << name << R"(", "groups": [)";
for (bool printed_something {false}; const auto& [id1, id2] : init2shocks)
{
if (exchange(printed_something, true))
output << ",";
output << R"({"endogenous": ")" << symbol_table.getName(id1) << R"(", )"
<< R"( "exogenous": ")" << symbol_table.getName(id2) << R"("})";
}
output << "]}";
}
HeteroskedasticShocksStatement::HeteroskedasticShocksStatement(
bool overwrite_arg, heteroskedastic_shocks_t values_arg, heteroskedastic_shocks_t scales_arg,
const SymbolTable& symbol_table_arg) :
overwrite {overwrite_arg},
values {move(values_arg)},
scales {move(scales_arg)},
symbol_table {symbol_table_arg}
{
}
void
HeteroskedasticShocksStatement::writeOutput(ostream& output,
[[maybe_unused]] const string& basename,
[[maybe_unused]] bool minimal_workspace) const
{
// NB: The first initialization of the fields is done in ModFile::writeMOutput()
if (overwrite)
output << "M_.heteroskedastic_shocks.Qvalue_orig = [];" << endl
<< "M_.heteroskedastic_shocks.Qscale_orig = [];" << endl;
for (const auto& [symb_id, vec] : values)
for (int tsid = symbol_table.getTypeSpecificID(symb_id);
const auto& [period1, period2, value] : vec)
{
output << "M_.heteroskedastic_shocks.Qvalue_orig = [M_.heteroskedastic_shocks.Qvalue_orig; "
"struct('exo_id', "
<< tsid + 1 << ",'periods'," << period1 << ":" << period2 << ",'value',";
value->writeOutput(output);
output << ")];" << endl;
}
for (const auto& [symb_id, vec] : scales)
for (int tsid = symbol_table.getTypeSpecificID(symb_id);
const auto& [period1, period2, scale] : vec)
{
output << "M_.heteroskedastic_shocks.Qscale_orig = [M_.heteroskedastic_shocks.Qscale_orig; "
"struct('exo_id', "
<< tsid + 1 << ",'periods'," << period1 << ":" << period2 << ",'scale',";
scale->writeOutput(output);
output << ")];" << endl;
}
}
void
HeteroskedasticShocksStatement::writeJsonOutput(ostream& output) const
{
output << R"({"statementName": "heteroskedastic_shocks")"
<< R"(, "overwrite": )" << boolalpha << overwrite << R"(, "shocks_values": [)";
for (bool printed_something {false}; const auto& [symb_id, vec] : values)
{
if (exchange(printed_something, true))
output << ", ";
output << R"({"var": ")" << symbol_table.getName(symb_id) << R"(", )"
<< R"("values": [)";
for (bool printed_something2 {false}; const auto& [period1, period2, value] : vec)
{
if (exchange(printed_something2, true))
output << ", ";
output << R"({"period1": )" << period1 << ", "
<< R"("period2": )" << period2 << ", "
<< R"("value": ")";
value->writeJsonOutput(output, {}, {});
output << R"("})";
}
output << "]}";
}
output << R"(], "shocks_scales": [)";
for (bool printed_something {false}; const auto& [symb_id, vec] : scales)
{
if (exchange(printed_something, true))
output << ", ";
output << R"({"var": ")" << symbol_table.getName(symb_id) << R"(", )"
<< R"("scales": [)";
for (bool printed_something2 {false}; const auto& [period1, period2, value] : vec)
{
if (exchange(printed_something2, true))
output << ", ";
output << R"({"period1": )" << period1 << ", "
<< R"("period2": )" << period2 << ", "
<< R"("value": ")";
value->writeJsonOutput(output, {}, {});
output << R"("})";
}
output << "]}";
}
output << "]}";
}