dynare/src/sequential_importance_parti...

137 lines
5.2 KiB
Matlab

function [LIK,lik] = sequential_importance_particle_filter(ReducedForm,Y,start,DynareOptions)
% Evaluates the likelihood of a nonlinear model with a particle filter (optionally with resampling).
% Copyright (C) 2011-2013 Dynare Team
%
% This file is part of Dynare (particles module).
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare particles module is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
persistent init_flag
persistent mf0 mf1
persistent number_of_particles number_of_state_variables
persistent sample_size number_of_observed_variables number_of_structural_innovations
% Set default value for start
if isempty(start)
start = 1;
end
% Set flag for prunning
pruning = DynareOptions.particle.pruning;
% Get steady state and mean.
steadystate = ReducedForm.steadystate;
constant = ReducedForm.constant;
state_variables_steady_state = ReducedForm.state_variables_steady_state;
% Set persistent variables (if needed).
if isempty(init_flag)
mf0 = ReducedForm.mf0;
mf1 = ReducedForm.mf1;
sample_size = size(Y,2);
number_of_state_variables = length(mf0);
number_of_observed_variables = length(mf1);
number_of_structural_innovations = length(ReducedForm.Q);
number_of_particles = DynareOptions.particle.number_of_particles;
init_flag = 1;
end
% Set local state space model (first order approximation).
ghx = ReducedForm.ghx;
ghu = ReducedForm.ghu;
% Set local state space model (second order approximation).
ghxx = ReducedForm.ghxx;
ghuu = ReducedForm.ghuu;
ghxu = ReducedForm.ghxu;
% Get covariance matrices.
Q = ReducedForm.Q; % Covariance matrix of the structural innovations.
H = ReducedForm.H; % Covariance matrix of the measurement errors.
if isempty(H)
H = 0;
end
% Initialization of the likelihood.
const_lik = log(2*pi)*number_of_observed_variables;
lik = NaN(sample_size,1);
% Get initial condition for the state vector.
StateVectorMean = ReducedForm.StateVectorMean;
StateVectorVarianceSquareRoot = reduced_rank_cholesky(ReducedForm.StateVectorVariance)';
if pruning
StateVectorMean_ = StateVectorMean;
StateVectorVarianceSquareRoot_ = StateVectorVarianceSquareRoot;
end
% Get the rank of StateVectorVarianceSquareRoot
state_variance_rank = size(StateVectorVarianceSquareRoot,2);
% Factorize the covariance matrix of the structural innovations
Q_lower_triangular_cholesky = chol(Q)';
% Set seed for randn().
set_dynare_seed('default');
% Initialization of the weights across particles.
weights = ones(1,number_of_particles)/number_of_particles ;
StateVectors = bsxfun(@plus,StateVectorVarianceSquareRoot*randn(state_variance_rank,number_of_particles),StateVectorMean);
if pruning
StateVectors_ = StateVectors;
end
% Loop over observations
for t=1:sample_size
yhat = bsxfun(@minus,StateVectors,state_variables_steady_state);
epsilon = Q_lower_triangular_cholesky*randn(number_of_structural_innovations,number_of_particles);
if pruning
yhat_ = bsxfun(@minus,StateVectors_,state_variables_steady_state);
[tmp, tmp_] = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,yhat_,steadystate,DynareOptions.threads.local_state_space_iteration_2);
else
tmp = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,DynareOptions.threads.local_state_space_iteration_2);
end
PredictedObservedMean = tmp(mf1,:)*transpose(weights);
PredictionError = bsxfun(@minus,Y(:,t),tmp(mf1,:));
dPredictedObservedMean = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean);
PredictedObservedVariance = bsxfun(@times,dPredictedObservedMean,weights)*dPredictedObservedMean' + H;
if rcond(PredictedObservedVariance) > 1e-16
lnw = -.5*(const_lik+log(det(PredictedObservedVariance))+sum(PredictionError.*(PredictedObservedVariance\PredictionError),1));
else
LIK = NaN;
return
end
dfac = max(lnw);
wtilde = weights.*exp(lnw-dfac);
lik(t) = log(sum(wtilde))+dfac;
weights = wtilde/sum(wtilde);
if (DynareOptions.particle.resampling.status.generic && neff(weights)<DynareOptions.particle.resampling.threshold*sample_size) || DynareOptions.particle.resampling.status.systematic
if pruning
temp = resample([tmp(mf0,:)' tmp_(mf0,:)'],weights',DynareOptions);
StateVectors = temp(:,1:number_of_state_variables)';
StateVectors_ = temp(:,number_of_state_variables+1:2*number_of_state_variables)';
else
StateVectors = resample(tmp(mf0,:)',weights',DynareOptions)';
end
weights = ones(1,number_of_particles)/number_of_particles;
elseif DynareOptions.particle.resampling.status.none
StateVectors = tmp(mf0,:);
if pruning
StateVectors_ = tmp_(mf0,:);
end
end
end
LIK = -sum(lik(start:end));