/* * Copyright (C) 2007-2008 Dynare Team * * This file is part of Dynare. * * Dynare is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Dynare is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Dynare. If not, see . */ #ifndef BLOCKTRIANGULAR_H #define BLOCKTRIANGULAR_H #include #include "ExprNode.hh" #include "SymbolTable.hh" #include "ModelNormalization.hh" #include "ModelBlocks.hh" /*! \class BlockTriangular \brief Creat the incidence matrice and reorder the model's equations. */ #include "ExprNode.hh" typedef struct List_IM { List_IM* pNext; int lead_lag; bool* IM; }; typedef struct vari { int Size; int* arc; int used_arc; int available; }; typedef map,double> jacob_map; class BlockTriangular { public: BlockTriangular(const SymbolTable &symbol_table_arg); ~BlockTriangular(); /*! The incidence matrix for each lead and lags */ const SymbolTable &symbol_table; Blocks blocks; Normalization normalization; List_IM* Build_IM(int lead_lag); List_IM* Get_IM(int lead_lag); bool* bGet_IM(int lead_lag); bool* bGet_IM(int lead_lag) const; void fill_IM(int equation, int variable_endo, int lead_lag); void unfill_IM(int equation, int variable_endo, int lead_lag); void incidence_matrix() const; void init_incidence_matrix(int nb_endo); void Print_IM(int n) const; void Free_IM(List_IM* First_IM); void Print_SIM(bool* IM, int n) const; void Normalize_and_BlockDecompose_Static_Model(); void Normalize_and_BlockDecompose_Static_0_Model(const jacob_map &j_m); bool Normalize_and_BlockDecompose(bool* IM, Model_Block* ModelBlock, int n, int* prologue, int* epilogue, simple* Index_Var_IM, simple* Index_Equ_IM, bool Do_Normalization, bool mixing, bool* IM_0 ); bool Normalize_and_BlockDecompose(bool* IM, Model_Block* ModelBlock, int n, int* prologue, int* epilogue, simple* Index_Var_IM, simple* Index_Equ_IM, bool Do_Normalization, bool mixing, bool* IM_0 , jacob_map j_m); void Normalize_and_BlockDecompose_0(); void Normalize_and_BlockDecompose_Inside_Earth(); void Prologue_Epilogue(bool* IM, int* prologue, int* epilogue, int n, simple* Index_Var_IM, simple* Index_Equ_IM); void Sort_By_Cols(bool* IM, int d, int f); void getMax_Lead_Lag(int var, int equ, int *lead, int *lag); void getMax_Lead_Lag_B(int size, int* Equation, int *Variable, int *lead, int *lag); void swap_IM_c(bool *SIM, int pos1, int pos2, int pos3, simple* Index_Var_IM, simple* Index_Equ_IM, int n); void Allocate_Block(int size, int *count_Equ, int *count_Block, int type, Model_Block * ModelBlock); void Free_Block(Model_Block* ModelBlock); string getnamebyID(Type type, int id); List_IM *First_IM ; List_IM *Last_IM ; simple *Index_Equ_IM; simple *Index_Var_IM; int prologue, epilogue; int Model_Max_Lead, Model_Max_Lag, periods; bool bt_verbose; int endo_nbr; Model_Block* ModelBlock; inline static std::string BlockType0(int type) { switch (type) { case 0: return ("SIMULTANEOUS TIME SEPARABLE "); break; case 1: return ("PROLOGUE "); break; case 2: return ("EPILOGUE "); break; case 3: return ("SIMULTANEOUS TIME UNSEPARABLE"); break; default: return ("UNKNOWN "); break; } }; inline static std::string BlockSim(int type) { switch (type) { case EVALUATE_FOREWARD: case EVALUATE_FOREWARD_R: return ("EVALUATE FOREWARD "); break; case EVALUATE_BACKWARD: case EVALUATE_BACKWARD_R: return ("EVALUATE BACKWARD "); break; case SOLVE_FOREWARD_SIMPLE: return ("SOLVE FOREWARD SIMPLE "); break; case SOLVE_BACKWARD_SIMPLE: return ("SOLVE BACKWARD SIMPLE "); break; case SOLVE_TWO_BOUNDARIES_SIMPLE: return ("SOLVE TWO BOUNDARIES SIMPLE "); break; case SOLVE_FOREWARD_COMPLETE: return ("SOLVE FOREWARD COMPLETE "); break; case SOLVE_BACKWARD_COMPLETE: return ("SOLVE BACKWARD COMPLETE "); break; case SOLVE_TWO_BOUNDARIES_COMPLETE: return ("SOLVE TWO BOUNDARIES COMPLETE"); break; default: return ("UNKNOWN "); break; } }; inline static std::string BlockSim_d(int type) { switch (type) { case EVALUATE_FOREWARD: case EVALUATE_FOREWARD_R: return ("EVALUATE_FOREWARD "); break; case EVALUATE_BACKWARD: case EVALUATE_BACKWARD_R: return ("EVALUATE_BACKWARD "); break; case SOLVE_FOREWARD_SIMPLE: return ("SOLVE_FOREWARD_SIMPLE "); break; case SOLVE_BACKWARD_SIMPLE: return ("SOLVE_BACKWARD_SIMPLE "); break; case SOLVE_TWO_BOUNDARIES_SIMPLE: return ("SOLVE_TWO_BOUNDARIES_SIMPLE "); break; case SOLVE_FOREWARD_COMPLETE: return ("SOLVE_FOREWARD_COMPLETE "); break; case SOLVE_BACKWARD_COMPLETE: return ("SOLVE_BACKWARD_COMPLETE "); break; case SOLVE_TWO_BOUNDARIES_COMPLETE: return ("SOLVE_TWO_BOUNDARIES_COMPLETE"); break; default: return ("UNKNOWN "); break; } }; }; //------------------------------------------------------------------------------ #endif