preprocessor/src/DataTree.cc

993 lines
24 KiB
C++
Raw Normal View History

/*
* Copyright © 2003-2021 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <https://www.gnu.org/licenses/>.
*/
#include <cstdlib>
#include <cassert>
#include <iostream>
#include <regex>
#include <algorithm>
#include <iterator>
#include <filesystem>
#include "DataTree.hh"
void
DataTree::initConstants()
{
Zero = AddNonNegativeConstant("0");
One = AddNonNegativeConstant("1");
Two = AddNonNegativeConstant("2");
2019-07-15 18:18:26 +02:00
Three = AddNonNegativeConstant("3");
MinusOne = AddUMinus(One);
NaN = AddNonNegativeConstant("NaN");
Infinity = AddNonNegativeConstant("Inf");
MinusInfinity = AddUMinus(Infinity);
Pi = AddNonNegativeConstant("3.141592653589793");
}
DataTree::DataTree(SymbolTable &symbol_table_arg,
NumericalConstants &num_constants_arg,
ExternalFunctionsTable &external_functions_table_arg,
bool is_dynamic_arg) :
symbol_table{symbol_table_arg},
num_constants{num_constants_arg},
external_functions_table{external_functions_table_arg},
2019-12-20 16:59:30 +01:00
is_dynamic{is_dynamic_arg}
{
initConstants();
}
DataTree::DataTree(const DataTree &d) :
2019-12-20 16:59:30 +01:00
symbol_table{d.symbol_table},
num_constants{d.num_constants},
external_functions_table{d.external_functions_table},
is_dynamic{d.is_dynamic},
local_variables_vector{d.local_variables_vector}
{
// Constants must be initialized first because they are used in some Add* methods
initConstants();
2019-12-20 16:59:30 +01:00
for (const auto &it : d.node_list)
it->clone(*this);
assert(node_list.size() == d.node_list.size());
2019-12-20 16:59:30 +01:00
for (const auto &it : d.local_variables_table)
local_variables_table[it.first] = it.second->clone(*this);
}
DataTree &
DataTree::operator=(const DataTree &d)
{
assert(&symbol_table == &d.symbol_table);
assert(&num_constants == &d.num_constants);
assert(&external_functions_table == &d.external_functions_table);
assert(is_dynamic == d.is_dynamic);
num_const_node_map.clear();
variable_node_map.clear();
unary_op_node_map.clear();
binary_op_node_map.clear();
trinary_op_node_map.clear();
external_function_node_map.clear();
var_expectation_node_map.clear();
pac_expectation_node_map.clear();
first_deriv_external_function_node_map.clear();
second_deriv_external_function_node_map.clear();
node_list.clear();
// Constants must be initialized first because they are used in some Add* methods
initConstants();
/* Model local variables must be next, because they can be evaluated in Add*
methods when the model equations are added. They need to be cloned in
order of appearance in the model block (hence with
local_variables_vector), because if there is a model_local_variable statement
the symbol IDs ordering may not be the right one (see dynare#1782) */
for (const auto &id : d.local_variables_vector)
local_variables_table[id] = d.local_variables_table.at(id)->clone(*this);
2019-12-20 16:59:30 +01:00
for (const auto &it : d.node_list)
it->clone(*this);
assert(node_list.size() == d.node_list.size());
local_variables_vector = d.local_variables_vector;
return *this;
}
expr_t
DataTree::AddNonNegativeConstant(const string &value)
{
int id = num_constants.AddNonNegativeConstant(value);
if (auto it = num_const_node_map.find(id);
it != num_const_node_map.end())
return it->second;
auto sp = make_unique<NumConstNode>(*this, node_list.size(), id);
auto p = sp.get();
node_list.push_back(move(sp));
num_const_node_map[id] = p;
return p;
}
VariableNode *
DataTree::AddVariable(int symb_id, int lag)
{
if (lag != 0 && !is_dynamic)
{
cerr << "Leads/lags not authorized in this DataTree" << endl;
exit(EXIT_FAILURE);
}
if (auto it = variable_node_map.find({ symb_id, lag });
it != variable_node_map.end())
return it->second;
auto sp = make_unique<VariableNode>(*this, node_list.size(), symb_id, lag);
auto p = sp.get();
node_list.push_back(move(sp));
variable_node_map[{ symb_id, lag }] = p;
return p;
}
VariableNode *
DataTree::getVariable(int symb_id, int lag) const
{
auto it = variable_node_map.find({ symb_id, lag });
if (it == variable_node_map.end())
{
cerr << "DataTree::getVariable: unknown variable node for symb_id=" << symb_id << " and lag=" << lag << endl;
exit(EXIT_FAILURE);
}
return it->second;
}
bool
DataTree::ParamUsedWithLeadLagInternal() const
{
2019-12-20 16:59:30 +01:00
for (const auto &it : variable_node_map)
if (symbol_table.getType(it.first.first) == SymbolType::parameter && it.first.second != 0)
return true;
return false;
}
expr_t
DataTree::AddPlus(expr_t iArg1, expr_t iArg2)
{
if (iArg2 == Zero)
return iArg1;
if (iArg1 == Zero)
return iArg2;
// Simplify x+(-y) in x-y
if (auto uarg2 = dynamic_cast<UnaryOpNode *>(iArg2);
uarg2 && uarg2->op_code == UnaryOpcode::uminus)
return AddMinus(iArg1, uarg2->arg);
// Simplify (-x)+y in y-x
if (auto uarg1 = dynamic_cast<UnaryOpNode *>(iArg1);
uarg1 && uarg1->op_code == UnaryOpcode::uminus)
return AddMinus(iArg2, uarg1->arg);
// Simplify (x-y)+y in x
if (auto barg1 = dynamic_cast<BinaryOpNode *>(iArg1);
barg1 && barg1->op_code == BinaryOpcode::minus && barg1->arg2 == iArg2)
return barg1->arg1;
// Simplify y+(x-y) in x
if (auto barg2 = dynamic_cast<BinaryOpNode *>(iArg2);
barg2 && barg2->op_code == BinaryOpcode::minus && barg2->arg2 == iArg1)
return barg2->arg1;
// To treat commutativity of "+"
// Nodes iArg1 and iArg2 are sorted by index
if (iArg1->idx > iArg2->idx)
swap(iArg1, iArg2);
return AddBinaryOp(iArg1, BinaryOpcode::plus, iArg2);
}
expr_t
DataTree::AddMinus(expr_t iArg1, expr_t iArg2)
{
if (iArg2 == Zero)
return iArg1;
if (iArg1 == Zero)
return AddUMinus(iArg2);
if (iArg1 == iArg2)
return Zero;
2019-12-11 19:08:01 +01:00
// Simplify x-(-y) in x+y
if (auto uarg2 = dynamic_cast<UnaryOpNode *>(iArg2);
uarg2 && uarg2->op_code == UnaryOpcode::uminus)
return AddPlus(iArg1, uarg2->arg);
// Simplify (x+y)-y and (y+x)-y in x
if (auto barg1 = dynamic_cast<BinaryOpNode *>(iArg1);
barg1 && barg1->op_code == BinaryOpcode::plus)
{
if (barg1->arg2 == iArg2)
return barg1->arg1;
if (barg1->arg1 == iArg2)
return barg1->arg2;
}
return AddBinaryOp(iArg1, BinaryOpcode::minus, iArg2);
}
expr_t
DataTree::AddUMinus(expr_t iArg1)
{
if (iArg1 == Zero)
return Zero;
// Simplify -(-x) in x
if (auto uarg = dynamic_cast<UnaryOpNode *>(iArg1);
uarg && uarg->op_code == UnaryOpcode::uminus)
return uarg->arg;
return AddUnaryOp(UnaryOpcode::uminus, iArg1);
}
expr_t
DataTree::AddTimes(expr_t iArg1, expr_t iArg2)
{
if (iArg1 == Zero || iArg2 == Zero)
return Zero;
if (iArg1 == One)
return iArg2;
if (iArg2 == One)
return iArg1;
if (iArg1 == MinusOne)
return AddUMinus(iArg2);
if (iArg2 == MinusOne)
return AddUMinus(iArg1);
// Simplify (x/y)*y in x
if (auto barg1 = dynamic_cast<BinaryOpNode *>(iArg1);
barg1 && barg1->op_code == BinaryOpcode::divide && barg1->arg2 == iArg2)
return barg1->arg1;
// Simplify y*(x/y) in x
if (auto barg2 = dynamic_cast<BinaryOpNode *>(iArg2);
barg2 && barg2->op_code == BinaryOpcode::divide && barg2->arg2 == iArg1)
return barg2->arg1;
// To treat commutativity of "*"
// Nodes iArg1 and iArg2 are sorted by index
if (iArg1->idx > iArg2->idx)
swap(iArg1, iArg2);
return AddBinaryOp(iArg1, BinaryOpcode::times, iArg2);
}
expr_t
DataTree::AddDivide(expr_t iArg1, expr_t iArg2) noexcept(false)
{
if (iArg2 == One)
return iArg1;
// This test should be before the next two, otherwise 0/0 won't be rejected
if (iArg2 == Zero)
{
cerr << "ERROR: Division by zero!" << endl;
throw DivisionByZeroException();
}
if (iArg1 == Zero)
return Zero;
if (iArg1 == iArg2)
return One;
2019-12-11 19:07:52 +01:00
// Simplify x/(1/y) in x*y
if (auto barg2 = dynamic_cast<BinaryOpNode *>(iArg2);
barg2 && barg2->op_code == BinaryOpcode::divide && barg2->arg1 == One)
return AddTimes(iArg1, barg2->arg2);
// Simplify (x*y)/y and (y*x)/y in x
if (auto barg1 = dynamic_cast<BinaryOpNode *>(iArg1);
barg1 && barg1->op_code == BinaryOpcode::times)
{
if (barg1->arg2 == iArg2)
return barg1->arg1;
if (barg1->arg1 == iArg2)
return barg1->arg2;
}
return AddBinaryOp(iArg1, BinaryOpcode::divide, iArg2);
}
expr_t
DataTree::AddLess(expr_t iArg1, expr_t iArg2)
{
return AddBinaryOp(iArg1, BinaryOpcode::less, iArg2);
}
expr_t
DataTree::AddGreater(expr_t iArg1, expr_t iArg2)
{
return AddBinaryOp(iArg1, BinaryOpcode::greater, iArg2);
}
expr_t
DataTree::AddLessEqual(expr_t iArg1, expr_t iArg2)
{
return AddBinaryOp(iArg1, BinaryOpcode::lessEqual, iArg2);
}
expr_t
DataTree::AddGreaterEqual(expr_t iArg1, expr_t iArg2)
{
return AddBinaryOp(iArg1, BinaryOpcode::greaterEqual, iArg2);
}
expr_t
DataTree::AddEqualEqual(expr_t iArg1, expr_t iArg2)
{
return AddBinaryOp(iArg1, BinaryOpcode::equalEqual, iArg2);
}
expr_t
DataTree::AddDifferent(expr_t iArg1, expr_t iArg2)
{
return AddBinaryOp(iArg1, BinaryOpcode::different, iArg2);
}
expr_t
DataTree::AddPower(expr_t iArg1, expr_t iArg2)
{
// This one comes first, because 0⁰=1
if (iArg2 == Zero)
return One;
if (iArg1 == Zero)
return Zero;
if (iArg1 == One)
return One;
if (iArg2 == One)
return iArg1;
return AddBinaryOp(iArg1, BinaryOpcode::power, iArg2);
}
expr_t
DataTree::AddPowerDeriv(expr_t iArg1, expr_t iArg2, int powerDerivOrder)
{
assert(powerDerivOrder > 0);
return AddBinaryOp(iArg1, BinaryOpcode::powerDeriv, iArg2, powerDerivOrder);
}
2017-06-12 14:56:44 +02:00
expr_t
DataTree::AddDiff(expr_t iArg1)
{
if (iArg1->maxLead() > 0)
// Issue preprocessor#21: always expand diffs with leads
return AddMinus(iArg1, iArg1->decreaseLeadsLags(1));
return AddUnaryOp(UnaryOpcode::diff, iArg1);
2017-06-12 14:56:44 +02:00
}
expr_t
DataTree::AddAdl(expr_t iArg1, const string &name, const vector<int> &lags)
{
return AddUnaryOp(UnaryOpcode::adl, iArg1, 0, 0, 0, string(name), lags);
}
expr_t
DataTree::AddExp(expr_t iArg1)
{
if (iArg1 == Zero)
return One;
return AddUnaryOp(UnaryOpcode::exp, iArg1);
}
expr_t
DataTree::AddLog(expr_t iArg1)
{
if (iArg1 == One)
return Zero;
if (iArg1 == Zero)
{
cerr << "ERROR: log(0) not defined!" << endl;
exit(EXIT_FAILURE);
}
// Simplify log(1/x) in log(x)
if (auto barg1 = dynamic_cast<BinaryOpNode *>(iArg1);
barg1 && barg1->op_code == BinaryOpcode::divide && barg1->arg1 == One)
return AddUMinus(AddLog(barg1->arg2));
return AddUnaryOp(UnaryOpcode::log, iArg1);
}
expr_t
DataTree::AddLog10(expr_t iArg1)
{
if (iArg1 == One)
return Zero;
if (iArg1 == Zero)
{
cerr << "ERROR: log10(0) not defined!" << endl;
exit(EXIT_FAILURE);
}
// Simplify log₁₀(1/x) in log₁₀(x)
if (auto barg1 = dynamic_cast<BinaryOpNode *>(iArg1);
barg1 && barg1->op_code == BinaryOpcode::divide && barg1->arg1 == One)
return AddUMinus(AddLog10(barg1->arg2));
return AddUnaryOp(UnaryOpcode::log10, iArg1);
}
expr_t
DataTree::AddCos(expr_t iArg1)
{
if (iArg1 == Zero)
return One;
return AddUnaryOp(UnaryOpcode::cos, iArg1);
}
expr_t
DataTree::AddSin(expr_t iArg1)
{
if (iArg1 == Zero)
return Zero;
return AddUnaryOp(UnaryOpcode::sin, iArg1);
}
expr_t
DataTree::AddTan(expr_t iArg1)
{
if (iArg1 == Zero)
return Zero;
return AddUnaryOp(UnaryOpcode::tan, iArg1);
}
expr_t
DataTree::AddAcos(expr_t iArg1)
{
if (iArg1 == One)
return Zero;
return AddUnaryOp(UnaryOpcode::acos, iArg1);
}
expr_t
DataTree::AddAsin(expr_t iArg1)
{
if (iArg1 == Zero)
return Zero;
return AddUnaryOp(UnaryOpcode::asin, iArg1);
}
expr_t
DataTree::AddAtan(expr_t iArg1)
{
if (iArg1 == Zero)
return Zero;
return AddUnaryOp(UnaryOpcode::atan, iArg1);
}
expr_t
DataTree::AddCosh(expr_t iArg1)
{
if (iArg1 == Zero)
return One;
return AddUnaryOp(UnaryOpcode::cosh, iArg1);
}
expr_t
DataTree::AddSinh(expr_t iArg1)
{
if (iArg1 == Zero)
return Zero;
return AddUnaryOp(UnaryOpcode::sinh, iArg1);
}
expr_t
DataTree::AddTanh(expr_t iArg1)
{
if (iArg1 == Zero)
return Zero;
return AddUnaryOp(UnaryOpcode::tanh, iArg1);
}
expr_t
DataTree::AddAcosh(expr_t iArg1)
{
if (iArg1 == One)
return Zero;
return AddUnaryOp(UnaryOpcode::acosh, iArg1);
}
expr_t
DataTree::AddAsinh(expr_t iArg1)
{
if (iArg1 == Zero)
return Zero;
return AddUnaryOp(UnaryOpcode::asinh, iArg1);
}
expr_t
DataTree::AddAtanh(expr_t iArg1)
{
if (iArg1 == Zero)
return Zero;
return AddUnaryOp(UnaryOpcode::atanh, iArg1);
}
expr_t
DataTree::AddSqrt(expr_t iArg1)
{
if (iArg1 == Zero)
return Zero;
if (iArg1 == One)
return One;
return AddUnaryOp(UnaryOpcode::sqrt, iArg1);
}
2019-07-15 18:18:26 +02:00
expr_t
DataTree::AddCbrt(expr_t iArg1)
{
if (iArg1 == Zero)
return Zero;
if (iArg1 == One)
2019-07-15 18:18:26 +02:00
return One;
return AddUnaryOp(UnaryOpcode::cbrt, iArg1);
2019-07-15 18:18:26 +02:00
}
expr_t
DataTree::AddAbs(expr_t iArg1)
{
if (iArg1 == Zero)
return Zero;
if (iArg1 == One)
return One;
return AddUnaryOp(UnaryOpcode::abs, iArg1);
}
expr_t
DataTree::AddSign(expr_t iArg1)
{
if (iArg1 == Zero)
return Zero;
if (iArg1 == One)
return One;
return AddUnaryOp(UnaryOpcode::sign, iArg1);
}
expr_t
DataTree::AddErf(expr_t iArg1)
{
if (iArg1 == Zero)
return Zero;
return AddUnaryOp(UnaryOpcode::erf, iArg1);
}
expr_t
DataTree::AddMax(expr_t iArg1, expr_t iArg2)
{
return AddBinaryOp(iArg1, BinaryOpcode::max, iArg2);
}
expr_t
DataTree::AddMin(expr_t iArg1, expr_t iArg2)
{
return AddBinaryOp(iArg1, BinaryOpcode::min, iArg2);
}
expr_t
DataTree::AddNormcdf(expr_t iArg1, expr_t iArg2, expr_t iArg3)
{
return AddTrinaryOp(iArg1, TrinaryOpcode::normcdf, iArg2, iArg3);
}
expr_t
DataTree::AddNormpdf(expr_t iArg1, expr_t iArg2, expr_t iArg3)
{
return AddTrinaryOp(iArg1, TrinaryOpcode::normpdf, iArg2, iArg3);
}
expr_t
DataTree::AddSteadyState(expr_t iArg1)
{
return AddUnaryOp(UnaryOpcode::steadyState, iArg1);
}
expr_t
DataTree::AddSteadyStateParamDeriv(expr_t iArg1, int param_symb_id)
{
return AddUnaryOp(UnaryOpcode::steadyStateParamDeriv, iArg1, 0, param_symb_id);
}
expr_t
DataTree::AddSteadyStateParam2ndDeriv(expr_t iArg1, int param1_symb_id, int param2_symb_id)
{
return AddUnaryOp(UnaryOpcode::steadyStateParam2ndDeriv, iArg1, 0, param1_symb_id, param2_symb_id);
}
expr_t
DataTree::AddExpectation(int iArg1, expr_t iArg2)
{
return AddUnaryOp(UnaryOpcode::expectation, iArg2, iArg1);
}
2016-11-03 17:08:06 +01:00
expr_t
DataTree::AddVarExpectation(const string &model_name)
2016-11-03 17:08:06 +01:00
{
if (auto it = var_expectation_node_map.find(model_name);
it != var_expectation_node_map.end())
return it->second;
auto sp = make_unique<VarExpectationNode>(*this, node_list.size(), model_name);
auto p = sp.get();
node_list.push_back(move(sp));
var_expectation_node_map[model_name] = p;
return p;
2016-11-03 17:08:06 +01:00
}
2018-01-30 16:33:16 +01:00
expr_t
2018-03-28 18:46:15 +02:00
DataTree::AddPacExpectation(const string &model_name)
2018-01-30 16:33:16 +01:00
{
if (auto it = pac_expectation_node_map.find(model_name);
it != pac_expectation_node_map.end())
2018-01-30 16:33:16 +01:00
return it->second;
auto sp = make_unique<PacExpectationNode>(*this, node_list.size(), model_name);
auto p = sp.get();
node_list.push_back(move(sp));
pac_expectation_node_map[model_name] = p;
return p;
2018-01-30 16:33:16 +01:00
}
BinaryOpNode *
DataTree::AddEqual(expr_t iArg1, expr_t iArg2)
{
/* We know that we can safely cast to BinaryOpNode because
BinaryOpCode::equal can never be reduced to a constant. */
return dynamic_cast<BinaryOpNode *>(AddBinaryOp(iArg1, BinaryOpcode::equal, iArg2));
}
void
DataTree::AddLocalVariable(int symb_id, expr_t value) noexcept(false)
{
assert(symbol_table.getType(symb_id) == SymbolType::modelLocalVariable);
// Throw an exception if symbol already declared
if (auto it = local_variables_table.find(symb_id);
it != local_variables_table.end())
throw LocalVariableException(symbol_table.getName(symb_id));
local_variables_table[symb_id] = value;
local_variables_vector.push_back(symb_id);
}
expr_t
DataTree::AddExternalFunction(int symb_id, const vector<expr_t> &arguments)
2010-02-22 17:33:38 +01:00
{
assert(symbol_table.getType(symb_id) == SymbolType::externalFunction);
if (auto it = external_function_node_map.find({ arguments, symb_id });
it != external_function_node_map.end())
return it->second;
auto sp = make_unique<ExternalFunctionNode>(*this, node_list.size(), symb_id, arguments);
auto p = sp.get();
node_list.push_back(move(sp));
external_function_node_map[{ arguments, symb_id }] = p;
return p;
2010-02-22 17:33:38 +01:00
}
expr_t
DataTree::AddFirstDerivExternalFunction(int top_level_symb_id, const vector<expr_t> &arguments, int input_index)
2010-02-22 17:33:38 +01:00
{
assert(symbol_table.getType(top_level_symb_id) == SymbolType::externalFunction);
if (auto it = first_deriv_external_function_node_map.find({ arguments, input_index, top_level_symb_id });
it != first_deriv_external_function_node_map.end())
return it->second;
auto sp = make_unique<FirstDerivExternalFunctionNode>(*this, node_list.size(), top_level_symb_id, arguments, input_index);
auto p = sp.get();
node_list.push_back(move(sp));
first_deriv_external_function_node_map[{ arguments, input_index, top_level_symb_id }] = p;
return p;
2010-02-22 17:33:38 +01:00
}
expr_t
DataTree::AddSecondDerivExternalFunction(int top_level_symb_id, const vector<expr_t> &arguments, int input_index1, int input_index2)
2010-02-22 17:33:38 +01:00
{
assert(symbol_table.getType(top_level_symb_id) == SymbolType::externalFunction);
if (auto it = second_deriv_external_function_node_map.find({ arguments, input_index1, input_index2,
top_level_symb_id });
it != second_deriv_external_function_node_map.end())
return it->second;
auto sp = make_unique<SecondDerivExternalFunctionNode>(*this, node_list.size(), top_level_symb_id, arguments, input_index1, input_index2);
auto p = sp.get();
node_list.push_back(move(sp));
second_deriv_external_function_node_map[{ arguments, input_index1, input_index2, top_level_symb_id }] = p;
return p;
}
bool
DataTree::isSymbolUsed(int symb_id) const
{
2019-12-20 16:59:30 +01:00
for (const auto &it : variable_node_map)
if (it.first.first == symb_id)
return true;
if (local_variables_table.find(symb_id) != local_variables_table.end())
return true;
return false;
}
int
DataTree::getDerivID(int symb_id, int lag) const noexcept(false)
{
throw UnknownDerivIDException();
}
SymbolType
DataTree::getTypeByDerivID(int deriv_id) const noexcept(false)
{
throw UnknownDerivIDException();
}
int
DataTree::getLagByDerivID(int deriv_id) const noexcept(false)
{
throw UnknownDerivIDException();
}
int
DataTree::getSymbIDByDerivID(int deriv_id) const noexcept(false)
{
throw UnknownDerivIDException();
}
void
DataTree::addAllParamDerivId(set<int> &deriv_id_set)
{
}
int
DataTree::getDynJacobianCol(int deriv_id) const noexcept(false)
{
throw UnknownDerivIDException();
}
bool
DataTree::isUnaryOpUsed(UnaryOpcode opcode) const
{
2019-12-20 16:59:30 +01:00
for (const auto &it : unary_op_node_map)
if (get<1>(it.first) == opcode)
return true;
return false;
}
bool
DataTree::isUnaryOpUsedOnType(SymbolType type, UnaryOpcode opcode) const
{
set<int> var;
2019-12-20 16:59:30 +01:00
for (const auto &it : unary_op_node_map)
if (get<1>(it.first) == opcode)
{
it.second->collectVariables(type, var);
if (!var.empty())
return true;
}
return false;
}
bool
DataTree::isBinaryOpUsed(BinaryOpcode opcode) const
{
2019-12-20 16:59:30 +01:00
for (const auto &it : binary_op_node_map)
if (get<2>(it.first) == opcode)
return true;
return false;
}
bool
DataTree::isBinaryOpUsedOnType(SymbolType type, BinaryOpcode opcode) const
{
set<int> var;
2019-12-20 16:59:30 +01:00
for (const auto &it : binary_op_node_map)
if (get<2>(it.first) == opcode)
{
it.second->collectVariables(type, var);
if (!var.empty())
return true;
}
return false;
}
bool
DataTree::isTrinaryOpUsed(TrinaryOpcode opcode) const
{
2019-12-20 16:59:30 +01:00
for (const auto &it : trinary_op_node_map)
if (get<3>(it.first) == opcode)
return true;
return false;
}
bool
DataTree::isExternalFunctionUsed(int symb_id) const
{
2019-12-20 16:59:30 +01:00
for (const auto &it : external_function_node_map)
if (it.first.second == symb_id)
return true;
return false;
}
bool
DataTree::isFirstDerivExternalFunctionUsed(int symb_id) const
{
2019-12-20 16:59:30 +01:00
for (const auto &it : first_deriv_external_function_node_map)
if (get<2>(it.first) == symb_id)
return true;
return false;
}
bool
DataTree::isSecondDerivExternalFunctionUsed(int symb_id) const
{
2019-12-20 16:59:30 +01:00
for (const auto &it : second_deriv_external_function_node_map)
if (get<3>(it.first) == symb_id)
return true;
return false;
}
int
DataTree::minLagForSymbol(int symb_id) const
{
int r = 0;
2019-12-20 16:59:30 +01:00
for (const auto &it : variable_node_map)
if (it.first.first == symb_id && it.first.second < r)
r = it.first.second;
return r;
}
void
DataTree::writePowerDeriv(ostream &output) const
{
if (isBinaryOpUsed(BinaryOpcode::powerDeriv))
output << "/*" << endl
<< " * The k-th derivative of x^p" << endl
<< " */" << endl
<< "double getPowerDeriv(double x, double p, int k)" << endl
<< "{" << endl
<< " if (fabs(x) < " << near_zero << " && p > 0 && k > p && fabs(p-nearbyint(p)) < " << near_zero << ')' << endl
<< " return 0.0;" << endl
<< " else" << endl
<< " {" << endl
<< " int i = 0;" << endl
<< " double dxp = pow(x, p-k);" << endl
<< " for (; i<k; i++)" << endl
<< " dxp *= p--;" << endl
<< " return dxp;" << endl
<< " }" << endl
<< "}" << endl;
}
void
DataTree::writePowerDerivJulia(ostream &output) const
{
if (isBinaryOpUsed(BinaryOpcode::powerDeriv))
output << "nearbyint(x::Float64) = (abs((x)-floor(x)) < abs((x)-ceil(x)) ? floor(x) : ceil(x))" << endl
<< endl
<< "function get_power_deriv(x::Float64, p::Float64, k::Int64)" << endl
<< " if (abs(x) < 1e-12 && p > 0 && k > p && abs(p-nearbyint(p)) < 1e-12 )" << endl
<< " return 0.0" << endl
<< " else" << endl
<< " dxp = x^(p-k)" << endl
<< " for i = 1:k" << endl
<< " dxp *= p" << endl
<< " p -= 1" << endl
<< " end" << endl
<< " return dxp" << endl
<< " end" << endl
<< "end" << endl;
}
void
DataTree::writePowerDerivHeader(ostream &output) const
{
if (isBinaryOpUsed(BinaryOpcode::powerDeriv))
output << "double getPowerDeriv(double x, double p, int k);" << endl;
}
string
DataTree::packageDir(const string &package)
{
regex pat{R"(\.)"};
string dirname = "+" + regex_replace(package, pat, "/+");
filesystem::create_directories(dirname);
return dirname;
}
void
DataTree::writeToFileIfModified(stringstream &new_contents, const string &filename)
{
ifstream old_file{filename, ios::in | ios::binary};
if (old_file.is_open()
&& equal(istreambuf_iterator<char>{old_file}, istreambuf_iterator<char>{},
istreambuf_iterator<char>{new_contents}, istreambuf_iterator<char>{}))
return;
old_file.close();
new_contents.seekg(0);
ofstream new_file{filename, ios::out | ios::binary};
if (!new_file.is_open())
{
cerr << "Error: Can't open file " << filename << " for writing" << endl;
exit(EXIT_FAILURE);
}
copy(istreambuf_iterator<char>{new_contents}, istreambuf_iterator<char>{},
ostreambuf_iterator<char>{new_file});
new_file.close();
}