/* * Copyright (C) 2009-2012 Dynare Team * * This file is part of Dynare. * * Dynare is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Dynare is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Dynare. If not, see . */ #include #include "MinimumFeedbackSet.hh" namespace MFS { void Suppress(AdjacencyList_t::vertex_descriptor vertex_to_eliminate, AdjacencyList_t &G) { clear_vertex(vertex_to_eliminate, G); remove_vertex(vertex_to_eliminate, G); } void Suppress(int vertex_num, AdjacencyList_t &G) { Suppress(vertex(vertex_num, G), G); } void Eliminate(AdjacencyList_t::vertex_descriptor vertex_to_eliminate, AdjacencyList_t &G) { if (in_degree(vertex_to_eliminate, G) > 0 && out_degree(vertex_to_eliminate, G) > 0) { AdjacencyList_t::in_edge_iterator it_in, in_end; AdjacencyList_t::out_edge_iterator it_out, out_end; for (tie(it_in, in_end) = in_edges(vertex_to_eliminate, G); it_in != in_end; ++it_in) for (tie(it_out, out_end) = out_edges(vertex_to_eliminate, G); it_out != out_end; ++it_out) { AdjacencyList_t::edge_descriptor ed; bool exist; tie(ed, exist) = edge(source(*it_in, G), target(*it_out, G), G); if (!exist) add_edge(source(*it_in, G), target(*it_out, G), G); } } Suppress(vertex_to_eliminate, G); } bool has_cycle_dfs(AdjacencyList_t &g, AdjacencyList_t::vertex_descriptor u, color_t &color, vector &circuit_stack) { property_map::type v_index = get(vertex_index, g); color[u] = gray_color; graph_traits::out_edge_iterator vi, vi_end; for (tie(vi, vi_end) = out_edges(u, g); vi != vi_end; ++vi) if (color[target(*vi, g)] == white_color && has_cycle_dfs(g, target(*vi, g), color, circuit_stack)) { // cycle detected, return immediately circuit_stack.push_back(v_index[target(*vi, g)]); return true; } else if (color[target(*vi, g)] == gray_color) { // *vi is an ancestor! circuit_stack.push_back(v_index[target(*vi, g)]); return true; } color[u] = black_color; return false; } bool has_cycle(vector &circuit_stack, AdjacencyList_t &g) { // Initialize color map to white color_t color; graph_traits::vertex_iterator vi, vi_end; for (tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) color[*vi] = white_color; // Perform depth-first search for (tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) if (color[*vi] == white_color && has_cycle_dfs(g, *vi, color, circuit_stack)) return true; return false; } void Print(AdjacencyList_t &G) { AdjacencyList_t::vertex_iterator it, it_end; property_map::type v_index = get(vertex_index, G); cout << "Graph\n"; cout << "-----\n"; for (tie(it, it_end) = vertices(G); it != it_end; ++it) { cout << "vertex[" << v_index[*it] + 1 << "] <-"; AdjacencyList_t::in_edge_iterator it_in, in_end; for (tie(it_in, in_end) = in_edges(*it, G); it_in != in_end; ++it_in) cout << v_index[source(*it_in, G)] + 1 << " "; cout << "\n ->"; AdjacencyList_t::out_edge_iterator it_out, out_end; for (tie(it_out, out_end) = out_edges(*it, G); it_out != out_end; ++it_out) cout << v_index[target(*it_out, G)] + 1 << " "; cout << "\n"; } } AdjacencyList_t AM_2_AdjacencyList(bool *AM, unsigned int n) { AdjacencyList_t G(n); property_map::type v_index = get(vertex_index, G); property_map::type v_index1 = get(vertex_index1, G); for (unsigned int i = 0; i < n; i++) { put(v_index, vertex(i, G), i); put(v_index1, vertex(i, G), i); } for (unsigned int i = 0; i < n; i++) for (unsigned int j = 0; j < n; j++) if (AM[i*n+j]) add_edge(vertex(j, G), vertex(i, G), G); return G; } AdjacencyList_t extract_subgraph(AdjacencyList_t &G1, set select_index) { unsigned int n = select_index.size(); AdjacencyList_t G(n); property_map::type v_index = get(vertex_index, G); property_map::type v_index1 = get(vertex_index1, G); property_map::type v1_index = get(vertex_index, G1); map reverse_index; set::iterator it; unsigned int i; for (it = select_index.begin(), i = 0; i < n; i++, ++it) { reverse_index[get(v1_index, vertex(*it, G1))] = i; put(v_index, vertex(i, G), get(v1_index, vertex(*it, G1))); put(v_index1, vertex(i, G), i); } for (it = select_index.begin(), i = 0; i < n; i++, ++it) { AdjacencyList_t::out_edge_iterator it_out, out_end; AdjacencyList_t::vertex_descriptor vi = vertex(*it, G1); for (tie(it_out, out_end) = out_edges(vi, G1); it_out != out_end; ++it_out) { int ii = v1_index[target(*it_out, G1)]; if (select_index.find(ii) != select_index.end()) add_edge(vertex(reverse_index[get(v1_index, source(*it_out, G1))], G), vertex(reverse_index[get(v1_index, target(*it_out, G1))], G), G); } } return G; } vector_vertex_descriptor_t Collect_Doublet(AdjacencyList_t::vertex_descriptor vertex, AdjacencyList_t &G) { AdjacencyList_t::in_edge_iterator it_in, in_end; AdjacencyList_t::out_edge_iterator it_out, out_end; vector Doublet; if (in_degree(vertex, G) > 0 && out_degree(vertex, G) > 0) for (tie(it_in, in_end) = in_edges(vertex, G); it_in != in_end; ++it_in) for (tie(it_out, out_end) = out_edges(vertex, G); it_out != out_end; ++it_out) if (source(*it_in, G) == target(*it_out, G) && source(*it_in, G) != target(*it_in, G)) // not a loop Doublet.push_back(source(*it_in, G)); return Doublet; } bool Vertex_Belong_to_a_Clique(AdjacencyList_t::vertex_descriptor vertex, AdjacencyList_t &G) { vector liste; bool agree = true; AdjacencyList_t::in_edge_iterator it_in, in_end; AdjacencyList_t::out_edge_iterator it_out, out_end; tie(it_in, in_end) = in_edges(vertex, G); tie(it_out, out_end) = out_edges(vertex, G); while (it_in != in_end && it_out != out_end && agree) { agree = (source(*it_in, G) == target(*it_out, G) && source(*it_in, G) != target(*it_in, G)); //not a loop liste.push_back(source(*it_in, G)); ++it_in; ++it_out; } if (agree) { if (it_in != in_end || it_out != out_end) agree = false; unsigned int i = 1; while (i < liste.size() && agree) { unsigned int j = i + 1; while (j < liste.size() && agree) { AdjacencyList_t::edge_descriptor ed; bool exist1, exist2; tie(ed, exist1) = edge(liste[i], liste[j], G); tie(ed, exist2) = edge(liste[j], liste[i], G); agree = (exist1 && exist2); j++; } i++; } } return agree; } bool Elimination_of_Vertex_With_One_or_Less_Indegree_or_Outdegree_Step(AdjacencyList_t &G) { bool something_has_been_done = false; bool not_a_loop; int i; AdjacencyList_t::vertex_iterator it, it1, ita, it_end; for (tie(it, it_end) = vertices(G), i = 0; it != it_end; ++it, i++) { int in_degree_n = in_degree(*it, G); int out_degree_n = out_degree(*it, G); if (in_degree_n <= 1 || out_degree_n <= 1) { not_a_loop = true; if (in_degree_n >= 1 && out_degree_n >= 1) // Do not eliminate a vertex if it loops on itself! { AdjacencyList_t::in_edge_iterator it_in, in_end; for (tie(it_in, in_end) = in_edges(*it, G); it_in != in_end; ++it_in) if (source(*it_in, G) == target(*it_in, G)) { #ifdef verbose cout << v_index[source(*it_in, G)] << " == " << v_index[target(*it_in, G)] << "\n"; #endif not_a_loop = false; } } if (not_a_loop) { #ifdef verbose property_map::type v_index = get(vertex_index, G); cout << "->eliminate vertex[" << v_index[*it] + 1 << "]\n"; #endif Eliminate(*it, G); #ifdef verbose Print(G); #endif something_has_been_done = true; if (i > 0) it = ita; else { tie(it, it_end) = vertices(G); i--; } } } ita = it; } return something_has_been_done; } bool Elimination_of_Vertex_belonging_to_a_clique_Step(AdjacencyList_t &G) { AdjacencyList_t::vertex_iterator it, it1, ita, it_end; bool something_has_been_done = false; int i; for (tie(it, it_end) = vertices(G), i = 0; it != it_end; ++it, i++) { if (Vertex_Belong_to_a_Clique(*it, G)) { #ifdef verbose property_map::type v_index = get(vertex_index, G); cout << "eliminate vertex[" << v_index[*it] + 1 << "]\n"; #endif Eliminate(*it, G); something_has_been_done = true; if (i > 0) it = ita; else { tie(it, it_end) = vertices(G); i--; } } ita = it; } return something_has_been_done; } bool Suppression_of_Vertex_X_if_it_loops_store_in_set_of_feedback_vertex_Step(set &feed_back_vertices, AdjacencyList_t &G) { bool something_has_been_done = false; AdjacencyList_t::vertex_iterator it, it_end, ita; int i = 0; for (tie(it, it_end) = vertices(G); it != it_end; ++it, i++) { AdjacencyList_t::edge_descriptor ed; bool exist; tie(ed, exist) = edge(*it, *it, G); if (exist) { #ifdef verbose property_map::type v_index = get(vertex_index, G); cout << "store v[*it] = " << v_index[*it]+1 << "\n"; #endif property_map::type v_index1 = get(vertex_index1, G); feed_back_vertices.insert(v_index1[*it]); /*property_map::type v_index = get(vertex_index, G); feed_back_vertices.insert(v_index[*it] );*/ Suppress(*it, G); something_has_been_done = true; if (i > 0) it = ita; else { tie(it, it_end) = vertices(G); i--; } } ita = it; } return something_has_been_done; } AdjacencyList_t Minimal_set_of_feedback_vertex(set &feed_back_vertices, const AdjacencyList_t &G1) { bool something_has_been_done = true; int cut_ = 0; feed_back_vertices.clear(); AdjacencyList_t G(G1); while (num_vertices(G) > 0) { while (something_has_been_done && num_vertices(G) > 0) { //Rule 1 something_has_been_done = (Elimination_of_Vertex_With_One_or_Less_Indegree_or_Outdegree_Step(G) /*or something_has_been_done*/); #ifdef verbose cout << "1 something_has_been_done=" << something_has_been_done << "\n"; #endif //Rule 2 something_has_been_done = (Elimination_of_Vertex_belonging_to_a_clique_Step(G) || something_has_been_done); #ifdef verbose cout << "2 something_has_been_done=" << something_has_been_done << "\n"; #endif //Rule 3 something_has_been_done = (Suppression_of_Vertex_X_if_it_loops_store_in_set_of_feedback_vertex_Step(feed_back_vertices, G) || something_has_been_done); #ifdef verbose cout << "3 something_has_been_done=" << something_has_been_done << "\n"; #endif } vector circuit; if (!has_cycle(circuit, G)) { #ifdef verbose cout << "has_cycle=false\n"; #endif //sort(feed_back_vertices.begin(), feed_back_vertices.end()); return G; } if (num_vertices(G) > 0) { /*if nothing has been done in the five previous rule then cut the vertex with the maximum in_degree+out_degree*/ unsigned int max_degree = 0, num = 0; AdjacencyList_t::vertex_iterator it, it_end, max_degree_index; for (tie(it, it_end) = vertices(G); it != it_end; ++it, num++) { if (in_degree(*it, G) + out_degree(*it, G) > max_degree) { max_degree = in_degree(*it, G) + out_degree(*it, G); max_degree_index = it; } } property_map::type v_index1 = get(vertex_index1, G); feed_back_vertices.insert(v_index1[*max_degree_index]); /*property_map::type v_index = get(vertex_index, G); feed_back_vertices.insert(v_index[*max_degree_index]);*/ //cout << "v_index1[*max_degree_index] = " << v_index1[*max_degree_index] << "\n"; cut_++; #ifdef verbose property_map::type v_index = get(vertex_index, G); cout << "--> cut vertex " << v_index[*max_degree_index] + 1 << "\n"; #endif Suppress(*max_degree_index, G); something_has_been_done = true; } } #ifdef verbose cout << "cut_=" << cut_ << "\n"; #endif //sort(feed_back_vertices.begin(), feed_back_vertices.end()); return G; } struct rev { bool operator()(const int a, const int b) const { return (a > b); } }; void Reorder_the_recursive_variables(const AdjacencyList_t &G1, set &feedback_vertices, vector< int> &Reordered_Vertices) { AdjacencyList_t G(G1); property_map::type v_index = get(vertex_index, G); set::iterator its, ita; set fv; for (its = feedback_vertices.begin(); its != feedback_vertices.end(); its++) fv.insert(*its); int i = 0; for (its = fv.begin(); its != fv.end(); ++its, i++) Suppress(*its, G); bool something_has_been_done = true; while (something_has_been_done) { something_has_been_done = false; AdjacencyList_t::vertex_iterator it, it_end, ita; for (tie(it, it_end) = vertices(G), i = 0; it != it_end; ++it, i++) { if (in_degree(*it, G) == 0) { Reordered_Vertices.push_back(v_index[*it]); Suppress(*it, G); something_has_been_done = true; if (i > 0) it = ita; else { tie(it, it_end) = vertices(G); i--; } } ita = it; } } if (num_vertices(G)) cout << "Error in the computation of feedback vertex set\n"; } }