/* * Copyright (C) 2003-2009 Dynare Team * * This file is part of Dynare. * * Dynare is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Dynare is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Dynare. If not, see . */ #include #include #include #include #include #ifdef DEBUG # include using namespace __gnu_cxx; #endif #include #include #include #include #include "StaticModel.hh" #include "MinimumFeedbackSet.hh" using namespace boost; StaticModel::StaticModel(SymbolTable &symbol_table_arg, NumericalConstants &num_constants_arg) : ModelTree(symbol_table_arg, num_constants_arg) { } void StaticModel::writeStaticMFile(const string &static_basename) const { string filename = static_basename + ".m"; ofstream mStaticModelFile; mStaticModelFile.open(filename.c_str(), ios::out | ios::binary); if (!mStaticModelFile.is_open()) { cerr << "Error: Can't open file " << filename << " for writing" << endl; exit(EXIT_FAILURE); } // Writing comments and function definition command mStaticModelFile << "function [residual, g1, g2] = " << static_basename << "(y, x, params)" << endl << "%" << endl << "% Status : Computes static model for Dynare" << endl << "%" << endl << "% Warning : this file is generated automatically by Dynare" << endl << "% from model file (.mod)" << endl << endl; writeStaticModel(mStaticModelFile); mStaticModelFile.close(); } void StaticModel::writeStaticCFile(const string &static_basename) const { string filename = static_basename + ".c"; ofstream mStaticModelFile; mStaticModelFile.open(filename.c_str(), ios::out | ios::binary); if (!mStaticModelFile.is_open()) { cerr << "Error: Can't open file " << filename << " for writing" << endl; exit(EXIT_FAILURE); } mStaticModelFile << "/*" << endl << " * " << filename << " : Computes static model for Dynare" << endl << " * Warning : this file is generated automatically by Dynare" << endl << " * from model file (.mod)" << endl << endl << " */" << endl << "#include " << endl << "#include \"mex.h\"" << endl; // Writing the function Static writeStaticModel(mStaticModelFile); // Writing the gateway routine mStaticModelFile << "/* The gateway routine */" << endl << "void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])" << endl << "{" << endl << " double *y, *x, *params;" << endl << " double *residual, *g1;" << endl << endl << " /* Create a pointer to the input matrix y. */" << endl << " y = mxGetPr(prhs[0]);" << endl << endl << " /* Create a pointer to the input matrix x. */" << endl << " x = mxGetPr(prhs[1]);" << endl << endl << " /* Create a pointer to the input matrix params. */" << endl << " params = mxGetPr(prhs[2]);" << endl << endl << " residual = NULL;" << endl << " if (nlhs >= 1)" << endl << " {" << endl << " /* Set the output pointer to the output matrix residual. */" << endl << " plhs[0] = mxCreateDoubleMatrix(" << equations.size() << ",1, mxREAL);" << endl << " /* Create a C pointer to a copy of the output matrix residual. */" << endl << " residual = mxGetPr(plhs[0]);" << endl << " }" << endl << endl << " g1 = NULL;" << endl << " if (nlhs >= 2)" << endl << " {" << endl << " /* Set the output pointer to the output matrix g1. */" << endl << " plhs[1] = mxCreateDoubleMatrix(" << equations.size() << ", " << symbol_table.endo_nbr() << ", mxREAL);" << endl << " /* Create a C pointer to a copy of the output matrix g1. */" << endl << " g1 = mxGetPr(plhs[1]);" << endl << " }" << endl << endl << " /* Call the C Static. */" << endl << " Static(y, x, params, residual, g1);" << endl << "}" << endl; mStaticModelFile.close(); } void StaticModel::writeStaticModel(ostream &StaticOutput) const { ostringstream model_output; // Used for storing model equations ostringstream jacobian_output; // Used for storing jacobian equations ostringstream hessian_output; ExprNodeOutputType output_type = (mode == eDLLMode ? oCStaticModel : oMatlabStaticModel); writeModelLocalVariables(model_output, output_type); writeTemporaryTerms(temporary_terms, model_output, output_type); writeModelEquations(model_output, output_type); // Write Jacobian w.r. to endogenous only for (first_derivatives_type::const_iterator it = first_derivatives.begin(); it != first_derivatives.end(); it++) { int eq = it->first.first; int symb_id = it->first.second; NodeID d1 = it->second; ostringstream g1; g1 << " g1"; jacobianHelper(g1, eq, symbol_table.getTypeSpecificID(symb_id), output_type); jacobian_output << g1.str() << "=" << g1.str() << "+"; d1->writeOutput(jacobian_output, output_type, temporary_terms); jacobian_output << ";" << endl; } // Write Hessian w.r. to endogenous only (only if 2nd order derivatives have been computed) int k = 0; // Keep the line of a 2nd derivative in v2 for (second_derivatives_type::const_iterator it = second_derivatives.begin(); it != second_derivatives.end(); it++) { int eq = it->first.first; int symb_id1 = it->first.second.first; int symb_id2 = it->first.second.second; NodeID d2 = it->second; int tsid1 = symbol_table.getTypeSpecificID(symb_id1); int tsid2 = symbol_table.getTypeSpecificID(symb_id2); int col_nb = tsid1*symbol_table.endo_nbr()+tsid2; int col_nb_sym = tsid2*symbol_table.endo_nbr()+tsid1; hessian_output << "v2"; hessianHelper(hessian_output, k, 0, output_type); hessian_output << "=" << eq + 1 << ";" << endl; hessian_output << "v2"; hessianHelper(hessian_output, k, 1, output_type); hessian_output << "=" << col_nb + 1 << ";" << endl; hessian_output << "v2"; hessianHelper(hessian_output, k, 2, output_type); hessian_output << "="; d2->writeOutput(hessian_output, output_type, temporary_terms); hessian_output << ";" << endl; k++; // Treating symetric elements if (symb_id1 != symb_id2) { hessian_output << "v2"; hessianHelper(hessian_output, k, 0, output_type); hessian_output << "=" << eq + 1 << ";" << endl; hessian_output << "v2"; hessianHelper(hessian_output, k, 1, output_type); hessian_output << "=" << col_nb_sym + 1 << ";" << endl; hessian_output << "v2"; hessianHelper(hessian_output, k, 2, output_type); hessian_output << "=v2"; hessianHelper(hessian_output, k-1, 2, output_type); hessian_output << ";" << endl; k++; } } // Writing ouputs if (mode != eDLLMode) { StaticOutput << "residual = zeros( " << equations.size() << ", 1);" << endl << endl << "%" << endl << "% Model equations" << endl << "%" << endl << endl << model_output.str() << "if ~isreal(residual)" << endl << " residual = real(residual)+imag(residual).^2;" << endl << "end" << endl << "if nargout >= 2," << endl << " g1 = zeros(" << equations.size() << ", " << symbol_table.endo_nbr() << ");" << endl << endl << "%" << endl << "% Jacobian matrix" << endl << "%" << endl << endl << jacobian_output.str() << " if ~isreal(g1)" << endl << " g1 = real(g1)+2*imag(g1);" << endl << " end" << endl << "end" << endl; // Initialize g2 matrix StaticOutput << "if nargout >= 3," << endl << "%" << endl << "% Hessian matrix" << endl << "%" << endl << endl; int ncols = symbol_table.endo_nbr() * symbol_table.endo_nbr(); if (second_derivatives.size()) StaticOutput << " v2 = zeros(" << NNZDerivatives[1] << ",3);" << endl << hessian_output.str() << " g2 = sparse(v2(:,1),v2(:,2),v2(:,3)," << equations.size() << "," << ncols << ");" << endl; else // Either hessian is all zero, or we didn't compute it StaticOutput << " g2 = sparse([],[],[]," << equations.size() << "," << ncols << ");" << endl; StaticOutput << "end;" << endl; } else { StaticOutput << "void Static(double *y, double *x, double *params, double *residual, double *g1)" << endl << "{" << endl << " double lhs, rhs;" << endl // Writing residual equations << " /* Residual equations */" << endl << " if (residual == NULL)" << endl << " return;" << endl << " else" << endl << " {" << endl << model_output.str() // Writing Jacobian << " /* Jacobian for endogenous variables without lag */" << endl << " if (g1 == NULL)" << endl << " return;" << endl << " else" << endl << " {" << endl << jacobian_output.str() << " }" << endl << " }" << endl << "}" << endl << endl; } } void StaticModel::writeStaticFile(const string &basename) const { switch (mode) { case eStandardMode: case eSparseDLLMode: case eSparseMode: writeStaticMFile(basename + "_static"); break; case eDLLMode: writeStaticCFile(basename + "_static"); break; } } void StaticModel::computingPass(bool block_mfs, bool hessian, bool no_tmp_terms) { // Compute derivatives w.r. to all endogenous set vars; for(int i = 0; i < symbol_table.endo_nbr(); i++) vars.insert(symbol_table.getID(eEndogenous, i)); // Launch computations cout << "Computing static model derivatives:" << endl << " - order 1" << endl; computeJacobian(vars); if (hessian) { cout << " - order 2" << endl; computeHessian(vars); } if (!no_tmp_terms) computeTemporaryTerms(); if (block_mfs) { vector endo2eq(equation_number()); computeNormalization(endo2eq); vector > blocks; computeSortedBlockDecomposition(blocks, endo2eq); vector > blocksMFS; computeMFS(blocksMFS, blocks, endo2eq); } } int StaticModel::computeDerivID(int symb_id, int lag) { if (symbol_table.getType(symb_id) == eEndogenous) return symb_id; else return -1; } int StaticModel::getDerivID(int symb_id, int lag) const throw (UnknownDerivIDException) { if (symbol_table.getType(symb_id) == eEndogenous) return symb_id; else throw UnknownDerivIDException(); } void StaticModel::computeNormalization(vector &endo2eq) const { const int n = equation_number(); assert(n == symbol_table.endo_nbr()); typedef adjacency_list BipartiteGraph; /* Vertices 0 to n-1 are for endogenous (using type specific ID) Vertices n to 2*n-1 are for equations (using equation no.) */ BipartiteGraph g(2 * n); // Fill in the graph set > endo; for(int i = 0; i < n; i++) { endo.clear(); equations[i]->collectEndogenous(endo); for(set >::const_iterator it = endo.begin(); it != endo.end(); it++) add_edge(i + n, symbol_table.getTypeSpecificID(it->first), g); } // Compute maximum cardinality matching vector mate_map(2*n); #if 1 bool check = checked_edmonds_maximum_cardinality_matching(g, &mate_map[0]); #else // Alternative way to compute normalization, by giving an initial matching using natural normalizations fill(mate_map.begin(), mate_map.end(), graph_traits::null_vertex()); multimap natural_endo2eqs; computeNormalizedEquations(natural_endo2eqs); for(int i = 0; i < symbol_table.endo_nbr(); i++) { if (natural_endo2eqs.count(i) == 0) continue; int j = natural_endo2eqs.find(i)->second; put(&mate_map[0], i, n+j); put(&mate_map[0], n+j, i); } edmonds_augmenting_path_finder::type> augmentor(g, &mate_map[0], get(vertex_index, g)); bool not_maximum_yet = true; while(not_maximum_yet) { not_maximum_yet = augmentor.augment_matching(); } augmentor.get_current_matching(&mate_map[0]); bool check = maximum_cardinality_matching_verifier::type>::verify_matching(g, &mate_map[0], get(vertex_index, g)); #endif assert(check); // Check if all variables are normalized vector::const_iterator it = find(mate_map.begin(), mate_map.begin() + n, graph_traits::null_vertex()); if (it != mate_map.begin() + n) { cerr << "ERROR: Could not normalize static model. Variable " << symbol_table.getName(symbol_table.getID(eEndogenous, it - mate_map.begin())) << " is not in the maximum cardinality matching." << endl; exit(EXIT_FAILURE); } #ifdef DEBUG for(int i = 0; i < n; i++) cout << "Endogenous " << symbol_table.getName(symbol_table.getID(eEndogenous, i)) << " matched with equation " << (mate_map[i]-n+1) << endl; #endif assert((int) endo2eq.size() == n); // Create the resulting map, by copying the n first elements of mate_map, and substracting n to them transform(mate_map.begin(), mate_map.begin() + n, endo2eq.begin(), bind2nd(minus(), n)); #ifdef DEBUG multimap natural_endo2eqs; computeNormalizedEquations(natural_endo2eqs); int n1 = 0, n2 = 0; for(int i = 0; i < symbol_table.endo_nbr(); i++) { if (natural_endo2eqs.count(i) == 0) continue; n1++; pair::const_iterator, multimap::const_iterator> x = natural_endo2eqs.equal_range(i); if (find_if(x.first, x.second, compose1(bind2nd(equal_to(), endo2eq[i]), select2nd::value_type>())) == x.second) cout << "Natural normalization of variable " << symbol_table.getName(symbol_table.getID(eEndogenous, i)) << " not used." << endl; else n2++; } cout << "Used " << n2 << " natural normalizations out of " << n1 << ", for a total of " << n << " equations." << endl; #endif } void StaticModel::computeNormalizedEquations(multimap &endo2eqs) const { for(int i = 0; i < equation_number(); i++) { VariableNode *lhs = dynamic_cast(equations[i]->get_arg1()); if (lhs == NULL) continue; int symb_id = lhs->get_symb_id(); if (symbol_table.getType(symb_id) != eEndogenous) continue; set > endo; equations[i]->get_arg2()->collectEndogenous(endo); if (endo.find(make_pair(symb_id, 0)) != endo.end()) continue; endo2eqs.insert(make_pair(symbol_table.getTypeSpecificID(symb_id), i)); cout << "Endogenous " << symbol_table.getName(symb_id) << " normalized in equation " << (i+1) << endl; } } void StaticModel::writeLatexFile(const string &basename) const { writeLatexModelFile(basename + "_static.tex", oLatexStaticModel); } void StaticModel::computeSortedBlockDecomposition(vector > &blocks, const vector &endo2eq) const { const int n = equation_number(); assert((int) endo2eq.size() == n); // Compute graph representation of static model typedef adjacency_list DirectedGraph; DirectedGraph g(n); set > endo; for(int i = 0; i < n; i++) { endo.clear(); equations[endo2eq[i]]->collectEndogenous(endo); for(set >::const_iterator it = endo.begin(); it != endo.end(); it++) add_edge(symbol_table.getTypeSpecificID(it->first), i, g); } // Compute strongly connected components vector endo2block(n); int m = strong_components(g, &endo2block[0]); // Create directed acyclic graph associated to the strongly connected components DirectedGraph dag(m); graph_traits::edge_iterator ei, ei_end; for(tie(ei, ei_end) = edges(g); ei != ei_end; ++ei) { int s = endo2block[source(*ei, g)]; int t = endo2block[target(*ei, g)]; if (s != t) add_edge(s, t, dag); } // Compute topological sort of DAG (ordered list of unordered SCC) deque ordered2unordered; topological_sort(dag, front_inserter(ordered2unordered)); // We use a front inserter because topological_sort returns the inverse order // Construct mapping from unordered SCC to ordered SCC vector unordered2ordered(m); for(int i = 0; i < m; i++) unordered2ordered[ordered2unordered[i]] = i; // Fill in data structure representing blocks blocks.clear(); blocks.resize(m); for(int i = 0; i < n; i++) blocks[unordered2ordered[endo2block[i]]].insert(i); #ifdef DEBUG cout << "Found " << m << " blocks" << endl; for(int i = 0; i < m; i++) cout << " Block " << i << " of size " << blocks[i].size() << endl; #endif } void StaticModel::computeMFS(vector > &blocksMFS, const vector > &blocks, const vector &endo2eq) const { const int n = equation_number(); assert((int) endo2eq.size() == n); const int nblocks = blocks.size(); blocksMFS.clear(); blocksMFS.resize(nblocks); // Iterate over blocks for(int b = 0; b < nblocks; b++) { // Construct subgraph for MFS computation, where vertex number is position in the block int p = blocks[b].size(); MFS::AdjacencyList_type g(p); // Construct v_index and v_index1 properties, and a mapping between type specific IDs and vertex descriptors property_map::type v_index = get(vertex_index, g); property_map::type v_index1 = get(vertex_index1, g); map::vertex_descriptor> tsid2vertex; int j = 0; for(set::const_iterator it = blocks[b].begin(); it != blocks[b].end(); ++it) { tsid2vertex[*it] = vertex(j, g); put(v_index, vertex(j, g), *it); put(v_index1, vertex(j, g), *it); j++; } // Add edges, loop over endogenous in the block set > endo; for(set::const_iterator it = blocks[b].begin(); it != blocks[b].end(); ++it) { endo.clear(); // Test if associated equation is in normalized form, and compute set of endogenous appearing in it ExprNode *lhs = equations[endo2eq[*it]]->get_arg1(); VariableNode *lhs_var = dynamic_cast(lhs); if (lhs_var == NULL || lhs_var->get_symb_id() != symbol_table.getID(eEndogenous, *it)) lhs->collectEndogenous(endo); // Only collect endogenous of LHS if not normalized form ExprNode *rhs = equations[endo2eq[*it]]->get_arg2(); rhs->collectEndogenous(endo); for(set >::const_iterator it2 = endo.begin(); it2 != endo.end(); ++it2) { const int tsid = symbol_table.getTypeSpecificID(it2->first); if (blocks[b].find(tsid) != blocks[b].end()) // Add edge only if vertex member of this block add_edge(tsid2vertex[tsid], tsid2vertex[*it], g); } } // Compute minimum feedback set MFS::Minimal_set_of_feedback_vertex(blocksMFS[b], g); cout << "Block " << b << ": " << blocksMFS[b].size() << "/" << blocks[b].size() << " in MFS" << endl; } }