/* * Copyright (C) 2003-2015 Dynare Team * * This file is part of Dynare. * * Dynare is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Dynare is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Dynare. If not, see . */ #include #include #include #include "Shocks.hh" AbstractShocksStatement::AbstractShocksStatement(bool mshocks_arg, bool overwrite_arg, const det_shocks_t &det_shocks_arg, const SymbolTable &symbol_table_arg) : mshocks(mshocks_arg), overwrite(overwrite_arg), det_shocks(det_shocks_arg), symbol_table(symbol_table_arg) { } void AbstractShocksStatement::writeDetShocks(ostream &output) const { int exo_det_length = 0; for (det_shocks_t::const_iterator it = det_shocks.begin(); it != det_shocks.end(); it++) { int id = symbol_table.getTypeSpecificID(it->first) + 1; bool exo_det = (symbol_table.getType(it->first) == eExogenousDet); for (size_t i = 0; i < it->second.size(); i++) { const int &period1 = it->second[i].period1; const int &period2 = it->second[i].period2; const expr_t value = it->second[i].value; output << "M_.det_shocks = [ M_.det_shocks;" << endl << "struct('exo_det'," << (int) exo_det << ",'exo_id'," << id << ",'multiplicative'," << (int) mshocks << ",'periods'," << period1 << ":" << period2 << ",'value',"; value->writeOutput(output); output << ") ];" << endl; if (exo_det && (period2 > exo_det_length)) exo_det_length = period2; } } output << "M_.exo_det_length = " << exo_det_length << ";\n"; } ShocksStatement::ShocksStatement(bool overwrite_arg, const det_shocks_t &det_shocks_arg, const var_and_std_shocks_t &var_shocks_arg, const var_and_std_shocks_t &std_shocks_arg, const covar_and_corr_shocks_t &covar_shocks_arg, const covar_and_corr_shocks_t &corr_shocks_arg, const SymbolTable &symbol_table_arg) : AbstractShocksStatement(false, overwrite_arg, det_shocks_arg, symbol_table_arg), var_shocks(var_shocks_arg), std_shocks(std_shocks_arg), covar_shocks(covar_shocks_arg), corr_shocks(corr_shocks_arg) { } void ShocksStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const { output << "%" << endl << "% SHOCKS instructions" << endl << "%" << endl; if (overwrite) { output << "M_.det_shocks = [];" << endl; output << "M_.Sigma_e = zeros(" << symbol_table.exo_nbr() << ", " << symbol_table.exo_nbr() << ");" << endl << "M_.Correlation_matrix = eye(" << symbol_table.exo_nbr() << ", " << symbol_table.exo_nbr() << ");" << endl; if (has_calibrated_measurement_errors()) output << "M_.H = zeros(" << symbol_table.observedVariablesNbr() << ", " << symbol_table.observedVariablesNbr() << ");" << endl << "M_.Correlation_matrix_ME = eye(" << symbol_table.observedVariablesNbr() << ", " << symbol_table.observedVariablesNbr() << ");" << endl; else output << "M_.H = 0;" << endl << "M_.Correlation_matrix_ME = 1;" << endl; } writeDetShocks(output); writeVarAndStdShocks(output); writeCovarAndCorrShocks(output); /* M_.sigma_e_is_diagonal is initialized to 1 by ModFile.cc. If there are no off-diagonal elements, and we are not in overwrite mode, then we don't reset it to 1, since there might be previous shocks blocks with off-diagonal elements. */ if (covar_shocks.size()+corr_shocks.size() > 0) output << "M_.sigma_e_is_diagonal = 0;" << endl; else if (overwrite) output << "M_.sigma_e_is_diagonal = 1;" << endl; } void ShocksStatement::writeVarOrStdShock(ostream &output, var_and_std_shocks_t::const_iterator &it, bool stddev) const { SymbolType type = symbol_table.getType(it->first); assert(type == eExogenous || symbol_table.isObservedVariable(it->first)); int id; if (type == eExogenous) { output << "M_.Sigma_e("; id = symbol_table.getTypeSpecificID(it->first) + 1; } else { output << "M_.H("; id = symbol_table.getObservedVariableIndex(it->first) + 1; } output << id << ", " << id << ") = "; if (stddev) output << "("; it->second->writeOutput(output); if (stddev) output << ")^2"; output << ";" << endl; } void ShocksStatement::writeVarAndStdShocks(ostream &output) const { var_and_std_shocks_t::const_iterator it; for (it = var_shocks.begin(); it != var_shocks.end(); it++) writeVarOrStdShock(output, it, false); for (it = std_shocks.begin(); it != std_shocks.end(); it++) writeVarOrStdShock(output, it, true); } void ShocksStatement::writeCovarOrCorrShock(ostream &output, covar_and_corr_shocks_t::const_iterator &it, bool corr) const { SymbolType type1 = symbol_table.getType(it->first.first); SymbolType type2 = symbol_table.getType(it->first.second); assert((type1 == eExogenous && type2 == eExogenous) || (symbol_table.isObservedVariable(it->first.first) && symbol_table.isObservedVariable(it->first.second))); string matrix, corr_matrix; int id1, id2; if (type1 == eExogenous) { matrix = "M_.Sigma_e"; corr_matrix = "M_.Correlation_matrix"; id1 = symbol_table.getTypeSpecificID(it->first.first) + 1; id2 = symbol_table.getTypeSpecificID(it->first.second) + 1; } else { matrix = "M_.H"; corr_matrix = "M_.Correlation_matrix_ME"; id1 = symbol_table.getObservedVariableIndex(it->first.first) + 1; id2 = symbol_table.getObservedVariableIndex(it->first.second) + 1; } output << matrix << "(" << id1 << ", " << id2 << ") = "; it->second->writeOutput(output); if (corr) output << "*sqrt(" << matrix << "(" << id1 << ", " << id1 << ")*" << matrix << "(" << id2 << ", " << id2 << "))"; output << ";" << endl << matrix << "(" << id2 << ", " << id1 << ") = " << matrix << "(" << id1 << ", " << id2 << ");" << endl; if (corr) { output << corr_matrix << "(" << id1 << ", " << id2 << ") = "; it->second->writeOutput(output); output << ";" << endl << corr_matrix << "(" << id2 << ", " << id1 << ") = " << corr_matrix << "(" << id1 << ", " << id2 << ");" << endl; } } void ShocksStatement::writeCovarAndCorrShocks(ostream &output) const { covar_and_corr_shocks_t::const_iterator it; for (it = covar_shocks.begin(); it != covar_shocks.end(); it++) writeCovarOrCorrShock(output, it, false); for (it = corr_shocks.begin(); it != corr_shocks.end(); it++) writeCovarOrCorrShock(output, it, true); } void ShocksStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings) { /* Error out if variables are not of the right type. This must be done here and not at parsing time (see #448). Also Determine if there is a calibrated measurement error */ for (var_and_std_shocks_t::const_iterator it = var_shocks.begin(); it != var_shocks.end(); it++) { if (symbol_table.getType(it->first) != eExogenous && !symbol_table.isObservedVariable(it->first)) { cerr << "shocks: setting a variance on '" << symbol_table.getName(it->first) << "' is not allowed, because it is neither an exogenous variable nor an observed endogenous variable" << endl; exit(EXIT_FAILURE); } } for (var_and_std_shocks_t::const_iterator it = std_shocks.begin(); it != std_shocks.end(); it++) { if (symbol_table.getType(it->first) != eExogenous && !symbol_table.isObservedVariable(it->first)) { cerr << "shocks: setting a standard error on '" << symbol_table.getName(it->first) << "' is not allowed, because it is neither an exogenous variable nor an observed endogenous variable" << endl; exit(EXIT_FAILURE); } } for (covar_and_corr_shocks_t::const_iterator it = covar_shocks.begin(); it != covar_shocks.end(); it++) { int symb_id1 = it->first.first; int symb_id2 = it->first.second; if (!((symbol_table.getType(symb_id1) == eExogenous && symbol_table.getType(symb_id2) == eExogenous) || (symbol_table.isObservedVariable(symb_id1) && symbol_table.isObservedVariable(symb_id2)))) { cerr << "shocks: setting a covariance between '" << symbol_table.getName(symb_id1) << "' and '" << symbol_table.getName(symb_id2) << "'is not allowed; covariances can only be specified for exogenous or observed endogenous variables of same type" << endl; exit(EXIT_FAILURE); } } for (covar_and_corr_shocks_t::const_iterator it = corr_shocks.begin(); it != corr_shocks.end(); it++) { int symb_id1 = it->first.first; int symb_id2 = it->first.second; if (!((symbol_table.getType(symb_id1) == eExogenous && symbol_table.getType(symb_id2) == eExogenous) || (symbol_table.isObservedVariable(symb_id1) && symbol_table.isObservedVariable(symb_id2)))) { cerr << "shocks: setting a correlation between '" << symbol_table.getName(symb_id1) << "' and '" << symbol_table.getName(symb_id2) << "'is not allowed; correlations can only be specified for exogenous or observed endogenous variables of same type" << endl; exit(EXIT_FAILURE); } } // Determine if there is a calibrated measurement error mod_file_struct.calibrated_measurement_errors |= has_calibrated_measurement_errors(); // Fill in mod_file_struct.parameters_with_shocks_values (related to #469) for (var_and_std_shocks_t::const_iterator it = var_shocks.begin(); it != var_shocks.end(); ++it) it->second->collectVariables(eParameter, mod_file_struct.parameters_within_shocks_values); for (var_and_std_shocks_t::const_iterator it = std_shocks.begin(); it != std_shocks.end(); ++it) it->second->collectVariables(eParameter, mod_file_struct.parameters_within_shocks_values); for (covar_and_corr_shocks_t::const_iterator it = covar_shocks.begin(); it != covar_shocks.end(); ++it) it->second->collectVariables(eParameter, mod_file_struct.parameters_within_shocks_values); for (covar_and_corr_shocks_t::const_iterator it = corr_shocks.begin(); it != corr_shocks.end(); ++it) it->second->collectVariables(eParameter, mod_file_struct.parameters_within_shocks_values); } bool ShocksStatement::has_calibrated_measurement_errors() const { for (var_and_std_shocks_t::const_iterator it = var_shocks.begin(); it != var_shocks.end(); it++) if (symbol_table.isObservedVariable(it->first)) return true; for (var_and_std_shocks_t::const_iterator it = std_shocks.begin(); it != std_shocks.end(); it++) if (symbol_table.isObservedVariable(it->first)) return true; for (covar_and_corr_shocks_t::const_iterator it = covar_shocks.begin(); it != covar_shocks.end(); it++) if (symbol_table.isObservedVariable(it->first.first) || symbol_table.isObservedVariable(it->first.second)) return true; for (covar_and_corr_shocks_t::const_iterator it = corr_shocks.begin(); it != corr_shocks.end(); it++) if (symbol_table.isObservedVariable(it->first.first) || symbol_table.isObservedVariable(it->first.second)) return true; return false; } MShocksStatement::MShocksStatement(bool overwrite_arg, const det_shocks_t &det_shocks_arg, const SymbolTable &symbol_table_arg) : AbstractShocksStatement(true, overwrite_arg, det_shocks_arg, symbol_table_arg) { } void MShocksStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const { output << "%" << endl << "% MSHOCKS instructions" << endl << "%" << endl; if (overwrite) output << "M_.det_shocks = [];" << endl; writeDetShocks(output); } ConditionalForecastPathsStatement::ConditionalForecastPathsStatement(const AbstractShocksStatement::det_shocks_t &paths_arg) : paths(paths_arg), path_length(-1) { } void ConditionalForecastPathsStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings) { for (AbstractShocksStatement::det_shocks_t::const_iterator it = paths.begin(); it != paths.end(); it++) { int this_path_length = 0; const vector &elems = it->second; for (int i = 0; i < (int) elems.size(); i++) // Period1 < Period2, as enforced in ParsingDriver::add_period() this_path_length = max(this_path_length, elems[i].period2); if (path_length == -1) path_length = this_path_length; else if (path_length != this_path_length) { cerr << "conditional_forecast_paths: all constrained paths must have the same length!" << endl; exit(EXIT_FAILURE); } } } void ConditionalForecastPathsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const { assert(path_length > 0); output << "constrained_vars_ = [];" << endl << "constrained_paths_ = zeros(" << paths.size() << ", " << path_length << ");" << endl; int k = 1; for (AbstractShocksStatement::det_shocks_t::const_iterator it = paths.begin(); it != paths.end(); it++) { if (it == paths.begin()) { output << "constrained_vars_ = " << it->first +1 << ";" << endl; } else { output << "constrained_vars_ = [constrained_vars_; " << it->first +1 << "];" << endl; } const vector &elems = it->second; for (int i = 0; i < (int) elems.size(); i++) for (int j = elems[i].period1; j <= elems[i].period2; j++) { output << "constrained_paths_(" << k << "," << j << ")="; elems[i].value->writeOutput(output); output << ";" << endl; } k++; } } MomentCalibration::MomentCalibration(const constraints_t &constraints_arg, const SymbolTable &symbol_table_arg) : constraints(constraints_arg), symbol_table(symbol_table_arg) { } void MomentCalibration::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const { output << "options_.endogenous_prior_restrictions.moment = {" << endl; for (size_t i = 0; i < constraints.size(); i++) { const Constraint &c = constraints[i]; output << "'" << symbol_table.getName(c.endo1) << "', " << "'" << symbol_table.getName(c.endo2) << "', " << c.lags << ", " << "[ " << c.lower_bound << ", " << c.upper_bound << " ];" << endl; } output << "};" << endl; } IrfCalibration::IrfCalibration(const constraints_t &constraints_arg, const SymbolTable &symbol_table_arg, const OptionsList &options_list_arg) : constraints(constraints_arg), symbol_table(symbol_table_arg), options_list(options_list_arg) { } void IrfCalibration::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const { options_list.writeOutput(output); output << "options_.endogenous_prior_restrictions.irf = {" << endl; for (size_t i = 0; i < constraints.size(); i++) { const Constraint &c = constraints[i]; output << "'" << symbol_table.getName(c.endo) << "', " << "'" << symbol_table.getName(c.exo) << "', " << c.periods << ", " << "[ " << c.lower_bound << ", " << c.upper_bound << " ];" << endl; } output << "};" << endl; }