preprocessor/src/ModelTree.cc

2081 lines
73 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/*
* Copyright © 2003-2023 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <https://www.gnu.org/licenses/>.
*/
#include "ModelTree.hh"
#include "VariableDependencyGraph.hh"
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wold-style-cast"
#pragma GCC diagnostic ignored "-Wsign-compare"
#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/max_cardinality_matching.hpp>
#include <boost/graph/topological_sort.hpp>
#pragma GCC diagnostic pop
#ifdef __APPLE__
# include <mach-o/dyld.h>
#endif
#include <algorithm>
#include <regex>
#include <utility>
/* NB: The workers must be listed *after* all the other static variables
related to MEX compilation, so that when the preprocessor exits, the workers
are destroyed *before* those variables (since the former rely on the latter
for their functioning). */
condition_variable_any ModelTree::mex_compilation_cv;
mutex ModelTree::mex_compilation_mut;
vector<tuple<filesystem::path, set<filesystem::path>, string>> ModelTree::mex_compilation_queue;
set<filesystem::path> ModelTree::mex_compilation_ongoing, ModelTree::mex_compilation_done,
ModelTree::mex_compilation_failed;
vector<jthread> ModelTree::mex_compilation_workers;
void
ModelTree::copyHelper(const ModelTree& m)
{
auto f = [this](expr_t e) { return e->clone(*this); };
// Equations
for (const auto& it : m.equations)
equations.push_back(dynamic_cast<BinaryOpNode*>(f(it)));
for (const auto& it : m.aux_equations)
aux_equations.push_back(dynamic_cast<BinaryOpNode*>(f(it)));
auto convert_deriv_map = [f](const map<vector<int>, expr_t>& dm) {
map<vector<int>, expr_t> dm2;
for (const auto& it : dm)
dm2.emplace(it.first, f(it.second));
return dm2;
};
// Derivatives
for (const auto& it : m.derivatives)
derivatives.push_back(convert_deriv_map(it));
for (const auto& it : m.params_derivatives)
params_derivatives.emplace(it.first, convert_deriv_map(it.second));
for (const auto& it : m.jacobian_sparse_column_major_order)
jacobian_sparse_column_major_order.emplace(it.first, f(it.second));
auto convert_temporary_terms_t = [f](const temporary_terms_t& tt) {
temporary_terms_t tt2;
for (const auto& it : tt)
tt2.insert(f(it));
return tt2;
};
// Temporary terms
for (const auto& it : m.temporary_terms_derivatives)
temporary_terms_derivatives.push_back(convert_temporary_terms_t(it));
for (const auto& it : m.temporary_terms_idxs)
temporary_terms_idxs.emplace(f(it.first), it.second);
for (const auto& it : m.params_derivs_temporary_terms)
params_derivs_temporary_terms.emplace(it.first, convert_temporary_terms_t(it.second));
for (const auto& it : m.params_derivs_temporary_terms_idxs)
params_derivs_temporary_terms_idxs.emplace(f(it.first), it.second);
// Other stuff
for (const auto& it : m.trend_symbols_map)
trend_symbols_map.emplace(it.first, f(it.second));
for (const auto& it : m.nonstationary_symbols_map)
nonstationary_symbols_map.emplace(it.first, pair {it.second.first, f(it.second.second)});
for (const auto& it : m.equation_type_and_normalized_equation)
equation_type_and_normalized_equation.emplace_back(it.first,
dynamic_cast<BinaryOpNode*>(f(it.second)));
for (const auto& it : m.blocks_derivatives)
{
map<tuple<int, int, int>, expr_t> v;
for (const auto& it2 : it)
v.emplace(it2.first, f(it2.second));
blocks_derivatives.push_back(v);
}
auto convert_vector_tt = [f](const vector<temporary_terms_t>& vtt) {
vector<temporary_terms_t> vtt2;
for (const auto& tt : vtt)
{
temporary_terms_t tt2;
for (const auto& it : tt)
tt2.insert(f(it));
vtt2.push_back(tt2);
}
return vtt2;
};
for (const auto& it : m.blocks_temporary_terms)
blocks_temporary_terms.push_back(convert_vector_tt(it));
for (const auto& it : m.blocks_temporary_terms_idxs)
blocks_temporary_terms_idxs.emplace(f(it.first), it.second);
for (const auto& it : m.blocks_jacobian_sparse_column_major_order)
{
map<pair<int, int>, expr_t, columnMajorOrderLess> v;
for (const auto& it2 : it)
v.emplace(it2.first, f(it2.second));
blocks_jacobian_sparse_column_major_order.push_back(v);
}
}
ModelTree::ModelTree(SymbolTable& symbol_table_arg, NumericalConstants& num_constants_arg,
ExternalFunctionsTable& external_functions_table_arg, bool is_dynamic_arg) :
DataTree {symbol_table_arg, num_constants_arg, external_functions_table_arg, is_dynamic_arg},
derivatives(4),
NNZDerivatives(4, 0),
temporary_terms_derivatives(4)
{
// Ensure that elements accessed by writeParamsDerivativesFileHelper() exist
for (const auto& ord :
{pair {0, 1}, pair {1, 1}, pair {0, 2}, pair {1, 2}, pair {2, 1}, pair {3, 1}})
params_derivatives.try_emplace(ord);
}
ModelTree::ModelTree(const ModelTree& m) :
DataTree {m},
user_set_add_flags {m.user_set_add_flags},
user_set_subst_flags {m.user_set_subst_flags},
user_set_add_libs {m.user_set_add_libs},
user_set_subst_libs {m.user_set_subst_libs},
user_set_compiler {m.user_set_compiler},
equations_lineno {m.equations_lineno},
equation_tags {m.equation_tags},
computed_derivs_order {m.computed_derivs_order},
NNZDerivatives {m.NNZDerivatives},
jacobian_sparse_colptr {m.jacobian_sparse_colptr},
eq_idx_block2orig {m.eq_idx_block2orig},
endo_idx_block2orig {m.endo_idx_block2orig},
eq_idx_orig2block {m.eq_idx_orig2block},
endo_idx_orig2block {m.endo_idx_orig2block},
block_decomposed {m.block_decomposed},
time_recursive_block_decomposition {m.time_recursive_block_decomposition},
blocks {m.blocks},
endo2block {m.endo2block},
eq2block {m.eq2block},
blocks_jacobian_sparse_colptr {m.blocks_jacobian_sparse_colptr},
endo2eq {m.endo2eq},
cutoff {m.cutoff}
{
copyHelper(m);
}
ModelTree&
ModelTree::operator=(const ModelTree& m)
{
DataTree::operator=(m);
equations.clear();
equations_lineno = m.equations_lineno;
aux_equations.clear();
equation_tags = m.equation_tags;
computed_derivs_order = m.computed_derivs_order;
NNZDerivatives = m.NNZDerivatives;
derivatives.clear();
jacobian_sparse_column_major_order.clear();
jacobian_sparse_colptr = m.jacobian_sparse_colptr;
params_derivatives.clear();
temporary_terms_derivatives.clear();
params_derivs_temporary_terms.clear();
params_derivs_temporary_terms_idxs.clear();
trend_symbols_map.clear();
nonstationary_symbols_map.clear();
eq_idx_block2orig = m.eq_idx_block2orig;
endo_idx_block2orig = m.endo_idx_block2orig;
eq_idx_orig2block = m.eq_idx_orig2block;
endo_idx_orig2block = m.endo_idx_orig2block;
equation_type_and_normalized_equation.clear();
blocks_derivatives.clear();
block_decomposed = m.block_decomposed;
time_recursive_block_decomposition = m.time_recursive_block_decomposition;
blocks = m.blocks;
endo2block = m.endo2block;
eq2block = m.eq2block;
blocks_temporary_terms.clear();
blocks_temporary_terms_idxs.clear();
blocks_jacobian_sparse_column_major_order.clear();
blocks_jacobian_sparse_colptr = m.blocks_jacobian_sparse_colptr;
endo2eq = m.endo2eq;
cutoff = m.cutoff;
user_set_add_flags = m.user_set_add_flags;
user_set_subst_flags = m.user_set_subst_flags;
user_set_add_libs = m.user_set_add_libs;
user_set_subst_libs = m.user_set_subst_libs;
user_set_compiler = m.user_set_compiler;
copyHelper(m);
return *this;
}
void
ModelTree::computeNormalization(const jacob_map_t& contemporaneous_jacobian)
{
const int n {static_cast<int>(equations.size())};
assert(n == symbol_table.endo_nbr());
using BipartiteGraph = boost::adjacency_list<boost::vecS, boost::vecS, boost::undirectedS>;
using vertex_descriptor_t = boost::graph_traits<BipartiteGraph>::vertex_descriptor;
/*
Vertices 0 to n-1 are for endogenous (using type specific ID)
Vertices n to 2*n-1 are for equations (using equation no.)
*/
BipartiteGraph g(2 * n);
// Fill in the graph
for (const auto& [eq_and_endo, val] : contemporaneous_jacobian)
add_edge(eq_and_endo.first + n, eq_and_endo.second, g);
// Compute maximum cardinality matching
vector<vertex_descriptor_t> mate_map(2 * n);
edmonds_maximum_cardinality_matching(g, &mate_map[0]);
// Check if all variables are normalized
if (auto it = find(mate_map.begin(), mate_map.begin() + n,
boost::graph_traits<BipartiteGraph>::null_vertex());
it != mate_map.begin() + n)
throw ModelNormalizationFailed {
symbol_table.getName(symbol_table.getID(SymbolType::endogenous, it - mate_map.begin()))};
// Create the resulting map, by copying the n first elements of mate_map, and substracting n to
// them
endo2eq.resize(equations.size());
transform(mate_map.begin(), mate_map.begin() + n, endo2eq.begin(),
[=](vertex_descriptor_t i) { return i - n; });
}
bool
ModelTree::computeNonSingularNormalization(const eval_context_t& eval_context)
{
const int n {static_cast<int>(equations.size())};
/* Optimal policy models (discretionary, or Ramsey before computing FOCs) do
not have as many equations as variables. */
if (n != symbol_table.endo_nbr())
{
cout << "The " << modelClassName()
<< " cannot be normalized, since it does not have as many equations as variables."
<< endl;
return false;
}
cout << "Normalizing the " << modelClassName() << "..." << endl;
/* If the model is purely backward, determine whether all original equations
have a single contemporaneous endogenous on the LHS. If this is the case,
then first try a normalization by enforcing that each original equation is
matched with the endogenous on the LHS. */
if (time_recursive_block_decomposition)
{
auto [normalize_by_lhs, lhs_symbolic_jacobian] {computeLeftHandSideSymbolicJacobian()};
if (normalize_by_lhs)
try
{
computeNormalization(lhs_symbolic_jacobian);
return true;
}
catch (ModelNormalizationFailed& e)
{
cerr << "WARNING: All equations are written so that a single contemporaneous "
"endogenous variable appears on the left-hand side. This suggests a natural "
"normalization of the model. However, variable "
<< e.unmatched_endo
<< " could not be matched with an equation. Check whether this is desired."
<< endl;
}
}
auto contemporaneous_jacobian {evaluateAndReduceJacobian(eval_context)};
// Compute the maximum value of each row of the contemporaneous Jacobian matrix
vector max_val(n, 0.0);
for (const auto& [eq_and_endo, val] : contemporaneous_jacobian)
max_val[eq_and_endo.first] = max(max_val[eq_and_endo.first], fabs(val));
// Compute normalized contemporaneous Jacobian
jacob_map_t normalized_contemporaneous_jacobian(contemporaneous_jacobian);
for (auto& [eq_and_endo, val] : normalized_contemporaneous_jacobian)
val /= max_val[eq_and_endo.first];
// We start with the highest value of the cutoff and try to normalize the model
double current_cutoff = 0.99999999;
const double cutoff_lower_limit = 1e-19;
int last_suppressed = 0;
while (current_cutoff > cutoff_lower_limit)
{
// Drop elements below cutoff from normalized contemporaneous Jacobian
jacob_map_t normalized_contemporaneous_jacobian_above_cutoff;
int suppressed = 0;
for (const auto& [eq_and_endo, val] : normalized_contemporaneous_jacobian)
if (fabs(val) > max(current_cutoff, cutoff))
normalized_contemporaneous_jacobian_above_cutoff[eq_and_endo] = val;
else
suppressed++;
if (suppressed != last_suppressed)
try
{
computeNormalization(normalized_contemporaneous_jacobian_above_cutoff);
return true;
}
catch (ModelNormalizationFailed& e)
{
}
last_suppressed = suppressed;
current_cutoff /= 2;
}
// Try to normalize with the complete numerical jacobian
try
{
computeNormalization(normalized_contemporaneous_jacobian);
return true;
}
catch (ModelNormalizationFailed& e)
{
}
cout << "Normalization failed with cutoff, trying symbolic normalization..." << endl;
/* If no non-singular normalization can be found, try to find a
normalization even with a potential singularity. */
auto symbolic_jacobian {computeSymbolicJacobian(true)};
try
{
computeNormalization(symbolic_jacobian);
return true;
}
catch (ModelNormalizationFailed& e)
{
cerr << "Could not normalize the " << modelClassName() << ". Variable " << e.unmatched_endo
<< " is not in the maximum cardinality matching." << endl;
}
return false;
}
ModelTree::jacob_map_t
ModelTree::evaluateAndReduceJacobian(const eval_context_t& eval_context) const
{
jacob_map_t contemporaneous_jacobian;
for (const auto& [indices, d1] : derivatives[1])
{
int deriv_id = indices[1];
if (getTypeByDerivID(deriv_id) == SymbolType::endogenous)
{
int eq = indices[0];
int var {getTypeSpecificIDByDerivID(deriv_id)};
int lag = getLagByDerivID(deriv_id);
double val {[&] {
try
{
return d1->eval(eval_context); // NOLINT(clang-analyzer-core.NullDereference)
}
catch (ExprNode::EvalExternalFunctionException& e)
{
return 1.0;
}
/* Other types of EvalException should not happen (all symbols should
have a value; we dont evaluate an equal sign) */
}()};
if ((isnan(val) || fabs(val) >= cutoff) && lag == 0)
contemporaneous_jacobian[{eq, var}] = val;
}
}
return contemporaneous_jacobian;
}
pair<int, int>
ModelTree::computePrologueAndEpilogue()
{
const int n = equations.size();
/* Initialize “eq_idx_block2orig” and “endo_idx_block2orig” to the identity
permutation. */
eq_idx_block2orig.resize(n);
endo_idx_block2orig.resize(n);
for (int i = 0; i < n; i++)
{
eq_idx_block2orig[i] = i;
endo_idx_block2orig[endo2eq[i]] = i;
}
/* Compute incidence matrix, equations in rows, variables in columns. Row
(resp. column) indices are to be interpreted according to
“eq_idx_block2orig” (resp. “endo_idx_block2orig”). Stored in row-major
order. */
vector IM(n * n, false);
for (int i = 0; i < n; i++)
{
set<pair<int, int>> endos_and_lags;
equations[i]->collectEndogenous(endos_and_lags);
for (auto [endo, lag] : endos_and_lags)
if (!time_recursive_block_decomposition || lag == 0)
IM[i * n + endo2eq[endo]] = true;
}
bool something_has_been_done;
// Find the prologue equations and place first the AR(1) shock equations first
int prologue = 0;
do
{
something_has_been_done = false;
int new_prologue = prologue;
for (int i = prologue; i < n; i++)
{
int nze = 0;
int k = 0;
for (int j = new_prologue; j < n; j++)
if (IM[i * n + j])
{
nze++;
k = j;
}
if (nze == 1)
{
// Swap equations indexed by “new_prologue” and i
for (int j = 0; j < n; j++)
swap(IM[new_prologue * n + j], IM[i * n + j]);
swap(eq_idx_block2orig[new_prologue], eq_idx_block2orig[i]);
// Swap variables indexed by “new_prologue” and k (in the matching)
for (int j = 0; j < n; j++)
swap(IM[j * n + new_prologue], IM[j * n + k]);
swap(endo_idx_block2orig[new_prologue], endo_idx_block2orig[k]);
new_prologue++;
something_has_been_done = true;
}
}
prologue = new_prologue;
}
while (something_has_been_done);
// Find the epilogue equations
int epilogue = 0;
do
{
something_has_been_done = false;
int new_epilogue = epilogue;
for (int i = prologue; i < n - epilogue; i++)
{
int nze = 0;
int k = 0;
for (int j = prologue; j < n - new_epilogue; j++)
if (IM[j * n + i])
{
nze++;
k = j;
}
if (nze == 1)
{
for (int j = 0; j < n; j++)
swap(IM[(n - 1 - new_epilogue) * n + j], IM[k * n + j]);
swap(eq_idx_block2orig[n - 1 - new_epilogue], eq_idx_block2orig[k]);
for (int j = 0; j < n; j++)
swap(IM[j * n + n - 1 - new_epilogue], IM[j * n + i]);
swap(endo_idx_block2orig[n - 1 - new_epilogue], endo_idx_block2orig[i]);
new_epilogue++;
something_has_been_done = true;
}
}
epilogue = new_epilogue;
}
while (something_has_been_done);
updateReverseVariableEquationOrderings();
return {prologue, epilogue};
}
void
ModelTree::equationTypeDetermination(
const map<tuple<int, int, int>, expr_t>& first_order_endo_derivatives)
{
equation_type_and_normalized_equation.clear();
equation_type_and_normalized_equation.resize(equations.size());
for (int i = 0; i < static_cast<int>(equations.size()); i++)
{
int eq = eq_idx_block2orig[i];
int var = endo_idx_block2orig[i];
expr_t lhs = equations[eq]->arg1;
EquationType Equation_Simulation_Type = EquationType::solve;
BinaryOpNode* normalized_eq = nullptr;
if (auto it = first_order_endo_derivatives.find({eq, var, 0});
it != first_order_endo_derivatives.end())
{
expr_t derivative = it->second;
// Determine whether the equation can be evaluated rather than solved
if (lhs->isVariableNodeEqualTo(SymbolType::endogenous, endo_idx_block2orig[i], 0)
&& derivative->isNumConstNodeEqualTo(1))
Equation_Simulation_Type = EquationType::evaluate;
else
{
set<pair<int, int>> result;
derivative->collectEndogenous(result);
bool variable_not_in_derivative = !result.contains({var, 0});
try
{
normalized_eq = equations[eq]->normalizeEquation(
symbol_table.getID(SymbolType::endogenous, var), 0);
if ((getMFS() == 2 && variable_not_in_derivative) || getMFS() == 3)
Equation_Simulation_Type = EquationType::evaluateRenormalized;
}
catch (ExprNode::NormalizationFailed& e)
{
}
}
}
equation_type_and_normalized_equation[eq] = {Equation_Simulation_Type, normalized_eq};
}
}
void
ModelTree::computeDynamicStructureOfBlock(int blk)
{
vector max_endo_lag_lead(blocks[blk].size, pair {0, 0});
blocks[blk].max_endo_lag = blocks[blk].max_endo_lead = 0;
for (int eq = 0; eq < blocks[blk].size; eq++)
{
set<pair<int, int>> endos_and_lags;
expr_t e = getBlockEquationExpr(blk, eq);
/* Compute max lags/leads and per-variable structure for endos belonging
to this block */
e->collectEndogenous(endos_and_lags);
for (auto [endo, lag] : endos_and_lags)
if (endo2block[endo] == blk)
{
blocks[blk].max_endo_lag = max(blocks[blk].max_endo_lag, -lag);
blocks[blk].max_endo_lead = max(blocks[blk].max_endo_lead, lag);
auto& [max_endo_lag, max_endo_lead]
= max_endo_lag_lead[getBlockInitialVariableID(blk, endo)];
max_endo_lag = max(max_endo_lag, -lag);
max_endo_lead = max(max_endo_lead, lag);
}
}
}
void
ModelTree::computeSimulationTypeOfBlock(int blk)
{
auto& type = blocks[blk].simulation_type;
if (blocks[blk].max_endo_lag > 0 && blocks[blk].max_endo_lead > 0)
{
if (blocks[blk].size == 1)
type = BlockSimulationType::solveTwoBoundariesSimple;
else
type = BlockSimulationType::solveTwoBoundariesComplete;
}
else if (blocks[blk].size > 1)
{
if (blocks[blk].max_endo_lead > 0)
type = BlockSimulationType::solveBackwardComplete;
else
type = BlockSimulationType::solveForwardComplete;
}
else
{
bool can_eval = (getBlockEquationType(blk, 0) == EquationType::evaluate
|| getBlockEquationType(blk, 0) == EquationType::evaluateRenormalized);
if (blocks[blk].max_endo_lead > 0)
type = can_eval ? BlockSimulationType::evaluateBackward
: BlockSimulationType::solveBackwardSimple;
else
type = can_eval ? BlockSimulationType::evaluateForward
: BlockSimulationType::solveForwardSimple;
}
}
pair<lag_lead_vector_t, lag_lead_vector_t>
ModelTree::getVariableLeadLagByBlock() const
{
int nb_endo = symbol_table.endo_nbr();
lag_lead_vector_t variable_lag_lead(nb_endo, {0, 0}), equation_lag_lead(nb_endo, {0, 0});
for (int eq = 0; eq < nb_endo; eq++)
{
set<pair<int, int>> endos_and_lags;
equations[eq]->collectEndogenous(endos_and_lags);
for (auto [endo, lag] : endos_and_lags)
if (endo2block[endo] == eq2block[eq])
{
variable_lag_lead[endo].first = max(variable_lag_lead[endo].first, -lag);
variable_lag_lead[endo].second = max(variable_lag_lead[endo].second, lag);
equation_lag_lead[eq].first = max(equation_lag_lead[eq].first, -lag);
equation_lag_lead[eq].second = max(equation_lag_lead[eq].second, lag);
}
}
return {equation_lag_lead, variable_lag_lead};
}
void
ModelTree::computeBlockDecomposition(int prologue, int epilogue)
{
int nb_var = symbol_table.endo_nbr();
int nb_simvars = nb_var - prologue - epilogue;
/* Construct the graph representing the dependencies between all
variables that do not belong to the prologue or the epilogue.
For detecting dependencies between variables, use the symbolic adjacency
matrix */
VariableDependencyGraph G(nb_simvars);
for (const auto& [key, value] : computeSymbolicJacobian(time_recursive_block_decomposition))
{
auto [eq, endo] = key;
if (eq_idx_orig2block[eq] >= prologue && eq_idx_orig2block[eq] < nb_var - epilogue
&& endo_idx_orig2block[endo] >= prologue && endo_idx_orig2block[endo] < nb_var - epilogue
&& eq != endo2eq[endo])
add_edge(vertex(eq_idx_orig2block[endo2eq[endo]] - prologue, G),
vertex(eq_idx_orig2block[eq] - prologue, G), G);
}
/* Identify the simultaneous blocks. Each simultaneous block is given an
index, starting from 0, in recursive order */
auto [num_simblocks, simvar2simblock] = G.sortedStronglyConnectedComponents();
int num_blocks = prologue + num_simblocks + epilogue;
blocks.clear();
blocks.resize(num_blocks);
endo2block.resize(nb_var);
eq2block.resize(nb_var);
// Initialize size and mfs_size for prologue and epilogue, plus eq/endo→block mappings
for (int blk = 0; blk < num_blocks; blk++)
if (blk < prologue || blk >= num_blocks - epilogue)
{
int var_eq = (blk < prologue ? blk : blk - num_simblocks + nb_simvars);
blocks[blk].size = 1;
blocks[blk].mfs_size = 1;
blocks[blk].first_equation = var_eq;
endo2block[endo_idx_block2orig[var_eq]] = blk;
eq2block[eq_idx_block2orig[var_eq]] = blk;
}
// Initialize size for simultaneous blocks, plus eq/endo→block mappings
vector<vector<int>> simblock2simvars(num_simblocks);
for (int i = 0; i < static_cast<int>(simvar2simblock.size()); i++)
{
simblock2simvars[simvar2simblock[i]].push_back(i);
int blk = prologue + simvar2simblock[i];
blocks[blk].size++;
endo2block[endo_idx_block2orig[prologue + i]] = blk;
eq2block[eq_idx_block2orig[prologue + i]] = blk;
}
// Determine the dynamic structure of each block
auto [equation_lag_lead, variable_lag_lead] = getVariableLeadLagByBlock();
/* For each simultaneous block, the minimum set of feedback variables is
computed. Then, the variables within the blocks are reordered so that
recursive (non-feedback) appear first, in recursive order. They are
followed by feedback variables, which are reordered according to their
dynamic status (static first, then backward, mixed and forward). */
/* First, add a loop on vertices which could not be normalized or vertices
related to lead/lag variables. This forces those vertices to belong to the
feedback set */
for (int i = 0; i < nb_simvars; i++)
if (equation_type_and_normalized_equation[eq_idx_block2orig[i + prologue]].first
== EquationType::solve
|| (!time_recursive_block_decomposition
&& (variable_lag_lead[endo_idx_block2orig[i + prologue]].first > 0
|| variable_lag_lead[endo_idx_block2orig[i + prologue]].second > 0
|| equation_lag_lead[eq_idx_block2orig[i + prologue]].first > 0
|| equation_lag_lead[eq_idx_block2orig[i + prologue]].second > 0))
|| getMFS() == 0)
add_edge(vertex(i, G), vertex(i, G), G);
const vector<int> old_eq_idx_block2orig(eq_idx_block2orig),
old_endo_idx_block2orig(endo_idx_block2orig);
int ordidx = prologue;
for (int blk = prologue; blk < prologue + num_simblocks; blk++)
{
blocks[blk].first_equation
= (blk == 0 ? 0 : blocks[blk - 1].first_equation + blocks[blk - 1].size);
auto subG = G.extractSubgraph(simblock2simvars[blk - prologue]);
auto feed_back_vertices = subG.minimalSetOfFeedbackVertices();
blocks[blk].mfs_size = feed_back_vertices.size();
auto recursive_vertices = subG.reorderRecursiveVariables(feed_back_vertices);
auto v_index1 = get(boost::vertex_index1, subG);
/* First the recursive variables conditional on feedback variables, in
recursive order */
for (int vtx : recursive_vertices)
{
int simvar {v_index1[vertex(vtx, subG)]};
eq_idx_block2orig[ordidx] = old_eq_idx_block2orig[simvar + prologue];
endo_idx_block2orig[ordidx] = old_endo_idx_block2orig[simvar + prologue];
ordidx++;
}
// Then the feedback variables, reordered by dynamic status
for (auto max_lag_lead : {pair {0, 0}, pair {1, 0}, pair {1, 1}, pair {0, 1}})
for (int vtx : feed_back_vertices)
if (int simvar = v_index1[vertex(vtx, subG)];
variable_lag_lead[old_endo_idx_block2orig[simvar + prologue]] == max_lag_lead)
{
eq_idx_block2orig[ordidx] = old_eq_idx_block2orig[simvar + prologue];
endo_idx_block2orig[ordidx] = old_endo_idx_block2orig[simvar + prologue];
ordidx++;
}
}
updateReverseVariableEquationOrderings();
for (int blk = 0; blk < static_cast<int>(blocks.size()); blk++)
{
computeDynamicStructureOfBlock(blk);
computeSimulationTypeOfBlock(blk);
}
}
void
ModelTree::printBlockDecomposition() const
{
int largest_block = 0, Nb_SimulBlocks = 0, Nb_feedback_variable = 0;
int Nb_TotalBlocks = blocks.size();
for (int block = 0; block < Nb_TotalBlocks; block++)
if (BlockSimulationType simulation_type = blocks[block].simulation_type;
simulation_type == BlockSimulationType::solveForwardComplete
|| simulation_type == BlockSimulationType::solveBackwardComplete
|| simulation_type == BlockSimulationType::solveTwoBoundariesComplete)
{
Nb_SimulBlocks++;
if (int size = blocks[block].size; size > largest_block)
{
largest_block = size;
Nb_feedback_variable = blocks[block].mfs_size;
}
}
int Nb_RecursBlocks = Nb_TotalBlocks - Nb_SimulBlocks;
cout << Nb_TotalBlocks << " block(s) found:" << endl
<< " " << Nb_RecursBlocks << " recursive block(s) and " << Nb_SimulBlocks
<< " simultaneous block(s)." << endl
<< " the largest simultaneous block has " << largest_block << " equation(s)" << endl
<< " and " << Nb_feedback_variable
<< " feedback variable(s)." << endl;
}
void
ModelTree::reduceBlockDecomposition()
{
for (int blk = 1; blk < static_cast<int>(blocks.size()); blk++)
if (blocks[blk].size == 1)
{
/* Try to merge this block with the previous one.
This is only possible if the two blocks can simply be evaluated
(in the same direction), and if the merge does not break the
restrictions on leads/lags. */
set<pair<int, int>> endos_and_lags;
getBlockEquationExpr(blk, 0)->collectEndogenous(endos_and_lags);
bool is_lead = false, is_lag = false;
for (int var = 0; var < blocks[blk - 1].size; var++)
{
is_lag = is_lag || endos_and_lags.contains({getBlockVariableID(blk - 1, var), -1});
is_lead = is_lead || endos_and_lags.contains({getBlockVariableID(blk - 1, var), 1});
}
if ((blocks[blk - 1].simulation_type == BlockSimulationType::evaluateForward
&& blocks[blk].simulation_type == BlockSimulationType::evaluateForward && !is_lead)
|| (blocks[blk - 1].simulation_type == BlockSimulationType::evaluateBackward
&& blocks[blk].simulation_type == BlockSimulationType::evaluateBackward && !is_lag))
{
// Merge the current block into the previous one
blocks[blk - 1].size++;
blocks[blk - 1].mfs_size = blocks[blk - 1].size;
computeDynamicStructureOfBlock(blk - 1);
blocks.erase(blocks.begin() + blk);
for (auto& b : endo2block)
if (b >= blk)
b--;
for (auto& b : eq2block)
if (b >= blk)
b--;
blk--;
continue;
}
}
}
void
ModelTree::determineLinearBlocks()
{
// Note that field “linear” in class BlockInfo defaults to true
for (int blk = 0; blk < static_cast<int>(blocks.size()); blk++)
switch (blocks[blk].simulation_type)
{
case BlockSimulationType::solveBackwardSimple:
case BlockSimulationType::solveBackwardComplete:
case BlockSimulationType::solveForwardSimple:
case BlockSimulationType::solveForwardComplete:
for (const auto& [indices, d1] : blocks_derivatives[blk])
{
int lag = get<2>(indices);
if (lag == 0)
{
set<pair<int, int>> endogenous;
d1->collectEndogenous(endogenous);
for (int l = 0; l < blocks[blk].size; l++)
if (endogenous.contains({endo_idx_block2orig[blocks[blk].first_equation + l], 0}))
{
blocks[blk].linear = false;
goto the_end;
}
}
}
the_end:
break;
case BlockSimulationType::solveTwoBoundariesComplete:
case BlockSimulationType::solveTwoBoundariesSimple:
for (const auto& [indices, d1] : blocks_derivatives[blk])
{
int lag = get<2>(indices);
set<pair<int, int>> endogenous;
d1->collectEndogenous(endogenous);
for (int l = 0; l < blocks[blk].size; l++)
if (endogenous.contains({endo_idx_block2orig[blocks[blk].first_equation + l], lag}))
{
blocks[blk].linear = false;
goto the_end2;
}
}
the_end2:
break;
default:
break;
}
}
int
ModelTree::equation_number() const
{
return (equations.size());
}
void
ModelTree::computeDerivatives(int order, const set<int>& vars)
{
assert(order >= 1);
computed_derivs_order = order;
// Do not shrink the vectors, since they have a minimal size of 4 (see constructor)
derivatives.resize(max(static_cast<size_t>(order + 1), derivatives.size()));
NNZDerivatives.resize(max(static_cast<size_t>(order + 1), NNZDerivatives.size()), 0);
// First-order derivatives
for (int var : vars)
for (int eq = 0; eq < static_cast<int>(equations.size()); eq++)
{
expr_t d1 = equations[eq]->getDerivative(var);
if (d1 == Zero)
continue;
derivatives[1][{eq, var}] = d1;
++NNZDerivatives[1];
}
// Compute the sparse representation of the Jacobian
for (const auto& [indices, d1] : derivatives[1])
jacobian_sparse_column_major_order.try_emplace({indices[0], getJacobianCol(indices[1], true)},
d1);
jacobian_sparse_colptr
= computeCSCColPtr(jacobian_sparse_column_major_order, getJacobianColsNbr(true));
// Higher-order derivatives
for (int o = 2; o <= order; o++)
for (const auto& [lower_indices, lower_d] : derivatives[o - 1])
for (int var : vars)
{
if (lower_indices.back() > var)
continue;
expr_t d = lower_d->getDerivative(var);
if (d == Zero)
continue;
vector<int> indices {lower_indices};
indices.push_back(var);
// At this point, indices of endogenous variables are sorted in non-decreasing order
derivatives[o][indices] = d;
// We output symmetric elements at order = 2
if (o == 2 && indices[1] != indices[2])
NNZDerivatives[o] += 2;
else
NNZDerivatives[o]++;
}
}
void
ModelTree::computeTemporaryTerms(bool is_matlab, bool no_tmp_terms)
{
/* Ensure that we dont have any model-local variable in the model at this
point (we used to treat them as temporary terms) */
assert([&] {
set<int> used_local_vars;
for (auto& equation : equations)
equation->collectVariables(SymbolType::modelLocalVariable, used_local_vars);
return used_local_vars.empty();
}());
// Compute the temporary terms in equations and derivatives
map<pair<int, int>, unordered_set<expr_t>> temp_terms_map;
unordered_map<expr_t, pair<int, pair<int, int>>> reference_count;
for (auto& equation : equations)
equation->computeTemporaryTerms({0, 0}, temp_terms_map, reference_count, is_matlab);
for (int order = 1; order < static_cast<int>(derivatives.size()); order++)
for (const auto& it : derivatives[order])
it.second->computeTemporaryTerms({order, 0}, temp_terms_map, reference_count, is_matlab);
/* If the user has specified the notmpterms option, clear all temporary
terms, except those that correspond to external functions (since they are
not optional) */
if (no_tmp_terms)
for (auto& it : temp_terms_map)
erase_if(it.second, [](expr_t e) { return !dynamic_cast<AbstractExternalFunctionNode*>(e); });
// Fill the structures
temporary_terms_derivatives.clear();
temporary_terms_derivatives.resize(derivatives.size());
for (int order = 0; order < static_cast<int>(derivatives.size()); order++)
copy(temp_terms_map[{order, 0}].begin(), temp_terms_map[{order, 0}].end(),
inserter(temporary_terms_derivatives.at(order),
temporary_terms_derivatives.at(order).begin()));
// Compute indices in MATLAB/Julia vector
for (int order {0}, idx {0}; order < static_cast<int>(derivatives.size()); order++)
for (auto it : temporary_terms_derivatives[order])
temporary_terms_idxs[it] = idx++;
}
void
ModelTree::computeBlockTemporaryTerms(bool no_tmp_terms)
{
int nb_blocks = blocks.size();
unordered_map<expr_t, tuple<int, int, int>> reference_count;
vector<vector<unordered_set<expr_t>>> temp_terms(nb_blocks);
for (int blk = 0; blk < nb_blocks; blk++)
{
temp_terms[blk].resize(blocks[blk].size + 1);
for (int eq = 0; eq < blocks[blk].size; eq++)
{
/* It is important to compute temporary terms of the renormalized
equation if the latter is going to be used in the output files.
Otherwise, for an equation of the form log(x) = RHS, a temporary
term could be associated to log(x), and since it would be
associated to this equation, it would be printed and thus computed
*before* x is actually evaluated, and thus would be incorrect. */
if ((blocks[blk].simulation_type == BlockSimulationType::evaluateBackward
|| blocks[blk].simulation_type == BlockSimulationType::evaluateForward
|| eq < blocks[blk].getRecursiveSize())
&& isBlockEquationRenormalized(blk, eq))
getBlockEquationRenormalizedExpr(blk, eq)->computeBlockTemporaryTerms(
blk, eq, temp_terms, reference_count);
else
getBlockEquationExpr(blk, eq)->computeBlockTemporaryTerms(blk, eq, temp_terms,
reference_count);
}
for (const auto& [ignore, d] : blocks_derivatives[blk])
d->computeBlockTemporaryTerms(blk, blocks[blk].size, temp_terms, reference_count);
}
/* If the user has specified the notmpterms option, clear all temporary
terms, except those that correspond to external functions (since they are
not optional) */
if (no_tmp_terms)
for (auto& it : temp_terms)
for (auto& it2 : it)
erase_if(it2, [](expr_t e) { return !dynamic_cast<AbstractExternalFunctionNode*>(e); });
blocks_temporary_terms.resize(nb_blocks);
for (int blk {0}; blk < nb_blocks; blk++)
{
blocks_temporary_terms.at(blk).resize(temp_terms.at(blk).size());
for (size_t i {0}; i < temp_terms.at(blk).size(); i++)
copy(temp_terms.at(blk).at(i).begin(), temp_terms.at(blk).at(i).end(),
inserter(blocks_temporary_terms.at(blk).at(i),
blocks_temporary_terms.at(blk).at(i).begin()));
}
// Compute indices in the temporary terms vector
blocks_temporary_terms_idxs.clear();
for (int idx {0}; auto& blk_tt : blocks_temporary_terms)
for (auto& eq_tt : blk_tt)
for (auto tt : eq_tt)
blocks_temporary_terms_idxs[tt] = idx++;
}
void
ModelTree::writeJsonTemporaryTerms(const temporary_terms_t& tt, temporary_terms_t& temp_term_union,
ostream& output, deriv_node_temp_terms_t& tef_terms,
const string& concat) const
{
// Local var used to keep track of temp nodes already written
temporary_terms_t tt2 = temp_term_union;
output << R"("external_functions_temporary_terms_)" << concat << R"(": [)";
for (bool printed_term {false}; auto it : tt)
{
if (dynamic_cast<AbstractExternalFunctionNode*>(it))
{
if (exchange(printed_term, true))
output << ", ";
vector<string> efout;
it->writeJsonExternalFunctionOutput(efout, tt2, tef_terms);
for (bool printed_efout {false}; auto& it : efout)
{
if (exchange(printed_efout, true))
output << ", ";
output << it;
}
}
tt2.insert(it);
}
output << "]"
<< R"(, "temporary_terms_)" << concat << R"(": [)";
for (bool printed_term {false}; const auto& it : tt)
{
if (exchange(printed_term, true))
output << ", ";
output << R"({"temporary_term": ")";
it->writeJsonOutput(output, tt, tef_terms);
output << R"(")"
<< R"(, "value": ")";
it->writeJsonOutput(output, temp_term_union, tef_terms);
output << R"("})" << endl;
temp_term_union.insert(it);
}
output << "]";
}
void
ModelTree::fixNestedParenthesis(ostringstream& output, map<string, string>& tmp_paren_vars,
bool& message_printed) const
{
string str = output.str();
if (!testNestedParenthesis(str))
return;
int open = 0;
int first_open_paren = 0;
int matching_paren = 0;
bool hit_limit = false;
int i1 = 0;
for (size_t i = 0; i < str.length(); i++)
{
if (str.at(i) == '(')
{
if (open == 0)
first_open_paren = i;
open++;
}
else if (str.at(i) == ')')
{
open--;
if (open == 0)
matching_paren = i;
}
if (open > 32)
hit_limit = true;
if (hit_limit && open == 0)
{
if (!message_printed)
{
cerr << "Warning: A .m file created by Dynare will have more than 32 nested "
"parenthesis. MATLAB cannot support this. "
<< endl
<< " We are going to modify, albeit inefficiently, this output to have "
"fewer than 32 nested parenthesis. "
<< endl
<< " It would hence behoove you to use the use_dll option of the model "
"block to circumnavigate this problem."
<< endl
<< " If you have not yet set up a compiler on your system, see the "
"MATLAB documentation for doing so."
<< endl
<< " For Windows, see: "
"https://www.mathworks.com/help/matlab/matlab_external/"
"install-mingw-support-package.html"
<< endl
<< endl;
message_printed = true;
}
string str1 = str.substr(first_open_paren, matching_paren - first_open_paren + 1);
string repstr, varname;
while (testNestedParenthesis(str1))
{
size_t open_paren_idx = string::npos;
size_t match_paren_idx = string::npos;
size_t last_open_paren = string::npos;
for (size_t j = 0; j < str1.length(); j++)
{
if (str1.at(j) == '(')
{
// don't match, e.g. y(1)
if (size_t idx = str1.find_last_of("*/-+", j - 1);
j == 0 || (idx != string::npos && idx == j - 1))
open_paren_idx = j;
last_open_paren = j;
}
else if (str1.at(j) == ')')
{
// don't match, e.g. y(1)
if (size_t idx = str1.find_last_not_of("0123456789", j - 1);
idx != string::npos && idx != last_open_paren)
match_paren_idx = j;
}
if (open_paren_idx != string::npos && match_paren_idx != string::npos)
{
string val
= str1.substr(open_paren_idx, match_paren_idx - open_paren_idx + 1);
if (auto it = tmp_paren_vars.find(val); it == tmp_paren_vars.end())
{
varname = "paren32_tmp_var_" + to_string(i1++);
repstr += varname + " = " + val + ";\n";
tmp_paren_vars[val] = varname;
}
else
varname = it->second;
str1.replace(open_paren_idx, match_paren_idx - open_paren_idx + 1, varname);
break;
}
}
}
if (auto it = tmp_paren_vars.find(str1); it == tmp_paren_vars.end())
{
varname = "paren32_tmp_var_" + to_string(i1++);
repstr += varname + " = " + str1 + ";\n";
}
else
varname = it->second;
str.replace(first_open_paren, matching_paren - first_open_paren + 1, varname);
size_t insertLoc = str.find_last_of('\n', first_open_paren);
str.insert(insertLoc + 1, repstr);
hit_limit = false;
i = -1;
first_open_paren = matching_paren = open = 0;
}
}
output.str(str);
}
bool
ModelTree::testNestedParenthesis(const string& str) const
{
for (int open {0}; char i : str)
{
if (i == '(')
open++;
else if (i == ')')
open--;
if (open > 32)
return true;
}
return false;
}
void
ModelTree::writeJsonModelLocalVariables(ostream& output, bool write_tef_terms,
deriv_node_temp_terms_t& tef_terms) const
{
/* Collect all model local variables appearing in equations, and print only
them. Printing unused model local variables can lead to a crash (see
ticket #101). */
set<int> used_local_vars;
for (auto equation : equations)
equation->collectVariables(SymbolType::modelLocalVariable, used_local_vars);
output << R"("model_local_variables": [)";
for (bool printed_something {false}; int id : local_variables_vector)
if (used_local_vars.contains(id))
{
if (exchange(printed_something, true))
output << ", ";
expr_t value = local_variables_table.at(id);
if (write_tef_terms)
{
vector<string> efout;
value->writeJsonExternalFunctionOutput(efout, {}, tef_terms);
for (bool printed_efout {false}; auto& it : efout)
{
if (exchange(printed_efout, true))
output << ", ";
output << it;
}
if (!efout.empty())
output << ", ";
}
output << R"({"variable": ")" << symbol_table.getName(id) << R"(", "value": ")";
value->writeJsonOutput(output, {}, tef_terms);
output << R"("})" << endl;
}
output << "]";
}
int
ModelTree::writeBytecodeBinFile(const filesystem::path& filename, bool is_two_boundaries) const
{
ofstream SaveCode {filename, ios::out | ios::binary};
if (!SaveCode.is_open())
{
cerr << R"(Error : Can't open file ")" << filename.string() << R"(" for writing)" << endl;
exit(EXIT_FAILURE);
}
int u_count {0};
for (const auto& [indices, d1] : derivatives[1])
if (int deriv_id {indices[1]}; getTypeByDerivID(deriv_id) == SymbolType::endogenous)
{
int eq {indices[0]};
SaveCode.write(reinterpret_cast<char*>(&eq), sizeof eq);
int tsid {getTypeSpecificIDByDerivID(deriv_id)};
int lag {getLagByDerivID(deriv_id)};
int varr {tsid + lag * symbol_table.endo_nbr()};
SaveCode.write(reinterpret_cast<char*>(&varr), sizeof varr);
SaveCode.write(reinterpret_cast<char*>(&lag), sizeof lag);
int u {u_count + symbol_table.endo_nbr()};
SaveCode.write(reinterpret_cast<char*>(&u), sizeof u);
u_count++;
}
if (is_two_boundaries)
u_count += symbol_table.endo_nbr();
for (int j {0}; j < symbol_table.endo_nbr(); j++)
SaveCode.write(reinterpret_cast<char*>(&j), sizeof j);
for (int j {0}; j < symbol_table.endo_nbr(); j++)
SaveCode.write(reinterpret_cast<char*>(&j), sizeof j);
SaveCode.close();
return u_count;
}
int
ModelTree::writeBlockBytecodeBinFile(ofstream& bin_file, int block) const
{
int u_count {0};
int block_size {blocks[block].size};
int block_mfs {blocks[block].mfs_size};
int block_recursive {blocks[block].getRecursiveSize()};
BlockSimulationType simulation_type {blocks[block].simulation_type};
bool is_two_boundaries {simulation_type == BlockSimulationType::solveTwoBoundariesComplete
|| simulation_type == BlockSimulationType::solveTwoBoundariesSimple};
for (const auto& [indices, ignore] : blocks_derivatives[block])
{
const auto& [eq, var, lag] {indices};
if (lag != 0 && !is_two_boundaries)
continue;
if (eq >= block_recursive && var >= block_recursive)
{
int v {eq - block_recursive};
bin_file.write(reinterpret_cast<char*>(&v), sizeof v);
int varr {var - block_recursive + lag * block_mfs};
bin_file.write(reinterpret_cast<char*>(&varr), sizeof varr);
bin_file.write(reinterpret_cast<const char*>(&lag), sizeof lag);
int u {u_count + block_mfs};
bin_file.write(reinterpret_cast<char*>(&u), sizeof u);
u_count++;
}
}
if (is_two_boundaries)
u_count += block_mfs;
for (int j {block_recursive}; j < block_size; j++)
{
int varr {getBlockVariableID(block, j)};
bin_file.write(reinterpret_cast<char*>(&varr), sizeof varr);
}
for (int j {block_recursive}; j < block_size; j++)
{
int eqr {getBlockEquationID(block, j)};
bin_file.write(reinterpret_cast<char*>(&eqr), sizeof eqr);
}
return u_count;
}
void
ModelTree::writeLatexModelFile(const string& mod_basename, const string& latex_basename,
ExprNodeOutputType output_type, bool write_equation_tags) const
{
filesystem::create_directories(mod_basename + "/latex");
const filesystem::path filename {mod_basename + "/latex/" + latex_basename + ".tex"},
content_filename {mod_basename + "/latex/" + latex_basename + "_content" + ".tex"};
ofstream output {filename, ios::out | ios::binary};
if (!output.is_open())
{
cerr << "ERROR: Can't open file " << filename.string() << " for writing" << endl;
exit(EXIT_FAILURE);
}
ofstream content_output {content_filename, ios::out | ios::binary};
if (!content_output.is_open())
{
cerr << "ERROR: Can't open file " << content_filename.string() << " for writing" << endl;
exit(EXIT_FAILURE);
}
output << R"(\documentclass[10pt,a4paper]{article})" << endl
<< R"(\usepackage[landscape]{geometry})" << endl
<< R"(\usepackage{fullpage})" << endl
<< R"(\usepackage{amsfonts})" << endl
<< R"(\usepackage{breqn})" << endl
<< R"(\begin{document})" << endl
<< R"(\footnotesize)" << endl;
// Write model local variables
for (int id : local_variables_vector)
{
expr_t value = local_variables_table.at(id);
content_output << R"(\begin{dmath*})" << endl << symbol_table.getTeXName(id) << " = ";
// Use an empty set for the temporary terms
value->writeOutput(content_output, output_type);
content_output << endl << R"(\end{dmath*})" << endl;
}
for (int eq = 0; eq < static_cast<int>(equations.size()); eq++)
{
content_output << "% Equation " << eq + 1 << endl;
if (write_equation_tags)
equation_tags.writeLatexOutput(content_output, eq);
content_output << R"(\begin{dmath})" << endl;
// Here it is necessary to cast to superclass ExprNode, otherwise the overloaded writeOutput()
// method is not found
dynamic_cast<ExprNode*>(equations[eq])->writeOutput(content_output, output_type);
content_output << endl << R"(\end{dmath})" << endl;
}
output << R"(\include{)" << latex_basename + "_content"
<< "}" << endl
<< R"(\end{document})" << endl;
output.close();
content_output.close();
}
void
ModelTree::addEquation(expr_t eq, const optional<int>& lineno)
{
auto beq = dynamic_cast<BinaryOpNode*>(eq);
assert(beq && beq->op_code == BinaryOpcode::equal);
equations.push_back(beq);
equations_lineno.push_back(lineno);
}
void
ModelTree::findConstantEquationsWithoutMcpTag(map<VariableNode*, NumConstNode*>& subst_table) const
{
for (size_t i = 0; i < equations.size(); i++)
if (!equation_tags.exists(i, "mcp"))
equations[i]->findConstantEquations(subst_table);
}
void
ModelTree::addEquation(expr_t eq, const optional<int>& lineno, map<string, string> eq_tags)
{
equation_tags.add(equations.size(), move(eq_tags));
addEquation(eq, lineno);
}
void
ModelTree::addAuxEquation(expr_t eq)
{
auto beq = dynamic_cast<BinaryOpNode*>(eq);
assert(beq && beq->op_code == BinaryOpcode::equal);
aux_equations.push_back(beq);
}
void
ModelTree::addTrendVariables(const vector<int>& trend_vars, expr_t growth_factor) noexcept(false)
{
for (int id : trend_vars)
if (trend_symbols_map.contains(id))
throw TrendException {symbol_table.getName(id)};
else
trend_symbols_map[id] = growth_factor;
}
void
ModelTree::addNonstationaryVariables(const vector<int>& nonstationary_vars, bool log_deflator,
expr_t deflator) noexcept(false)
{
for (int id : nonstationary_vars)
if (nonstationary_symbols_map.contains(id))
throw TrendException {symbol_table.getName(id)};
else
nonstationary_symbols_map[id] = {log_deflator, deflator};
}
void
ModelTree::initializeVariablesAndEquations()
{
for (size_t j = 0; j < equations.size(); j++)
eq_idx_block2orig.push_back(j);
for (int j = 0; j < symbol_table.endo_nbr(); j++)
endo_idx_block2orig.push_back(j);
}
void
ModelTree::set_cutoff_to_zero()
{
cutoff = 0;
}
void
ModelTree::computeParamsDerivatives(int paramsDerivsOrder)
{
assert(paramsDerivsOrder >= 1);
set<int> deriv_id_set;
addAllParamDerivId(deriv_id_set);
// First-order derivatives w.r.t. params
for (int param : deriv_id_set)
{
for (int eq = 0; eq < static_cast<int>(equations.size()); eq++)
{
expr_t d = equations[eq]->getDerivative(param);
if (d == Zero)
continue;
params_derivatives[{0, 1}][{eq, param}] = d;
}
for (int endoOrd = 1; endoOrd < static_cast<int>(derivatives.size()); endoOrd++)
for (const auto& [lower_indices, lower_d] : derivatives[endoOrd])
{
expr_t d = lower_d->getDerivative(param);
if (d == Zero)
continue;
vector<int> indices {lower_indices};
indices.push_back(param);
params_derivatives[{endoOrd, 1}][indices] = d;
}
}
// Higher-order derivatives w.r.t. parameters
for (int endoOrd = 0; endoOrd < static_cast<int>(derivatives.size()); endoOrd++)
for (int paramOrd = 2; paramOrd <= paramsDerivsOrder; paramOrd++)
for (const auto& [lower_indices, lower_d] : params_derivatives[{endoOrd, paramOrd - 1}])
for (int param : deriv_id_set)
{
if (lower_indices.back() > param)
continue;
expr_t d = lower_d->getDerivative(param);
if (d == Zero)
continue;
vector<int> indices {lower_indices};
indices.push_back(param);
// At this point, indices of both endogenous and parameters are sorted in non-decreasing
// order
params_derivatives[{endoOrd, paramOrd}][indices] = d;
}
}
void
ModelTree::computeParamsDerivativesTemporaryTerms()
{
unordered_map<expr_t, pair<int, pair<int, int>>> reference_count;
/* The temp terms should be constructed in the same order as the for loops in
{Static,Dynamic}Model::write{Json,}ParamsDerivativesFile() */
map<pair<int, int>, unordered_set<expr_t>> temp_terms_map;
for (const auto& [order, derivs] : params_derivatives)
for (const auto& [indices, d] : derivs)
d->computeTemporaryTerms(order, temp_terms_map, reference_count, true);
for (const auto& [order, tts] : temp_terms_map)
copy(temp_terms_map[order].begin(), temp_terms_map[order].end(),
inserter(params_derivs_temporary_terms[order],
params_derivs_temporary_terms[order].begin()));
for (int idx {0}; const auto& [order, tts] : params_derivs_temporary_terms)
for (const auto& tt : tts)
params_derivs_temporary_terms_idxs[tt] = idx++;
}
bool
ModelTree::isNonstationary(int symb_id) const
{
return nonstationary_symbols_map.contains(symb_id);
}
void
ModelTree::writeJsonModelEquations(ostream& output, bool residuals) const
{
if (residuals)
output << endl << R"("residuals":[)" << endl;
else
output << endl << R"("model":[)" << endl;
for (int eq = 0; eq < static_cast<int>(equations.size()); eq++)
{
if (eq > 0)
output << ", ";
BinaryOpNode* eq_node = equations[eq];
expr_t lhs = eq_node->arg1;
expr_t rhs = eq_node->arg2;
if (residuals)
{
output << R"({"residual": {)"
<< R"("lhs": ")";
lhs->writeJsonOutput(output, {}, {});
output << R"(")";
output << R"(, "rhs": ")";
rhs->writeJsonOutput(output, {}, {});
output << R"("})";
}
else
{
output << R"({"lhs": ")";
lhs->writeJsonOutput(output, {}, {});
output << R"(", "rhs": ")";
rhs->writeJsonOutput(output, {}, {});
output << R"(")";
if (equations_lineno[eq])
output << R"(, "line": )" << *equations_lineno[eq];
if (auto eqtags = equation_tags.getTagsByEqn(eq); !eqtags.empty())
{
output << R"(, "tags": {)";
for (bool printed_something {false}; const auto& [name, value] : eqtags)
{
if (exchange(printed_something, true))
output << ", ";
output << R"(")" << name << R"(": ")" << value << R"(")";
}
output << "}";
eqtags.clear();
}
}
output << "}" << endl;
}
output << endl << "]" << endl;
}
string
ModelTree::matlab_arch(const string& mexext)
{
if (mexext == "mexglx")
return "glnx86";
else if (mexext == "mexa64")
return "glnxa64";
if (mexext == "mexw32")
return "win32";
else if (mexext == "mexw64")
return "win64";
else if (mexext == "mexmaci")
{
cerr << "32-bit MATLAB not supported on macOS" << endl;
exit(EXIT_FAILURE);
}
else if (mexext == "mexmaci64")
return "maci64";
else if (mexext == "mexmaca64")
return "maca64";
else
{
cerr << "ERROR: 'mexext' option to preprocessor incorrectly set, needed with 'use_dll'"
<< endl;
exit(EXIT_FAILURE);
}
}
#ifdef __APPLE__
pair<filesystem::path, bool>
ModelTree::findCompilerOnMacos(const string& mexext)
{
/* Try to find gcc, otherwise use Apples clang compiler.
Homebrew binaries are located in /usr/local/bin/ on x86_64 systems and in
/opt/homebrew/bin/ on arm64 systems.
Apples clang is located both in /usr/bin/gcc and /usr/bin/clang, it
automatically selects x86_64 or arm64 depending on the compile-time
environment. */
const string macos_gcc_version {"13"};
if (filesystem::path global_gcc_path {"/usr/local/bin/gcc-" + macos_gcc_version};
exists(global_gcc_path) && mexext == "mexmaci64")
return {global_gcc_path, false};
else if (filesystem::path global_gcc_path {"/opt/homebrew/bin/gcc-" + macos_gcc_version};
exists(global_gcc_path) && mexext == "mexmaca64")
return {global_gcc_path, false};
else if (filesystem::path global_clang_path {"/usr/bin/clang"}; exists(global_clang_path))
return {global_clang_path, true};
else
{
cerr << "ERROR: You must install gcc-" << macos_gcc_version
<< " on your system before using the `use_dll` option of Dynare. "
<< "You should install Homebrew";
if (mexext == "mexmaca64")
cerr << " for arm64";
else if (mexext == "mexmaci64")
cerr << " for x86_64";
cerr << " and run `brew install gcc-" << macos_gcc_version << "` in a terminal." << endl;
exit(EXIT_FAILURE);
}
}
#endif
filesystem::path
ModelTree::compileMEX(const filesystem::path& output_dir, const string& output_basename,
const string& mexext, const vector<filesystem::path>& input_files,
const filesystem::path& matlabroot, bool link) const
{
assert(!mex_compilation_workers.empty());
const string gcc_opt_flags {
"-O3 -g0 --param ira-max-conflict-table-size=1 -fno-forward-propagate -fno-gcse -fno-dce "
"-fno-dse -fno-tree-fre -fno-tree-pre -fno-tree-cselim -fno-tree-dse -fno-tree-dce "
"-fno-tree-pta -fno-gcse-after-reload"};
const string clang_opt_flags {
"-O3 -g0 --param ira-max-conflict-table-size=1 -Wno-unused-command-line-argument"};
filesystem::path compiler;
ostringstream flags;
string libs;
bool is_clang {false};
if (matlabroot.empty())
{
cerr << "ERROR: 'matlabroot' option to preprocessor is not set, needed with 'use_dll'"
<< endl;
exit(EXIT_FAILURE);
}
if (mexext == "mex")
{
// Octave
compiler = matlabroot / "bin" / "mkoctfile";
flags << "--mex";
}
else
{
// MATLAB
compiler = "gcc";
string arch = matlab_arch(mexext);
auto include_dir = matlabroot / "extern" / "include";
flags << "-I " << include_dir;
auto bin_dir = matlabroot / "bin" / arch;
flags << " -L " << bin_dir;
flags << " -fexceptions -DNDEBUG";
libs = "-lmex -lmx";
if (mexext == "mexa64")
{
// GNU/Linux
flags << " -D_GNU_SOURCE -fPIC -pthread"
<< " -shared -Wl,--no-undefined -Wl,-rpath-link," << bin_dir;
libs += " -lm";
}
else if (mexext == "mexw64") // Windows
flags << " -static-libgcc -shared";
#ifdef __APPLE__
else if (mexext == "mexmaci64" || mexext == "mexmaca64")
{
tie(compiler, is_clang) = findCompilerOnMacos(mexext);
flags << " -fno-common -Wl,-twolevel_namespace -undefined error -bundle";
libs += " -lm";
}
#endif
else
{
cerr << "ERROR: unsupported value '" << mexext << "' for 'mexext' option" << endl;
exit(EXIT_FAILURE);
}
}
filesystem::path output_filename {output_dir / (output_basename + "." + (link ? mexext : "o"))};
ostringstream cmd;
#ifdef _WIN32
/* On Windows, system() hands the command over to "cmd.exe /C". We need to
enclose the whole command line within double quotes if we want the inner
quotes to be correctly handled. See "cmd /?" for more details. */
cmd << '"';
#endif
if (user_set_compiler.empty())
cmd << compiler << " ";
else if (!filesystem::exists(user_set_compiler))
{
cerr << "Error: The specified compiler '" << user_set_compiler
<< "' cannot be found on your system" << endl;
exit(EXIT_FAILURE);
}
else
cmd << user_set_compiler << " ";
if (user_set_subst_flags.empty())
cmd << (is_clang ? clang_opt_flags : gcc_opt_flags) << " " << flags.str() << " ";
else
cmd << user_set_subst_flags << " ";
if (!user_set_add_flags.empty())
cmd << user_set_add_flags << " ";
for (auto& f : input_files)
cmd << f << " ";
cmd << "-o " << output_filename << " ";
if (link)
{
if (user_set_subst_libs.empty())
cmd << libs;
else
cmd << user_set_subst_libs;
if (!user_set_add_libs.empty())
cmd << " " << user_set_add_libs;
}
else
cmd << " -c";
#ifdef _WIN32
cmd << '"';
#endif
cout << "Compiling " << output_filename.string() << endl;
// The prerequisites are the object files among the input files
set<filesystem::path> prerequisites;
copy_if(input_files.begin(), input_files.end(), inserter(prerequisites, prerequisites.end()),
[](const auto& p) { return p.extension() == ".o"; });
unique_lock<mutex> lk {mex_compilation_mut};
mex_compilation_queue.emplace_back(output_filename, prerequisites, cmd.str());
lk.unlock();
mex_compilation_cv.notify_one();
return output_filename;
}
void
ModelTree::reorderAuxiliaryEquations()
{
using namespace boost;
// Create the mapping between auxiliary variables and auxiliary equations
int n = static_cast<int>(aux_equations.size());
map<int, int> auxEndoToEq;
for (int i = 0; i < n; i++)
{
auto varexpr = dynamic_cast<VariableNode*>(aux_equations[i]->arg1);
assert(varexpr && symbol_table.getType(varexpr->symb_id) == SymbolType::endogenous);
auxEndoToEq[varexpr->symb_id] = i;
}
assert(static_cast<int>(auxEndoToEq.size()) == n);
/* Construct the directed acyclic graph where auxiliary equations are
vertices and edges represent dependency relationships. */
using Graph = adjacency_list<vecS, vecS, directedS>;
Graph g(n);
for (int i = 0; i < n; i++)
{
set<int> endos;
aux_equations[i]->collectVariables(SymbolType::endogenous, endos);
for (int endo : endos)
if (auto it = auxEndoToEq.find(endo); it != auxEndoToEq.end() && it->second != i)
add_edge(i, it->second, g);
}
// Topological sort of the graph
using Vertex = graph_traits<Graph>::vertex_descriptor;
vector<Vertex> ordered;
topological_sort(g, back_inserter(ordered));
// Reorder auxiliary equations accordingly
auto aux_equations_old = aux_equations;
auto index = get(vertex_index, g); // Maps vertex descriptors to their index
for (int i = 0; i < n; i++)
aux_equations[i] = aux_equations_old[index[ordered[i]]];
}
map<tuple<int, int, int>, expr_t>
ModelTree::collectFirstOrderDerivativesEndogenous()
{
map<tuple<int, int, int>, expr_t> endo_derivatives;
for (auto& [indices, d1] : derivatives[1])
if (getTypeByDerivID(indices[1]) == SymbolType::endogenous)
{
int eq = indices[0];
int var {getTypeSpecificIDByDerivID(indices[1])};
int lag = getLagByDerivID(indices[1]);
endo_derivatives[{eq, var, lag}] = d1;
}
return endo_derivatives;
}
ModelTree::jacob_map_t
ModelTree::computeSymbolicJacobian(bool contemporaneous_only) const
{
jacob_map_t symbolic_jacobian;
for (int i = 0; i < static_cast<int>(equations.size()); i++)
{
set<pair<int, int>> endos_and_lags;
equations[i]->collectEndogenous(endos_and_lags);
for (const auto& [endo, lag] : endos_and_lags)
if (!contemporaneous_only || lag == 0)
symbolic_jacobian.try_emplace({i, endo}, 1);
}
return symbolic_jacobian;
}
pair<bool, ModelTree::jacob_map_t>
ModelTree::computeLeftHandSideSymbolicJacobian() const
{
jacob_map_t lhs_symbolic_jacobian;
auto not_contemporaneous = [](const pair<int, int>& p) { return p.second != 0; };
for (int eq {0}; eq < static_cast<int>(equations.size()); eq++)
if (equations_lineno[eq]) // Hand-written equation: test whether LHS has single contemporaneous
// endo
{
set<pair<int, int>> endos_and_lags;
equations[eq]->arg1->collectEndogenous(endos_and_lags);
erase_if(endos_and_lags, not_contemporaneous);
if (endos_and_lags.size() == 1)
lhs_symbolic_jacobian.try_emplace({eq, endos_and_lags.begin()->first}, 1);
else
return {false, {}};
}
else // Generated equation: keep all endos on both LHS and RHS
{
set<pair<int, int>> endos_and_lags;
equations[eq]->collectEndogenous(endos_and_lags);
erase_if(endos_and_lags, not_contemporaneous);
for (const auto& [endo, lag] : endos_and_lags)
lhs_symbolic_jacobian.try_emplace({eq, endo}, 1);
}
return {true, lhs_symbolic_jacobian};
}
void
ModelTree::updateReverseVariableEquationOrderings()
{
int n = equations.size();
eq_idx_orig2block.resize(n);
endo_idx_orig2block.resize(n);
for (int i = 0; i < n; i++)
{
endo_idx_orig2block[endo_idx_block2orig[i]] = i;
eq_idx_orig2block[eq_idx_block2orig[i]] = i;
}
}
expr_t
ModelTree::getRHSFromLHS(expr_t lhs) const
{
for (auto eq : equations)
if (eq->arg1 == lhs)
return eq->arg2;
throw ExprNode::MatchFailureException {"Cannot find an equation with the requested LHS"};
}
void
ModelTree::initializeMEXCompilationWorkers(int numworkers, const filesystem::path& dynareroot,
const string& mexext)
{
assert(numworkers > 0);
assert(mex_compilation_workers.empty());
cout << "Spawning " << numworkers << " threads for compiling MEX files." << endl;
for (int i {0}; i < numworkers; i++)
/* Passing the stop_token by const reference is ok (and makes clang-tidy happier),
since the std::jthread constructor calls the lambda with the return argument of the
get_stop_token() method, which returns a stop_token by value; hence there is no lifetime
issue. See:
https://stackoverflow.com/questions/72990607/const-stdstop-token-or-just-stdstop-token-as-parameter-for-thread-funct
*/
mex_compilation_workers.emplace_back([](const stop_token& stoken) {
unique_lock<mutex> lk {mex_compilation_mut};
filesystem::path output;
string cmd;
/* Look for an object to compile, whose prerequisites are already
compiled. If found, remove it from the queue, save the output path and
the compilation command, and return true. Must be run under the lock. */
auto pick_job = [&cmd, &output] {
for (auto it {mex_compilation_queue.begin()}; it != mex_compilation_queue.end(); ++it)
if (const auto& prerequisites {get<1>(*it)}; // Will become dangling after erase
includes(mex_compilation_done.begin(), mex_compilation_done.end(),
prerequisites.begin(), prerequisites.end()))
{
output = get<0>(*it);
cmd = get<2>(*it);
mex_compilation_queue.erase(it);
mex_compilation_ongoing.insert(output);
return true;
}
return false;
};
while (!stoken.stop_requested())
if (mex_compilation_cv.wait(lk, stoken, pick_job))
{
lk.unlock();
int r {system(cmd.c_str())};
lk.lock();
mex_compilation_ongoing.erase(output);
if (r)
mex_compilation_failed.insert(output);
else
mex_compilation_done.insert(output);
/* The object just compiled may be a prerequisite for several
other objects, so notify all waiting workers. Also needed to
notify the main thread when in
ModelTree::waitForMEXCompilationWorkers().*/
mex_compilation_cv.notify_all();
}
});
/* Set some environment variables needed for compilation on Windows/MATLAB
and macOS/Octave.
For Windows/MATLAB, this should be done only once, because otherwise
the PATH variable can become too long and GCC will not be found. */
if (mexext == "mexw64")
{
// Put the MinGW environment shipped with Dynare in the path
auto mingwpath = dynareroot / "mingw64" / "bin";
string newpath = "PATH=" + mingwpath.string() + ';' + getenv("PATH");
/* We cant use setenv() since it is not available on MinGW. Note that
putenv() seems to make an internal copy of the string on MinGW,
contrary to what is done on GNU/Linux and macOS. */
if (putenv(const_cast<char*>(newpath.c_str())) != 0)
{
cerr << "Can't set PATH" << endl;
exit(EXIT_FAILURE);
}
}
#ifdef __APPLE__
else if (mexext == "mex")
{
/* On macOS, with Octave, enforce our compiler. In particular this is
necessary if weve selected GCC; otherwise Clang will be used, and
it does not accept the same optimization flags (see dynare#1797) */
auto [compiler_path, is_clang] {findCompilerOnMacos(mexext)};
if (setenv("CC", compiler_path.c_str(), 1) != 0)
{
cerr << "Can't set CC environment variable" << endl;
exit(EXIT_FAILURE);
}
// We also define CXX, because that is used for linking
if (setenv("CXX", compiler_path.c_str(), 1) != 0)
{
cerr << "Can't set CXX environment variable" << endl;
exit(EXIT_FAILURE);
}
}
#endif
}
void
ModelTree::waitForMEXCompilationWorkers()
{
unique_lock<mutex> lk {mex_compilation_mut};
mex_compilation_cv.wait(lk, [] {
return (mex_compilation_queue.empty() && mex_compilation_ongoing.empty())
|| !mex_compilation_failed.empty();
});
if (!mex_compilation_failed.empty())
{
cerr << "Compilation failed for: ";
for (const auto& p : mex_compilation_failed)
cerr << p.string() << " ";
cerr << endl;
lk.unlock(); // So that threads can process their stoken
exit(EXIT_FAILURE);
}
}
void
ModelTree::computingPassBlock(const eval_context_t& eval_context, bool no_tmp_terms)
{
if (!computeNonSingularNormalization(eval_context))
return;
auto [prologue, epilogue] = computePrologueAndEpilogue();
auto first_order_endo_derivatives = collectFirstOrderDerivativesEndogenous();
equationTypeDetermination(first_order_endo_derivatives);
cout << "Finding the optimal block decomposition of the " << modelClassName() << "..." << endl;
computeBlockDecomposition(prologue, epilogue);
reduceBlockDecomposition();
printBlockDecomposition();
computeChainRuleJacobian();
determineLinearBlocks();
computeBlockTemporaryTerms(no_tmp_terms);
block_decomposed = true;
}
vector<int>
ModelTree::computeCSCColPtr(const SparseColumnMajorOrderMatrix& matrix, int ncols)
{
vector<int> colptr(ncols + 1, matrix.size());
for (int k {0}, current_col {0}; const auto& [indices, d1] : matrix)
{
while (indices.second >= current_col)
colptr[current_col++] = k;
k++;
}
return colptr;
}
void
ModelTree::writeAuxVarRecursiveDefinitions(ostream& output, ExprNodeOutputType output_type) const
{
deriv_node_temp_terms_t tef_terms;
for (auto aux_equation : aux_equations)
if (aux_equation->containsExternalFunction())
aux_equation->writeExternalFunctionOutput(output, output_type, {}, {}, tef_terms);
for (auto aux_equation : aux_equations)
{
aux_equation->writeOutput(output, output_type, {}, {}, tef_terms);
output << ";" << endl;
}
}