/* * Copyright (C) 2007-2008 Dynare Team * * This file is part of Dynare. * * Dynare is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Dynare is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Dynare. If not, see . */ #ifndef _BLOCKTRIANGULAR_HH #define _BLOCKTRIANGULAR_HH #include #include "CodeInterpreter.hh" #include "ExprNode.hh" #include "SymbolTable.hh" #include "ModelNormalization.hh" #include "ModelBlocks.hh" #include "IncidenceMatrix.hh" //! Matrix of doubles for representing jacobian typedef map,double> jacob_map; typedef vector > t_type; //! Create the incidence matrix, computes prologue & epilogue, normalizes the model and computes the block decomposition class BlockTriangular { //friend class IncidenceMatrix; public: const SymbolTable &symbol_table; BlockTriangular(const SymbolTable &symbol_table_arg); //BlockTriangular(const IncidenceMatrix &incidence_matrix_arg); //const SymbolTable &symbol_table; Blocks blocks; Normalization normalization; IncidenceMatrix incidencematrix; void Normalize_and_BlockDecompose_Static_0_Model(const jacob_map &j_m, vector equations); bool Normalize_and_BlockDecompose(bool* IM, Model_Block* ModelBlock, int n, int* prologue, int* epilogue, simple* Index_Var_IM, simple* Index_Equ_IM, bool Do_Normalization, bool mixing, bool* IM_0 , jacob_map j_m, vector equations); void Prologue_Epilogue(bool* IM, int* prologue, int* epilogue, int n, simple* Index_Var_IM, simple* Index_Equ_IM, bool* IM0); void Allocate_Block(int size, int *count_Equ, int count_Block, BlockType type, BlockSimulationType SimType, Model_Block * ModelBlock); void Free_Block(Model_Block* ModelBlock) const; t_type Reduce_Blocks_and_type_determination(int prologue, int epilogue, block_result_t* res, vector equations ); simple *Index_Equ_IM; simple *Index_Var_IM; int prologue, epilogue; bool bt_verbose; //int endo_nbr, exo_nbr; Model_Block* ModelBlock; int periods; inline static std::string BlockType0(int type) { switch (type) { case 0: return ("SIMULTANEOUS TIME SEPARABLE "); break; case 1: return ("PROLOGUE "); break; case 2: return ("EPILOGUE "); break; case 3: return ("SIMULTANEOUS TIME UNSEPARABLE"); break; default: return ("UNKNOWN "); break; } }; inline static std::string BlockSim(int type) { switch (type) { case EVALUATE_FORWARD: case EVALUATE_FORWARD_R: return ("EVALUATE FORWARD "); break; case EVALUATE_BACKWARD: case EVALUATE_BACKWARD_R: return ("EVALUATE BACKWARD "); break; case SOLVE_FORWARD_SIMPLE: return ("SOLVE FORWARD SIMPLE "); break; case SOLVE_BACKWARD_SIMPLE: return ("SOLVE BACKWARD SIMPLE "); break; case SOLVE_TWO_BOUNDARIES_SIMPLE: return ("SOLVE TWO BOUNDARIES SIMPLE "); break; case SOLVE_FORWARD_COMPLETE: return ("SOLVE FORWARD COMPLETE "); break; case SOLVE_BACKWARD_COMPLETE: return ("SOLVE BACKWARD COMPLETE "); break; case SOLVE_TWO_BOUNDARIES_COMPLETE: return ("SOLVE TWO BOUNDARIES COMPLETE"); break; default: return ("UNKNOWN "); break; } }; }; #endif