/* * Copyright © 2007-2023 Dynare Team * * This file is part of Dynare. * * Dynare is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Dynare is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Dynare. If not, see . */ #ifndef BYTECODE_HH #define BYTECODE_HH #include #include #include #include #include #include #include "CommonEnums.hh" using namespace std; namespace Bytecode { // The different tags encoding a bytecode instruction enum class Tag { FLDZ, // Loads a zero onto the stack FLDC, // Loads a constant term onto the stack FDIMT, // Defines the number of temporary terms - dynamic context (the period has to be indicated) FDIMST, // Defines the number of temporary terms - static context (the period hasn’t to be // indicated) FLDT, // Loads a temporary term onto the stack - dynamic context (the period has to be indicated) FLDST, // Loads a temporary term onto the stack - static context (the period hasn’t to be // indicated) FSTPT, // Stores a temporary term from the stack - dynamic context (the period has to be // indicated) FSTPST, // Stores a temporary term from the stack - static context (the period hasn’t to be // indicated) FLDU, // Loads an element of the vector U onto the stack - dynamic context (the period has to be // indicated) FLDSU, // Loads an element of the vector U onto the stack - static context (the period hasn’t to // be indicated) FSTPU, // Stores an element of the vector U from the stack - dynamic context (the period has to be // indicated) FSTPSU, // Stores an element of the vector U from the stack - static context (the period hasn’t to // be indicated) FLDV, // Loads a variable (described in SymbolType) onto the stack - dynamic context (the period // has to be indicated) FLDSV, // Loads a variable (described in SymbolType) onto the stack - static context (the period // hasn’t to be indicated) FLDVS, // Loads a variable (described in SymbolType) onto the stack - dynamic context but inside // the STEADY_STATE operator (the period hasn’t to be indicated) FSTPV, // Stores a variable (described in SymbolType) from the stack - dynamic context (the period // has to be indicated) FSTPSV, // Stores a variable (described in SymbolType) from the stack - static context (the period // hasn’t to be indicated) FLDR, // Loads a residual onto the stack FSTPR, // Stores a residual from the stack FSTPG, // Stores a derivative from the stack FSTPG2, // Stores a derivative matrix for a static model from the stack FSTPG3, // Stores a derivative matrix for a dynamic model from the stack FUNARY, // A unary operator FBINARY, // A binary operator FTRINARY, // A trinary operator FJMPIFEVAL, // Jump if evaluate = true FJMP, // Jump FBEGINBLOCK, // Marks the beginning of a model block FENDBLOCK, // Marks the end of a model block FENDEQU, // Marks the last equation of the block; for a block that has to be solved, the // derivatives appear just after this flag FEND, // Marks the end of the model code FNUMEXPR, // Stores the expression type and references FCALL, // Call an external function FLDTEF, // Loads the result of an external function onto the stack FSTPTEF, // Stores the result of an external function from the stack FLDTEFD, // Loads the result of the 1st derivative of an external function onto the stack FSTPTEFD, // Stores the result of the 1st derivative of an external function from the stack FLDTEFDD, // Loads the result of the 2nd derivative of an external function onto the stack FSTPTEFDD // Stores the result of the 2nd derivative of an external function from the stack }; enum class ExpressionType { TemporaryTerm, ModelEquation, FirstEndoDerivative, FirstExoDerivative, FirstExodetDerivative, }; enum class ExternalFunctionCallType { levelWithoutDerivative, levelWithFirstDerivative, levelWithFirstAndSecondDerivative, separatelyProvidedFirstDerivative, numericalFirstDerivative, separatelyProvidedSecondDerivative, numericalSecondDerivative }; struct Block_contain_type { int Equation, Variable, Own_Derivative; }; class Writer; struct Instruction { const Tag tag; explicit Instruction(Tag tag_arg) : tag {tag_arg} { } protected: /* This is a base class, so the destructor should be either public+virtual or protected+non-virtual. We opt for the latter, because otherwise this class would no longer be POD; its memory representation would also include runtime type information, and our crude serialization technique (copying the whole object from memory) would thus not work. */ ~Instruction() = default; }; struct FLDZ final : public Instruction { FLDZ() : Instruction {Tag::FLDZ} { } }; struct FEND final : public Instruction { FEND() : Instruction {Tag::FEND} { } }; struct FENDBLOCK final : public Instruction { FENDBLOCK() : Instruction {Tag::FENDBLOCK} { } }; struct FENDEQU final : public Instruction { FENDEQU() : Instruction {Tag::FENDEQU} { } }; struct FDIMT final : public Instruction { const int size; explicit FDIMT(int size_arg) : Instruction {Tag::FDIMT}, size {size_arg} { } }; struct FDIMST final : public Instruction { const int size; explicit FDIMST(int size_arg) : Instruction {Tag::FDIMST}, size {size_arg} { } }; struct FLDC final : public Instruction { const double value; explicit FLDC(double value_arg) : Instruction {Tag::FLDC}, value {value_arg} { } }; struct FLDU final : public Instruction { const int pos; explicit FLDU(int pos_arg) : Instruction {Tag::FLDU}, pos {pos_arg} { } }; struct FLDSU final : public Instruction { const int pos; explicit FLDSU(int pos_arg) : Instruction {Tag::FLDSU}, pos {pos_arg} { } }; struct FLDR final : public Instruction { const int pos; explicit FLDR(int pos_arg) : Instruction {Tag::FLDR}, pos {pos_arg} { } }; struct FLDT final : public Instruction { const int pos; explicit FLDT(int pos_arg) : Instruction {Tag::FLDT}, pos {pos_arg} { } }; struct FLDST final : public Instruction { const int pos; explicit FLDST(int pos_arg) : Instruction {Tag::FLDST}, pos {pos_arg} { } }; struct FSTPT final : public Instruction { const int pos; explicit FSTPT(int pos_arg) : Instruction {Tag::FSTPT}, pos {pos_arg} { } }; struct FSTPST final : public Instruction { const int pos; explicit FSTPST(int pos_arg) : Instruction {Tag::FSTPST}, pos {pos_arg} { } }; struct FSTPR final : public Instruction { const int pos; explicit FSTPR(int pos_arg) : Instruction {Tag::FSTPR}, pos {pos_arg} { } }; struct FSTPU final : public Instruction { const int pos; explicit FSTPU(int pos_arg) : Instruction {Tag::FSTPU}, pos {pos_arg} { } }; struct FSTPSU final : public Instruction { const int pos; explicit FSTPSU(int pos_arg) : Instruction {Tag::FSTPSU}, pos {pos_arg} { } }; struct FSTPG final : public Instruction { const int pos; explicit FSTPG(int pos_arg) : Instruction {Tag::FSTPG}, pos {pos_arg} { } }; struct FSTPG2 final : public Instruction { const int row, col; FSTPG2(int row_arg, int col_arg) : Instruction {Tag::FSTPG2}, row {row_arg}, col {col_arg} { } }; struct FSTPG3 final : public Instruction { const int row, col, lag, col_pos; FSTPG3(int row_arg, int col_arg, int lag_arg, int col_pos_arg) : Instruction {Tag::FSTPG3}, row {row_arg}, col {col_arg}, lag {lag_arg}, col_pos {col_pos_arg} { } }; struct FUNARY final : public Instruction { const UnaryOpcode op_code; explicit FUNARY(UnaryOpcode op_code_arg) : Instruction {Tag::FUNARY}, op_code {op_code_arg} { } }; struct FBINARY final : public Instruction { const BinaryOpcode op_code; explicit FBINARY(BinaryOpcode op_code_arg) : Instruction {Tag::FBINARY}, op_code {op_code_arg} { } }; struct FTRINARY final : public Instruction { const TrinaryOpcode op_code; explicit FTRINARY(TrinaryOpcode op_code_arg) : Instruction {Tag::FTRINARY}, op_code {op_code_arg} { } }; struct FJMPIFEVAL final : public Instruction { const int pos; explicit FJMPIFEVAL(int pos_arg) : Instruction {Tag::FJMPIFEVAL}, pos {pos_arg} { } }; struct FJMP final : public Instruction { const int pos; explicit FJMP(int pos_arg) : Instruction {Tag::FJMP}, pos {pos_arg} { } }; struct FLDTEF final : public Instruction { const int number; explicit FLDTEF(int number_arg) : Instruction {Tag::FLDTEF}, number {number_arg} { } }; struct FSTPTEF final : public Instruction { const int number; explicit FSTPTEF(int number_arg) : Instruction {Tag::FSTPTEF}, number {number_arg} { } }; struct FLDTEFD final : public Instruction { const int indx, row; FLDTEFD(int indx_arg, int row_arg) : Instruction {Tag::FLDTEFD}, indx {indx_arg}, row {row_arg} { } }; struct FSTPTEFD final : public Instruction { const int indx, row; FSTPTEFD(int indx_arg, int row_arg) : Instruction {Tag::FSTPTEFD}, indx {indx_arg}, row {row_arg} { } }; struct FLDTEFDD final : public Instruction { const int indx, row, col; FLDTEFDD(int indx_arg, int row_arg, int col_arg) : Instruction {Tag::FLDTEFDD}, indx {indx_arg}, row {row_arg}, col {col_arg} { } }; struct FSTPTEFDD final : public Instruction { const int indx, row, col; FSTPTEFDD(int indx_arg, int row_arg, int col_arg) : Instruction {Tag::FSTPTEF}, indx {indx_arg}, row {row_arg}, col {col_arg} { } }; struct FLDVS final : public Instruction { const SymbolType type; const int pos; FLDVS(SymbolType type_arg, int pos_arg) : Instruction {Tag::FLDVS}, type {type_arg}, pos {pos_arg} { } }; struct FLDSV final : public Instruction { const SymbolType type; const int pos; FLDSV(SymbolType type_arg, int pos_arg) : Instruction {Tag::FLDSV}, type {type_arg}, pos {pos_arg} { } }; struct FSTPSV final : public Instruction { const SymbolType type; const int pos; FSTPSV(SymbolType type_arg, int pos_arg) : Instruction {Tag::FSTPSV}, type {type_arg}, pos {pos_arg} { } }; struct FLDV final : public Instruction { const SymbolType type; const int pos, lead_lag; FLDV(SymbolType type_arg, int pos_arg, int lead_lag_arg) : Instruction {Tag::FLDV}, type {type_arg}, pos {pos_arg}, lead_lag {lead_lag_arg} { } }; struct FSTPV final : public Instruction { const SymbolType type; const int pos, lead_lag; FSTPV(SymbolType type_arg, int pos_arg, int lead_lag_arg) : Instruction {Tag::FSTPV}, type {type_arg}, pos {pos_arg}, lead_lag {lead_lag_arg} { } }; class FCALL final : public Instruction { template friend Writer& operator<<(Writer& code_file, const B& instr); private: int nb_output_arguments, nb_input_arguments, indx; string func_name; string arg_func_name; int add_input_arguments {0}, row {0}, col {0}; ExternalFunctionCallType call_type; public: FCALL(int nb_output_arguments_arg, int nb_input_arguments_arg, string func_name_arg, int indx_arg, ExternalFunctionCallType call_type_arg) : Instruction {Tag::FCALL}, nb_output_arguments {nb_output_arguments_arg}, nb_input_arguments {nb_input_arguments_arg}, indx {indx_arg}, func_name {move(func_name_arg)}, call_type {call_type_arg} { } /* Deserializing constructor. Updates the code pointer to point beyond the bytes read. */ FCALL(char*& code) : Instruction {Tag::FCALL} { code += sizeof(tag); auto read_member = [&code](auto& member) { member = *reinterpret_cast>(code); code += sizeof member; }; read_member(nb_output_arguments); read_member(nb_input_arguments); read_member(indx); read_member(add_input_arguments); read_member(row); read_member(col); read_member(call_type); int size; read_member(size); func_name = code; code += size + 1; read_member(size); arg_func_name = code; code += size + 1; } string get_function_name() { // printf("get_function_name => func_name=%s\n",func_name.c_str());fflush(stdout); return func_name; } int get_nb_output_arguments() { return nb_output_arguments; } int get_nb_input_arguments() { return nb_input_arguments; } int get_indx() { return indx; } void set_arg_func_name(string arg_arg_func_name) { arg_func_name = move(arg_arg_func_name); } string get_arg_func_name() { return arg_func_name; } void set_nb_add_input_arguments(int arg_add_input_arguments) { add_input_arguments = arg_add_input_arguments; } int get_nb_add_input_arguments() { return add_input_arguments; } void set_row(int arg_row) { row = arg_row; } int get_row() { return row; } void set_col(int arg_col) { col = arg_col; } int get_col() { return col; } ExternalFunctionCallType get_call_type() { return call_type; } }; class FNUMEXPR final : public Instruction { private: ExpressionType expression_type; int equation; // Equation number (non-block-specific) (or temporary term number for // ExpressionType::TemporaryTerm) int dvariable1; // For derivatives, type-specific ID of the derivation variable int lag1; // For derivatives, lead/lag of the derivation variable public: FNUMEXPR(const ExpressionType expression_type_arg, int equation_arg) : Instruction {Tag::FNUMEXPR}, expression_type {expression_type_arg}, equation {equation_arg}, dvariable1 {0}, lag1 {0} { } FNUMEXPR(const ExpressionType expression_type_arg, int equation_arg, int dvariable1_arg) : Instruction {Tag::FNUMEXPR}, expression_type {expression_type_arg}, equation {equation_arg}, dvariable1 {dvariable1_arg}, lag1 {0} { } FNUMEXPR(const ExpressionType expression_type_arg, int equation_arg, int dvariable1_arg, int lag1_arg) : Instruction {Tag::FNUMEXPR}, expression_type {expression_type_arg}, equation {equation_arg}, dvariable1 {dvariable1_arg}, lag1 {lag1_arg} { } ExpressionType get_expression_type() { return expression_type; } int get_equation() { return equation; } int get_dvariable1() { return dvariable1; } int get_lag1() { return lag1; } }; class FBEGINBLOCK final : public Instruction { template friend Writer& operator<<(Writer& code_file, const B& instr); private: int size {0}; BlockSimulationType type; vector variable; vector equation; vector exogenous; vector det_exogenous; bool is_linear {false}; vector Block_Contain_; int u_count_int {0}; int nb_col_jacob {0}; int det_exo_size, exo_size; public: /* Constructor when derivatives w.r.t. exogenous are present (only makes sense when there is no block-decomposition, since there is no provision for derivatives w.r.t. endogenous not belonging to the block) */ FBEGINBLOCK(int size_arg, BlockSimulationType type_arg, int first_element, int block_size, const vector& variable_arg, const vector& equation_arg, bool is_linear_arg, int u_count_int_arg, int nb_col_jacob_arg, int det_exo_size_arg, int exo_size_arg, vector det_exogenous_arg, vector exogenous_arg) : Instruction {Tag::FBEGINBLOCK}, size {size_arg}, type {type_arg}, variable {variable_arg.begin() + first_element, variable_arg.begin() + (first_element + block_size)}, equation {equation_arg.begin() + first_element, equation_arg.begin() + (first_element + block_size)}, exogenous {move(exogenous_arg)}, det_exogenous {move(det_exogenous_arg)}, is_linear {is_linear_arg}, u_count_int {u_count_int_arg}, nb_col_jacob {nb_col_jacob_arg}, det_exo_size {det_exo_size_arg}, exo_size {exo_size_arg} { } // Constructor when derivatives w.r.t. exogenous are absent FBEGINBLOCK(int size_arg, BlockSimulationType type_arg, int first_element, int block_size, const vector& variable_arg, const vector& equation_arg, bool is_linear_arg, int u_count_int_arg, int nb_col_jacob_arg) : Instruction {Tag::FBEGINBLOCK}, size {size_arg}, type {type_arg}, variable {variable_arg.begin() + first_element, variable_arg.begin() + (first_element + block_size)}, equation {equation_arg.begin() + first_element, equation_arg.begin() + (first_element + block_size)}, is_linear {is_linear_arg}, u_count_int {u_count_int_arg}, nb_col_jacob {nb_col_jacob_arg}, det_exo_size {0}, exo_size {0} { } /* Deserializing constructor. Updates the code pointer to point beyond the bytes read. */ FBEGINBLOCK(char*& code) : Instruction {Tag::FBEGINBLOCK} { code += sizeof(tag); auto read_member = [&code](auto& member) { member = *reinterpret_cast>(code); code += sizeof member; }; read_member(size); read_member(type); for (int i {0}; i < size; i++) { Block_contain_type bc; read_member(bc.Variable); read_member(bc.Equation); Block_Contain_.push_back(bc); } if (type == BlockSimulationType::solveTwoBoundariesSimple || type == BlockSimulationType::solveTwoBoundariesComplete || type == BlockSimulationType::solveBackwardComplete || type == BlockSimulationType::solveForwardComplete) { read_member(is_linear); read_member(u_count_int); } read_member(nb_col_jacob); read_member(det_exo_size); read_member(exo_size); for (int i {0}; i < det_exo_size; i++) { int tmp_i; read_member(tmp_i); det_exogenous.push_back(tmp_i); } for (int i {0}; i < exo_size; i++) { int tmp_i; read_member(tmp_i); exogenous.push_back(tmp_i); } } int get_size() { return size; } BlockSimulationType get_type() { return type; } bool get_is_linear() { return is_linear; } int get_u_count_int() { return u_count_int; } vector get_Block_Contain() { return Block_Contain_; } int get_nb_col_jacob() { return nb_col_jacob; } int get_exo_size() { return exo_size; } int get_det_exo_size() { return det_exo_size; } vector get_endogenous() { return variable; } vector get_exogenous() { return exogenous; } }; // Superclass of std::ofstream for writing a sequence of bytecode instructions class Writer : private ofstream { template friend Writer& operator<<(Writer& code_file, const B& instr); private: // Stores the positions of all instructions in the byte stream vector instructions_positions; public: Writer(const filesystem::path& filename); // Returns the number of the next instruction to be written int getInstructionCounter() const { return static_cast(instructions_positions.size()); } /* Overwrites an existing instruction, given its number. It is the responsibility of the caller to ensure that the new instruction occupies exactly as many bytes as the former one. */ template void overwriteInstruction(int instruction_number, const B& new_instruction) { seekp(instructions_positions.at(instruction_number)); *this << new_instruction; instructions_positions.pop_back(); seekp(0, ios_base::end); } }; // Overloads of operator<< for writing bytecode instructions template Writer& operator<<(Writer& code_file, const B& instr) { code_file.instructions_positions.push_back(code_file.tellp()); code_file.write(reinterpret_cast(&instr), sizeof(B)); return code_file; } template<> Writer& operator<<(Writer& code_file, const FCALL& instr); template<> Writer& operator<<(Writer& code_file, const FBEGINBLOCK& instr); } #endif