
The Dynare Preprocessor

Sébastien Villemot

CEPREMAP

October 19, 2007

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 1 / 67

General overview

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 2 / 67

Outline

1 Introduction to object-oriented programming in C++

2 Parsing

3 Data structure representing a mod file

4 Check pass

5 Computing pass

6 Writing outputs

7 Conclusion

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 3 / 67

Outline

1 Introduction to object-oriented programming in C++

2 Parsing

3 Data structure representing a mod file

4 Check pass

5 Computing pass

6 Writing outputs

7 Conclusion

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 4 / 67

Object-oriented programming (OOP)

Traditional way of programming: a program is a list of instructions
(organized in functions) which manipulate data
OOP is an alternative programming paradigm that uses objects
and their interactions to design programs
With OOP, programming becomes a kind of modelization: each
object of the program should modelize a real world object, or a
mathematical object (e.g. a matrix, an equation, a model...)
Each object can be viewed as an independent little machine with a
distinct role or responsibility
Each object is capable of receiving messages, processing data,
and sending messages to other objects
Main advantage of OOP is modularity, which leads to greater
reusability, flexibility and maintainability

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 5 / 67

Object-oriented programming (OOP)

Traditional way of programming: a program is a list of instructions
(organized in functions) which manipulate data
OOP is an alternative programming paradigm that uses objects
and their interactions to design programs
With OOP, programming becomes a kind of modelization: each
object of the program should modelize a real world object, or a
mathematical object (e.g. a matrix, an equation, a model...)
Each object can be viewed as an independent little machine with a
distinct role or responsibility
Each object is capable of receiving messages, processing data,
and sending messages to other objects
Main advantage of OOP is modularity, which leads to greater
reusability, flexibility and maintainability

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 5 / 67

Object-oriented programming (OOP)

Traditional way of programming: a program is a list of instructions
(organized in functions) which manipulate data
OOP is an alternative programming paradigm that uses objects
and their interactions to design programs
With OOP, programming becomes a kind of modelization: each
object of the program should modelize a real world object, or a
mathematical object (e.g. a matrix, an equation, a model...)
Each object can be viewed as an independent little machine with a
distinct role or responsibility
Each object is capable of receiving messages, processing data,
and sending messages to other objects
Main advantage of OOP is modularity, which leads to greater
reusability, flexibility and maintainability

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 5 / 67

Object
Definition and example

An object is the bundle of:
several variables (called its attributes), which modelize the
characteristics (or the state) of the object
several functions (called its methods) which operate on the
attributes, and which modelize the behaviour of the object (the
actions it can perform)

Example: suppose we want to modelize a coffee machine
The coffee machine (in real life) is a box, with an internal counter for
the credit balance, a slot to put coins in, and a button to get a coffee
The corresponding object will have one attribute (the current credit
balance) and two methods (one which modelizes the introduction of
money, and the other the making of a coffee)

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 6 / 67

Object
Definition and example

An object is the bundle of:
several variables (called its attributes), which modelize the
characteristics (or the state) of the object
several functions (called its methods) which operate on the
attributes, and which modelize the behaviour of the object (the
actions it can perform)

Example: suppose we want to modelize a coffee machine
The coffee machine (in real life) is a box, with an internal counter for
the credit balance, a slot to put coins in, and a button to get a coffee
The corresponding object will have one attribute (the current credit
balance) and two methods (one which modelizes the introduction of
money, and the other the making of a coffee)

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 6 / 67

A coffee machine
Class definition

C++ header file (CoffeeMachine.hh)
class CoffeeMachine {
public:
int credit;
CoffeeMachine();
void put_coin(int coin_value);
void get_coffee();

};

A class is a template (or a blueprint) of an object
Collectively, the attributes and methods defined by a class are
called members
A class definition creates a new type (CoffeeMachine) that can
be used like other C++ types (e.g. int, string, ...)
In C++, class definitions are put in header files (.hh extension)

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 7 / 67

A coffee machine
Method bodies

C++ source file (CoffeeMachine.cc)
void CoffeeMachine::put_coin(int coin_value)
{
credit += coin_value;
cout << "Credit is now " << credit << endl;

}

void CoffeeMachine::get_coffee()
{
if (credit == 0)
cout << "No credit!" << endl;

else {
credit--;
cout << "Your coffee is ready, credit is now " << credit << endl;

}
}

Methods can refer to other members (here the two methods
modify the credit attribute)
Method bodies are put in source files (.cc extension)

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 8 / 67

Constructors and destructors

In our class header, there is a special method called
CoffeeMachine() (same name than the class)
It is a constructor: called when the object is created, used to
initalize the attributes of the class

C++ source file (CoffeeMachine.cc, continued)
CoffeeMachine::CoffeeMachine()
{
credit = 0;

}

It is possible to create constructors with arguments
It is also possible to define a destructor (method name is the class
name prepended by a tilde, like ∼CoffeeMachine): called when
the object is destroyed, used to do cleaning tasks (e.g. freeing
memory)

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 9 / 67

Instantiation and method invocation

Program main function
#include "CoffeeMachine.hh"

int main()
{
CoffeeMachine A, B;

A.put_coin(2);
A.get_coffee();

B.put_coin(1);
B.get_coffee();
B.get_coffee();

}

Creates two machines: at the end, A has 1 credit, B has no credit
and refused last coffee
A and B are called instances of class CoffeeMachine
Methods are invoked by appending a dot and the method name to
the instance variable name

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 10 / 67

Dynamic instantiation with new

Program main function
#include "CoffeeMachine.hh"

void main()
{
CoffeeMachine *A;

A = new CoffeeMachine();

A->put_coin(2);
A->get_coffee();

delete A;
}

Here A is a pointer to an instance of class CoffeeMachine
Dynamic creation of instances is done with new, dynamic deletion
with delete (analogous to malloc and free)
Since A is a pointer, methods are called with -> instead of a dot

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 11 / 67

Access modifiers

In our coffee machine example, all attributes and methods were
marked as public
Means that those attributes and methods can be accessed from
anywhere in the program
Here, one can gain credit without putting money in the machine,
with something like A.credit = 1000;

The solution is to declare it private: such members can only be
accessed from methods within the class

C++ header file (CoffeeMachine.hh)
class CoffeeMachine {
private:
int credit;

public:
CoffeeMachine();
void put_coin(int coin_value);
void get_coffee();

};

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 12 / 67

Interface

The public members of a class form its interface: they describe
how the class interacts with its environment
Seen from outside, an object is a “black box”, receiving and
sending messages through its interface
Particular attention should be given to the interface design: an
external programmer should be able to work with an class by only
studying its interface, but not its internals
A good design pratice is to limit the set of public members to the
strict minimum:

enhances code understandability by making clear the interface
limits the risk that an internal change in the object requires a
change in the rest of the program: loose coupling
prevents the disruption of the coherence of the object by an
external action: principle of isolation

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 13 / 67

Why isolation is important

Consider a class Circle with the following attributes:
coordinates of the center
radius
surface

If all members are public, it is possible to modify the radius but not
the surface, therefore disrupting internal coherence
The solution is to make radius and surface private, and to create a
public method changeRadius which modifies both
simultaneously
Conclusion: Creating a clear interface and isolating the rest
diminishes the risk of introducing bugs

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 14 / 67

Inheritance (1/2)

Matrices and positive definite matrices

class Matrix
{
protected:

int height, width;
double[] elements;

public:
Matrix(int n, int p,

double[] e);
virtual ˜Matrix();
double det();

};

class PositDefMatrix : public Matrix
{
public:
PositDefMatrix(int n, int p,

double[] e);
Matrix cholesky();

};

PositDefMatrix is a subclass (or derived class) of Matrix
Conversely Matrix is the superclass of PositDefMatrix

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 15 / 67

Inheritance (2/2)

PositDefMatrix inherits width, height, elements and det
from Matrix

Method cholesky can be called on an instance of
PositDefMatrix, but not of Matrix
The keyword protected means: public for subclasses, but
private for other classes
Type casts are legal when going upward in the derivation tree:

a pointer to PositDefMatrix can be safely cast to a Matrix*
the converse is faulty and leads to unpredictable results

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 16 / 67

Constructors and destructors (bis)

C++ code snippet
Matrix::Matrix(int n, int p, double[] e) : height(n), width(p)
{
elements = new double[n*p];
memcpy(elements, e, n*p*sizeof(double));

}

Matrix::˜Matrix()
{
delete[] elements;

}

PositDefMatrix::PositDefMatrix(int n, int p, double[] e) :
Matrix(n, p, e)

{
// Check that matrix is really positive definite

}

Constructor of PositDefMatrix calls constructor of Matrix
Note the abbreviated syntax with colon

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 17 / 67

Possible derivation tree for real matrices
Arrow means ...is a subclass of...

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 18 / 67

Polymorphism (1/3)

In previous example, determinant computation method uses the
same algorithm for both classes
But for positive definite matrices, a faster algorithm exists (using
the cholesky)
Polymorphism offers an elegant solution:

declare det as a virtual method in class Matrix
override it in PositDefMatrix, and provide the corresponding
implementation

When method det will be invoked, the correct implementation will
be selected, depending on the type of the instance (this is done
through a runtime type test)

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 19 / 67

Polymorphism (2/3)

Class headers

class Matrix
{
protected:

int height, width;
double[] elements;

public:
Matrix(int n, int p,

double[] e);
virtual ˜Matrix();
virtual double det();
bool is_invertible();

};

class PositDefMatrix : public Matrix
{
public:
PositDefMatrix(int n, int p,

double[] e);
Matrix cholesky();
virtual double det();

};

Note the virtual keyword
A method has been added to determine if matrix is invertible

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 20 / 67

Polymorphism (3/3)

C++ code snippet
bool Matrix::is_invertible()
{
return(det() != 0);

}

double PositDefMatrix::det()
{
// Square product of diagonal terms of cholesky decomposition

}

A call to is invertible on a instance of Matrix will use the
generic determinant computation
The same call on an instance of PositDefMatrix will call the
specialized determinant computation

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 21 / 67

Abstract classes

It is possible to create classes which don’t provide an
implementation for some virtual methods
Syntax in the header:
virtual int method name() = 0;

As a consequence, such classes can never be instantiated
Generally used as the root of a derivation tree, when classes of
the tree share behaviours but not implementations
Such classes are called abstract classes

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 22 / 67

Some programming rules (1/2)

Don’t repeat yourself (DRY): if several functions contain similar
portions of code, factorize that code into a new function

makes code shorter
reduces the risk of introducing inconsistencies
makes easier the propagation of enhancements and bug
corrections

Make short functions
often difficult to grasp what a long function does
structuring the code by dividing it into short functions makes the
logical structure more apparent
enhances code readability and maintainability

Use explicit variable names (except for loop indexes)

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 23 / 67

Some programming rules (2/2)

Global variables are evil
a global variable can be modified from anywhere in the code
(nonlocality problem)
creates a potentially unlimited number of dependencies between all
portions of the code
makes bugs difficult to localize (any part of the code could have
created the trouble)
to summarize, goes against the principle of modularity
in addition, global variables are not thread safe (unless used with
locks/mutexes)

Document your code when it doesn’t speak by itself
Dynare preprocessor code is documented using Doxygen
done through special comments beginning with an exclamation
mark
run doxygen from the source directory to create a bunch of HTML
files documenting the code

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 24 / 67

Outline

1 Introduction to object-oriented programming in C++

2 Parsing

3 Data structure representing a mod file

4 Check pass

5 Computing pass

6 Writing outputs

7 Conclusion

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 25 / 67

Parsing overview

Parsing is the action of transforming an input text (a mod file in our
case) into a data structure suitable for computation
The parser consists of three components:

the lexical analyzer, which recognizes the “words” of the mod file
(analog to the vocabulary of a language)
the syntax analyzer, which recognizes the “sentences” of the mod
file (analog to the grammar of a language)
the parsing driver, which coordinates the whole process and
constructs the data structure using the results of the lexical and
syntax analyses

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 26 / 67

Lexical analysis

The lexical analyzer recognizes the “words” (or lexemes) of the
language
Lexical analyzer is described in DynareFlex.ll. This file is
transformed into C++ source code by the program flex

This file gives the list of the known lexemes (described by regular
expressions), and gives the associated token for each of them
For punctuation (semicolon, parentheses, ...), operators (+, -, ...)
or fixed keywords (e.g. model, varexo, ...), the token is simply an
integer uniquely identifying the lexeme
For variable names or numbers, the token also contains the
associated string for further processing
When invoked, the lexical analyzer reads the next characters of
the input, tries to recognize a lexeme, and either produces an
error or returns the associated token

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 27 / 67

Lexical analysis
An example

Suppose the mod file contains the following:
model;
x = log(3.5);
end;

Before lexical analysis, it is only a sequence of characters
The lexical analysis produces the following stream of tokens:
MODEL
SEMICOLON
NAME "x"
EQUAL
LOG
LEFT_PARENTHESIS
FLOAT_NUMBER "3.5"
RIGHT_PARENTHESIS
SEMICOLON
END
SEMICOLON

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 28 / 67

Syntax analysis

Using the list of tokens produced by lexical analysis, the syntax
analyzer determines which “sentences” are valid in the language,
according to a grammar composed of rules.

A grammar for lists of additive and multiplicative expressions
%start expression_list;

expression_list := expression SEMICOLON
| expression_list expression SEMICOLON;

expression := expression PLUS expression
| expression TIMES expression
| LEFT_PAREN expression RIGHT_PAREN
| INT_NUMBER;

(1+3)*2; 4+5; will pass the syntax analysis without error
1++2; will fail the syntax analysis, even though it has passed the
lexical analysis

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 29 / 67

Syntax analysis
In Dynare

The mod file grammar is described in DynareBison.yy

The grammar is transformed into C++ source code by the program
bison

The grammar tells a story which looks like:
A mod file is a list of statements
A statement can be a var statement, a varexo statement, a
model block, an initval block, ...
A var statement begins with the token VAR, then a list of NAMEs,
then a semicolon
A model block begins with the token MODEL, then a semicolon,
then a list of equations separated by semicolons, then an END token
An equation can be either an expression, or an expression followed
by an EQUAL token and another expression
An expression can be a NAME, or a FLOAT NUMBER, or an
expression followed by a PLUS and another expression, ...

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 30 / 67

Semantic actions

So far we have only described how to accept valid mod files and to
reject others
But validating is not enough: one need to do something about
what has been parsed
Each rule of the grammar can have a semantic action associated
to it: C/C++ code enclosed in curly braces
Each rule can return a semantic value (referenced to by $$ in the
action)
In the action, it is possible to refer to semantic values returned by
components of the rule (using $1, $2, ...)

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 31 / 67

Semantic actions
An example

A simple calculator which prints its results
%start expression_list
%type <int> expression

expression_list := expression SEMICOLON
{ cout << $1; }

| expression_list expression SEMICOLON
{ cout << $2; };

expression := expression PLUS expression
{ $$ = $1 + $3; }

| expression TIMES expression
{ $$ = $1 * $3; }

| LEFT_PAREN expression RIGHT_PAREN
{ $$ = $2; }

| INT_NUMBER
{ $$ = $1; };

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 32 / 67

Parsing driver

The class ParsingDriver has the following roles:
Given the mod filename, it opens the file and launches the lexical
and syntaxic analyzers on it
It implements most of the semantic actions of the grammar
By doing so, it creates an object of type ModFile, which is the
data structure representing the mod file
Or, if there is a parsing error (unknown keyword, undeclared
symbol, syntax error), it displays the line and column numbers
where the error occurred, and exits

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 33 / 67

Outline

1 Introduction to object-oriented programming in C++

2 Parsing

3 Data structure representing a mod file

4 Check pass

5 Computing pass

6 Writing outputs

7 Conclusion

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 34 / 67

The ModFile class

This class is the internal data structure used to store all the
informations contained in a mod file
One instance of the class represents one mod file
The class contains the following elements (as class members):

a symbol table
a numerical constants table
two trees of expressions: one for the model, and one for the
expressions outside the model
the list of the statements (parameter initializations, shocks block,
check, steady, simul, ...)
an evaluation context

An instance of ModFile is the output of the parsing process
(return value of ParsingDriver::parse())

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 35 / 67

The symbol table (1/3)

A symbol is simply the name of a variable, of a parameter or of a
function unknown to the preprocessor: actually everything that is
not recognized as a Dynare keyword
The symbol table is a simple structure used to maintain the list of
the symbols used in the mod file
For each symbol, stores:

its name (a string)
its type (an integer)
a unique integer identifier (unique for a given type, but not across
types)

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 36 / 67

The symbol table (2/3)

Existing types of symbols:
Endogenous variables
Exogenous variables
Exogenous deterministic variables
Parameters
Local variables inside model: declared with a pound sign (#)
construction
Local variables outside model: no declaration needed, not
interpreted by the preprocessor (e.g. Matlab loop indexes)
Names of functions unknown to the preprocessor: no declaration
needed, not interpreted by the preprocessor, only allowed outside
model (until we create an interface for providing custom functions
with their derivatives)

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 37 / 67

The symbol table (2/3)

Symbol table filled in:
using the var, varexo, varexo det, parameter declarations
using pound sign (#) constructions in the model block
on the fly during parsing: local variables outside models or
unknown functions when an undeclared symbol is encountered

Roles of the symbol table:
permits parcimonious and more efficient representation of
expressions (no need to duplicate or compare strings, only handle
a pair of integers)
ensures that a given symbol is used with only one type

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 38 / 67

Expression trees (1/2)

The data structure used to store expressions is essentially a tree
Graphically, the tree representation of (1 + z) ∗ log(y) is:

No need to store parentheses
Each circle represents a node
A node has at most one parent and at most two children

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 39 / 67

Expression trees (2/2)

In Dynare preprocessor, a tree node is a represented by an
instance of the abstract class ExprNode
This class has 5 sub-classes, corresponding to the 5 types of
nodes:

NumConstNode for constant nodes: contains the identifier of the
numerical constants it represents
VariableNode for variable/parameters nodes: contains the
identifier of the variable or parameter it represents
UnaryOpNode for unary operators (e.g. unary minus, log, sin):
contains an integer representing the operator, and a pointer to its
child
BinaryOpNode for binary operators (e.g. +, ∗, pow): contains an
integer representing the operator, and pointers to its two children
UnknownFunctionNode for functions unknown to the parser (e.g.
user defined functions): contains the identifier of the function name,
and a vector containing an arbitrary number of children (the
function arguments)

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 40 / 67

Classes DataTree and ModelTree

Class DataTree is a container for storing a set of expression
trees
Class ModelTree is a sub-class of DataTree, specialized for
storing a set of model equations (among other things, contains
symbolic derivation algorithm)
Class ModFile contains:

one instance of ModelTree for storing the equations of model
block
one instance of DataTree for storing all expressions outside model
block

Expression storage is optimized through three mechanisms:
pre-computing of numerical constants
symbolic simplification rules
sub-expression sharing

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 41 / 67

Constructing expression trees

Class DataTree contains a set of methods for constructing
expression trees
Construction is done bottom-up, node by node:

one method for adding a constant node
(AddPossiblyNegativeConstant(double))
one method for a log node (AddLog(arg))
one method for a plus node (AddPlus(arg1, arg2))

These methods take pointers to ExprNode, allocate the memory
for the node, construct it, and return its pointer
These methods are called:

from ParsingDriver in the semantic actions associated to the
parsing of expressions
during symbolic derivation, to create derivatives expressions

Note that NodeID is an alias (typedef) for ExprNode*

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 42 / 67

Reduction of constants and symbolic simplifications

The construction methods compute constants whenever it is
possible

Suppose you ask to construct the node 1 + 1
The AddPlus() method will return a pointer to a constant node
containing 2

The construction methods also apply a set of simplification rules,
such as:

0 + 0 = 0
x + 0 = x
0− x = −x
−(−x) = x
x ∗ 0 = 0
x/1 = x
x0 = 1

When a simplification rule applies, no new node is created

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 43 / 67

Sub-expression sharing (1/2)

Consider the two following expressions: (1 + z) ∗ log(y) and 2(1+z)

Expressions share a common sub-expression: 1 + z
The internal representation of these expressions is:

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 44 / 67

Sub-expression sharing (2/2)

Construction methods implement a simple algorithm which
achieves maximal expression sharing
Algorithm uses the fact that each node has a unique memory
address (pointer to the corresponding instance of ExprNode)
It maintains 5 tables which keep track of the already constructed
nodes: one table by type of node (constants, variables, unary ops,
binary ops, unknown functions)
Suppose you want to create the node e1 + e2 (where e1 and e2
are sub-expressions):

the algorithm searches the binary ops table for the tuple equal to
(address of e1, address of e2, op code of +) (it is the search key)
if the tuple is found in the table, the node already exists, and its
memory address is returned
otherwise, the node is created, and is added to the table with its
search key

Maximum sharing is achieved, because expression trees are
constructed bottom-up

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 45 / 67

Final remarks about expressions

Storage of negative constants
class NumConstNode only accepts positive constants
a negative constant is stored as a unary minus applied to a positive
constant
this is a kind of identification constraint to avoid having two ways of
representing negative constants: (−2) and −(2)

Widely used constants
class DataTree has attributes containing pointers to one, zero,
and minus one constants
these constants are used in many places (in simplification rules, in
derivation algorithm...)
sub-expression sharing algorithm ensures that those constants will
never be duplicated

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 46 / 67

List of statements

A statement is represented by an instance of a subclass of the
abstract class Statement
Three groups of statements:

initialization statements (parameter initialization with p = . . .,
initval, histval or endval block)
shocks blocks
computing tasks (check, simul, ...)

Each type of statement has its own class (e.g.
InitValStatement, SimulStatement, ...)
The class ModFile stores a list of pointers of type Statement*,
corresponding to the statements of the mod file, in their order of
declaration
Heavy use of polymorphism in the check pass, computing pass,
and when writing outputs: abstract class Statement provides a
virtual method for these 3 actions

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 47 / 67

Evaluation context

The ModFile class contains an evaluation context
It is a map associating a numerical value to some symbols
Filled in with initval block, and with parameters initializations
Used during equation normalization (in the block decomposition),
for finding non-zero entries in the jacobian

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 48 / 67

Outline

1 Introduction to object-oriented programming in C++

2 Parsing

3 Data structure representing a mod file

4 Check pass

5 Computing pass

6 Writing outputs

7 Conclusion

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 49 / 67

Error checking during parsing

Some errors in the mod file can be detected during the parsing:
syntax errors
use of undeclared symbol in model block, initval block...
use of a symbol incompatible with its type (e.g. parameter in initval,
local variable used both in model and outside model)
multiple shocks declaration for the same variable

But some other checks can only be done when parsing is
completed

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 50 / 67

Check pass

The check pass is implemented through method
ModFile::checkPass()

Does the following checks:
check there is at least one equation in the model (except if doing a
standalone BVAR estimation)
check there is not both a simul and a stoch simul (or another
command triggering local approximation)

Other checks could be added in the future, for example:
check that every endogenous variable is used at least once in
current period
check there is a single initval (or histval, endval) block
check that varobs is used if there is an estimation

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 51 / 67

Outline

1 Introduction to object-oriented programming in C++

2 Parsing

3 Data structure representing a mod file

4 Check pass

5 Computing pass

6 Writing outputs

7 Conclusion

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 52 / 67

Overview of the computing pass

Computing pass implemented in ModFile::computingPass()

Begins with a determination of which derivatives to compute
Then, calls ModelTree::computingPass(), which computes:

leag/lag variable incidence matrix
symbolic derivatives
equation normalization + block decomposition (only in sparse dll
mode)
temporary terms
symbolic gaussian elimination (only in sparse dll mode) (actually
this is done in the output writing pass, but should be moved to the
computing pass)

Finally, calls Statement::computingPass() on all statements

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 53 / 67

The variable table

In the context of class ModelTree, a variable is a pair (symbol,
lead/lag)
The symbol must correspond to an endogenous or exogenous
variable (in the sense of the model)
The class VariableTable keeps track of those pairs
An instance of ModelTree contains an instance of
VariableTable

Each pair (symbol id, lead/lag) is given a unique variable id

After the computing pass, the class VariableTable writes the
leag/lag incidence matrix:

endogenous symbols in row
leads/lags in column
elements of the matrix are either 0 or correspond to a variable ID,
depending on whether the pair (symbol, lead/lag) is used or not in
the model

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 54 / 67

Static versus dynamic model

The static model is simply the (dynamic) model from which the
leads/lags have been omitted
Static model used to characterize the steady state
The jacobian of the static model is used in the (Matlab) solver for
determining the steady state
No need to derive static and dynamic models independently:
static derivatives can be easily deduced from dynamic derivatives

Example
suppose dynamic model is 2x · x−1 = 0
static model is 2x2 = 0, whose derivative w.r. to x is 4x
dynamic derivative w.r. to x is 2x−1, and w.r. to x−1 is 2x
removing leads/lags from dynamic derivatives and summing over
the two partial derivatives w.r. to x and x−1 gives 4x

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 55 / 67

Which derivatives to compute ?

In deterministic mode:
static jacobian (w.r. to endogenous variables only)
dynamic jacobian (w.r. to endogenous variables only)

In stochastic mode:
static jacobian (w.r. to endogenous variables only)
dynamic jacobian (w.r. to all variables)
possibly dynamic hessian (if order option ≥ 2)
possibly dynamic 3rd derivatives (if order option ≥ 3)

For ramsey policy: the same as above, but with one further order
of derivation than declared by the user with order option (the
derivation order is determined in the check pass, see
RamseyPolicyStatement::checkPass())

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 56 / 67

Derivation algorithm (1/2)

Derivation of the model implemented in ModelTree::derive()

Simply calls ExprNode::getDerivative(varID) on each
equation node
Use of polymorphism:

for a constant or variable node, derivative is straightforward (0 or 1)
for a unary or binary op node, recursively calls method
getDerivative() on children to construct derivative of parent,
using usual derivation rules, such as:

(log(e))′ = e′

e
(e1 + e2)

′ = e′
1 + e′

2
(e1 · e2)

′ = e′
1 · e2 + e1 · e′

2
. . .

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 57 / 67

Derivation algorithm (2/2)
Optimizations

Caching of derivation results
method ExprNode::getDerivative(varID) memorizes its
result in a member attribute the first time it is called
so that the second time it is called (with the same argument),
simply returns the cached value without recomputation
caching is useful because of sub-expression sharing

Symbolic a priori
consider the expression x + y2

without any computation, you know its derivative w.r. to z is zero
each node stores in an attribute the set of variables which appear in
the expression it represents ({x , y} in the example)
that set is computed in the constructor (straigthforwardly for a
variable or a constant, recursively for other nodes, using the sets of
the children)
when getDerivative(varID) is called, immediately returns
zero if varID is not in that set

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 58 / 67

Derivation algorithm (2/2)
Optimizations

Caching of derivation results
method ExprNode::getDerivative(varID) memorizes its
result in a member attribute the first time it is called
so that the second time it is called (with the same argument),
simply returns the cached value without recomputation
caching is useful because of sub-expression sharing

Symbolic a priori
consider the expression x + y2

without any computation, you know its derivative w.r. to z is zero
each node stores in an attribute the set of variables which appear in
the expression it represents ({x , y} in the example)
that set is computed in the constructor (straigthforwardly for a
variable or a constant, recursively for other nodes, using the sets of
the children)
when getDerivative(varID) is called, immediately returns
zero if varID is not in that set

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 58 / 67

Temporary terms (1/2)

When the preprocessor writes equations and derivatives in its
outputs, it takes advantage of sub-expression sharing
In Matlab static and dynamic output files, equations are preceded
by a list of temporary terms
Those terms are temporary variables containing expressions
shared by several equations or derivatives
Doing so greatly enhances the computing speed of model
residual, jacobian or hessian

Example
The equations:

residual(0)=x+yˆ2-zˆ3;
residual(1)=3*(x+yˆ2)+1;

Can be optimized in:

T01=x+yˆ2;
residual(0)=T01-zˆ3;
residual(1)=3*T01+1;

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 59 / 67

Temporary terms (2/2)

Expression storage in the preprocessor implements maximal
sharing...
...but it is not optimal for the Matlab output files, because creating
a temporary variable also has a cost (in terms of CPU and of
memory)
Computation of temporary terms implements a trade-off between:

cost of duplicating sub-expressions
cost of creating new variables

Algorithm uses a recursive cost calculation, which marks some
nodes as being “temporary”
Problem: redundant with optimizations done by the C/C++
compiler (when Dynare is in DLL mode)⇒ compilation very slow
on big models

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 60 / 67

The special case of Ramsey policy

For most statements, the method computingPass() is a no-op...
...except for planner objective statement, which serves to
declare planner objective when doing optimal policy under
commitment
Class PlannerObjectiveStatement contains an instance of
ModelTree: used to store the objective (only one equation in the
tree)
During the computing pass, triggers the computation of the first
and second order (static) derivatives of the objective

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 61 / 67

Outline

1 Introduction to object-oriented programming in C++

2 Parsing

3 Data structure representing a mod file

4 Check pass

5 Computing pass

6 Writing outputs

7 Conclusion

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 62 / 67

Output overview

Implemented in ModFile::writeOutputFiles()

If mod file is model.mod, all created filenames will begin with
model

Main output file is model.m, containing:
general initialization commands
symbol table output (from SymbolTable::writeOutput())
lead/lag incidence matrix (from ModelTree::writeOutput())
call to Matlab functions corresponding to the statements of the mod
file (written by calling Statement::writeOutput() on all
statements through polymorphism)

Subsidiary output files:
one for the static model
one for the dynamic model
and one for the planner objective (if relevant)
written through ModelTree methods: writeStaticFile() and
writeDynamicFile()

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 63 / 67

Model output files

Three possibles modes for ModelTree (see mode attribute):
Standard mode: static and dynamic files in Matlab
DLL mode:

static and dynamic files in C++ source code (with corresponding
headers)
compiled through mex to allow execution from within Matlab

Sparse DLL mode:
static file in Matlab
two possibilities for dynamic file:

by default, a C++ source file (with header) and a binary file, to be
read from the C++ code
or, with no compiler option, a binary file in custom format, executed
from Matlab through simulate DLL
the second option serves to bypass compilation of C++ file which can
be very slow

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 64 / 67

Outline

1 Introduction to object-oriented programming in C++

2 Parsing

3 Data structure representing a mod file

4 Check pass

5 Computing pass

6 Writing outputs

7 Conclusion

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 65 / 67

Future work (1/2)
Enhancements, optimizations

Refactor and reorganize some portions of the code
Create a testsuite (with unitary tests)
Separate computation of temporary terms between static and
dynamic outputs
Enhance sub-expression sharing algorithm (using associativity,
commutativity and factorization rules)
Add many checks on the structure of the mod file

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 66 / 67

Future work (2/2)
Features

Add precompiler macros (#include, #define, #if)
Add handling for several (sub-)models
Add indexed variables and control statements (if, loops) both in
models and command language
Add sum, diff, prod operators
For unknown functions in the model: let user provide a derivative,
or trigger numerical derivation
Generalize binary code output
Generalize block decomposition ?

S. Villemot (CEPREMAP) The Dynare Preprocessor October 19, 2007 67 / 67

	Introduction to object-oriented programming in C++
	Parsing
	Data structure representing a mod file
	Check pass
	Computing pass
	Writing outputs
	Conclusion

