dynare/mex/sources/libslicot/SB16CD.f

527 lines
20 KiB
Fortran

SUBROUTINE SB16CD( DICO, JOBD, JOBMR, JOBCF, ORDSEL, N, M, P, NCR,
$ A, LDA, B, LDB, C, LDC, D, LDD, F, LDF, G, LDG,
$ HSV, TOL, IWORK, DWORK, LDWORK, IWARN, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute, for a given open-loop model (A,B,C,D), and for
C given state feedback gain F and full observer gain G,
C such that A+B*F and A+G*C are stable, a reduced order
C controller model (Ac,Bc,Cc) using a coprime factorization
C based controller reduction approach. For reduction of
C coprime factors, a stability enforcing frequency-weighted
C model reduction is performed using either the square-root or
C the balancing-free square-root versions of the Balance & Truncate
C (B&T) model reduction method.
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies the type of the open-loop system as follows:
C = 'C': continuous-time system;
C = 'D': discrete-time system.
C
C JOBD CHARACTER*1
C Specifies whether or not a non-zero matrix D appears
C in the given state space model, as follows:
C = 'D': D is present;
C = 'Z': D is assumed a zero matrix.
C
C JOBMR CHARACTER*1
C Specifies the model reduction approach to be used
C as follows:
C = 'B': use the square-root B&T method;
C = 'F': use the balancing-free square-root B&T method.
C
C JOBCF CHARACTER*1
C Specifies whether left or right coprime factorization
C of the controller is to be used as follows:
C = 'L': use left coprime factorization;
C = 'R': use right coprime factorization.
C
C ORDSEL CHARACTER*1
C Specifies the order selection method as follows:
C = 'F': the resulting controller order NCR is fixed;
C = 'A': the resulting controller order NCR is
C automatically determined on basis of the given
C tolerance TOL.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the original state-space representation, i.e.
C the order of the matrix A. N >= 0.
C N also represents the order of the original state-feedback
C controller.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C P (input) INTEGER
C The number of system outputs. P >= 0.
C
C NCR (input/output) INTEGER
C On entry with ORDSEL = 'F', NCR is the desired order of
C the resulting reduced order controller. 0 <= NCR <= N.
C On exit, if INFO = 0, NCR is the order of the resulting
C reduced order controller. NCR is set as follows:
C if ORDSEL = 'F', NCR is equal to MIN(NCR,NCRMIN), where
C NCR is the desired order on entry, and NCRMIN is the
C number of Hankel-singular values greater than N*EPS*S1,
C where EPS is the machine precision (see LAPACK Library
C Routine DLAMCH) and S1 is the largest Hankel singular
C value (computed in HSV(1)); NCR can be further reduced
C to ensure HSV(NCR) > HSV(NCR+1);
C if ORDSEL = 'A', NCR is equal to the number of Hankel
C singular values greater than MAX(TOL,N*EPS*S1).
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the original state dynamics matrix A.
C On exit, if INFO = 0, the leading NCR-by-NCR part of this
C array contains the state dynamics matrix Ac of the reduced
C controller.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the open-loop system input/state matrix B.
C On exit, this array is overwritten with a NCR-by-M
C B&T approximation of the matrix B.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the open-loop system state/output matrix C.
C On exit, this array is overwritten with a P-by-NCR
C B&T approximation of the matrix C.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C D (input) DOUBLE PRECISION array, dimension (LDD,M)
C On entry, if JOBD = 'D', the leading P-by-M part of this
C array must contain the system direct input/output
C transmission matrix D.
C The array D is not referenced if JOBD = 'Z'.
C
C LDD INTEGER
C The leading dimension of array D.
C LDD >= MAX(1,P), if JOBD = 'D';
C LDD >= 1, if JOBD = 'Z'.
C
C F (input/output) DOUBLE PRECISION array, dimension (LDF,N)
C On entry, the leading M-by-N part of this array must
C contain a stabilizing state feedback matrix.
C On exit, if INFO = 0, the leading M-by-NCR part of this
C array contains the output/state matrix Cc of the reduced
C controller.
C
C LDF INTEGER
C The leading dimension of array F. LDF >= MAX(1,M).
C
C G (input/output) DOUBLE PRECISION array, dimension (LDG,P)
C On entry, the leading N-by-P part of this array must
C contain a stabilizing observer gain matrix.
C On exit, if INFO = 0, the leading NCR-by-P part of this
C array contains the input/state matrix Bc of the reduced
C controller.
C
C LDG INTEGER
C The leading dimension of array G. LDG >= MAX(1,N).
C
C HSV (output) DOUBLE PRECISION array, dimension (N)
C If INFO = 0, HSV contains the N frequency-weighted
C Hankel singular values ordered decreasingly (see METHOD).
C
C Tolerances
C
C TOL DOUBLE PRECISION
C If ORDSEL = 'A', TOL contains the tolerance for
C determining the order of reduced controller.
C The recommended value is TOL = c*S1, where c is a constant
C in the interval [0.00001,0.001], and S1 is the largest
C Hankel singular value (computed in HSV(1)).
C The value TOL = N*EPS*S1 is used by default if
C TOL <= 0 on entry, where EPS is the machine precision
C (see LAPACK Library Routine DLAMCH).
C If ORDSEL = 'F', the value of TOL is ignored.
C
C Workspace
C
C IWORK INTEGER array, dimension LIWORK, where
C LIWORK = 0, if JOBMR = 'B';
C LIWORK = N, if JOBMR = 'F'.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= 2*N*N + MAX( 1, 2*N*N + 5*N, N*MAX(M,P),
C N*(N + MAX(N,MP) + MIN(N,MP) + 6)),
C where MP = M, if JOBCF = 'L';
C MP = P, if JOBCF = 'R'.
C For optimum performance LDWORK should be larger.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = 1: with ORDSEL = 'F', the selected order NCR is
C greater than the order of a minimal realization
C of the controller;
C = 2: with ORDSEL = 'F', the selected order NCR
C corresponds to repeated singular values, which are
C neither all included nor all excluded from the
C reduced controller. In this case, the resulting NCR
C is set automatically to the largest value such that
C HSV(NCR) > HSV(NCR+1).
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: eigenvalue computation failure;
C = 2: the matrix A+G*C is not stable;
C = 3: the matrix A+B*F is not stable;
C = 4: the Lyapunov equation for computing the
C observability Grammian is (nearly) singular;
C = 5: the Lyapunov equation for computing the
C controllability Grammian is (nearly) singular;
C = 6: the computation of Hankel singular values failed.
C
C METHOD
C
C Let be the linear system
C
C d[x(t)] = Ax(t) + Bu(t)
C y(t) = Cx(t) + Du(t), (1)
C
C where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
C for a discrete-time system, and let Go(d) be the open-loop
C transfer-function matrix
C -1
C Go(d) = C*(d*I-A) *B + D .
C
C Let F and G be the state feedback and observer gain matrices,
C respectively, chosen such that A+BF and A+GC are stable matrices.
C The controller has a transfer-function matrix K(d) given by
C -1
C K(d) = F*(d*I-A-B*F-G*C-G*D*F) *G .
C
C The closed-loop transfer function matrix is given by
C -1
C Gcl(d) = Go(d)(I+K(d)Go(d)) .
C
C K(d) can be expressed as a left coprime factorization (LCF)
C -1
C K(d) = M_left(d) *N_left(d),
C
C or as a right coprime factorization (RCF)
C -1
C K(d) = N_right(d)*M_right(d) ,
C
C where M_left(d), N_left(d), N_right(d), and M_right(d) are
C stable transfer-function matrices.
C
C The subroutine SB16CD determines the matrices of a reduced
C controller
C
C d[z(t)] = Ac*z(t) + Bc*y(t)
C u(t) = Cc*z(t), (2)
C
C with the transfer-function matrix Kr, using the following
C stability enforcing approach proposed in [1]:
C
C (1) If JOBCF = 'L', the frequency-weighted approximation problem
C is solved
C
C min||[M_left(d)-M_leftr(d) N_left(d)-N_leftr(d)][-Y(d)]|| ,
C [ X(d)]
C where
C -1
C G(d) = Y(d)*X(d)
C
C is a RCF of the open-loop system transfer-function matrix.
C The B&T model reduction technique is used in conjunction
C with the method proposed in [1].
C
C (2) If JOBCF = 'R', the frequency-weighted approximation problem
C is solved
C
C min || [ -U(d) V(d) ] [ N_right(d)-N_rightr(d) ] || ,
C [ M_right(d)-M_rightr(d) ]
C where
C -1
C G(d) = V(d) *U(d)
C
C is a LCF of the open-loop system transfer-function matrix.
C The B&T model reduction technique is used in conjunction
C with the method proposed in [1].
C
C If ORDSEL = 'A', the order of the controller is determined by
C computing the number of Hankel singular values greater than
C the given tolerance TOL. The Hankel singular values are
C the square roots of the eigenvalues of the product of
C two frequency-weighted Grammians P and Q, defined as follows.
C
C If JOBCF = 'L', then P is the controllability Grammian of a system
C of the form (A+BF,B,*,*), and Q is the observability Grammian of a
C system of the form (A+GC,*,F,*). This choice corresponds to an
C input frequency-weighted order reduction of left coprime
C factors [1].
C
C If JOBCF = 'R', then P is the controllability Grammian of a system
C of the form (A+BF,G,*,*), and Q is the observability Grammian of a
C system of the form (A+GC,*,C,*). This choice corresponds to an
C output frequency-weighted order reduction of right coprime
C factors [1].
C
C For the computation of truncation matrices, the B&T approach
C is used in conjunction with accuracy enhancing techniques.
C If JOBMR = 'B', the square-root B&T method of [2,4] is used.
C If JOBMR = 'F', the balancing-free square-root version of the
C B&T method [3,4] is used.
C
C REFERENCES
C
C [1] Liu, Y., Anderson, B.D.O. and Ly, O.L.
C Coprime factorization controller reduction with Bezout
C identity induced frequency weighting.
C Automatica, vol. 26, pp. 233-249, 1990.
C
C [2] Tombs, M.S. and Postlethwaite I.
C Truncated balanced realization of stable, non-minimal
C state-space systems.
C Int. J. Control, Vol. 46, pp. 1319-1330, 1987.
C
C [3] Varga, A.
C Efficient minimal realization procedure based on balancing.
C Proc. of IMACS/IFAC Symp. MCTS, Lille, France, May 1991,
C A. El Moudui, P. Borne, S. G. Tzafestas (Eds.), Vol. 2,
C pp. 42-46, 1991.
C
C [4] Varga, A.
C Coprime factors model reduction method based on square-root
C balancing-free techniques.
C System Analysis, Modelling and Simulation, Vol. 11,
C pp. 303-311, 1993.
C
C NUMERICAL ASPECTS
C
C The implemented methods rely on accuracy enhancing square-root or
C balancing-free square-root techniques.
C 3
C The algorithms require less than 30N floating point operations.
C
C CONTRIBUTOR
C
C A. Varga, German Aerospace Center, Oberpfaffenhofen, October 2000.
C D. Sima, University of Bucharest, October 2000.
C V. Sima, Research Institute for Informatics, Bucharest, Oct. 2000.
C
C REVISIONS
C
C A. Varga, Australian National University, Canberra, November 2000.
C V. Sima, Research Institute for Informatics, Bucharest, Aug. 2001.
C
C KEYWORDS
C
C Controller reduction, coprime factorization, frequency weighting,
C multivariable system, state-space model.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO, JOBCF, JOBD, JOBMR, ORDSEL
INTEGER INFO, IWARN, LDA, LDB, LDC, LDD,
$ LDF, LDG, LDWORK, M, N, NCR, P
DOUBLE PRECISION TOL
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
$ DWORK(*), F(LDF,*), G(LDG,*), HSV(*)
C .. Local Scalars ..
LOGICAL BAL, DISCR, FIXORD, LEFT, WITHD
INTEGER IERR, KT, KTI, KW, LW, MP, NMR, WRKOPT
DOUBLE PRECISION SCALEC, SCALEO
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL AB09IX, DGEMM, DLACPY, SB16CY, XERBLA
C .. Intrinsic Functions ..
INTRINSIC INT, MAX, MIN
C .. Executable Statements ..
C
INFO = 0
IWARN = 0
DISCR = LSAME( DICO, 'D' )
WITHD = LSAME( JOBD, 'D' )
BAL = LSAME( JOBMR, 'B' )
LEFT = LSAME( JOBCF, 'L' )
FIXORD = LSAME( ORDSEL, 'F' )
IF( LEFT ) THEN
MP = M
ELSE
MP = P
END IF
LW = 2*N*N + MAX( 1, 2*N*N + 5*N, N*MAX( M, P ),
$ N*( N + MAX( N, MP ) + MIN( N, MP ) + 6 ) )
C
C Test the input scalar arguments.
C
IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
INFO = -1
ELSE IF( .NOT. ( WITHD .OR. LSAME( JOBD, 'Z' ) ) ) THEN
INFO = -2
ELSE IF( .NOT. ( BAL .OR. LSAME( JOBMR, 'F' ) ) ) THEN
INFO = -3
ELSE IF( .NOT. ( LEFT .OR. LSAME( JOBCF, 'R' ) ) ) THEN
INFO = -4
ELSE IF( .NOT. ( FIXORD .OR. LSAME( ORDSEL, 'A' ) ) ) THEN
INFO = -5
ELSE IF( N.LT.0 ) THEN
INFO = -6
ELSE IF( M.LT.0 ) THEN
INFO = -7
ELSE IF( P.LT.0 ) THEN
INFO = -8
ELSE IF( FIXORD .AND. ( NCR.LT.0 .OR. NCR.GT.N ) ) THEN
INFO = -9
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -11
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -13
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -15
ELSE IF( LDD.LT.1 .OR. ( WITHD .AND. LDD.LT.P ) ) THEN
INFO = -17
ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
INFO = -19
ELSE IF( LDG.LT.MAX( 1, N ) ) THEN
INFO = -21
ELSE IF( LDWORK.LT.LW ) THEN
INFO = -26
END IF
C
IF( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'SB16CD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( MIN( N, M, P ).EQ.0 .OR.
$ ( FIXORD .AND. NCR.EQ.0 ) ) THEN
NCR = 0
DWORK(1) = ONE
RETURN
END IF
C
C Allocate working storage.
C
KT = 1
KTI = KT + N*N
KW = KTI + N*N
C
C Compute in DWORK(KTI) and DWORK(KT) the Cholesky factors Su and Ru
C of the frequency-weighted controllability and observability
C Grammians, respectively.
C
C Workspace: need 2*N*N + MAX(1, N*(N + MAX(N,M) + MIN(N,M) + 6)),
C if JOBCF = 'L';
C 2*N*N + MAX(1, N*(N + MAX(N,P) + MIN(N,P) + 6)),
C if JOBCF = 'R'.
C prefer larger.
C
CALL SB16CY( DICO, JOBCF, N, M, P, A, LDA, B, LDB, C, LDC,
$ F, LDF, G, LDG, SCALEC, SCALEO, DWORK(KTI), N,
$ DWORK(KT), N, DWORK(KW), LDWORK-KW+1, INFO )
C
IF( INFO.NE.0 )
$ RETURN
WRKOPT = INT( DWORK(KW) ) + KW - 1
C
C Compute a B&T approximation (Ar,Br,Cr) of (A,B,C) and
C the corresponding truncation matrices TI and T.
C
C Real workspace: need 2*N*N + MAX( 1, 2*N*N+5*N, N*MAX(M,P) );
C prefer larger.
C Integer workspace: 0, if JOBMR = 'B';
C N, if JOBMR = 'F'.
C
CALL AB09IX( DICO, JOBMR, 'NotSchur', ORDSEL, N, M, P, NCR,
$ SCALEC, SCALEO, A, LDA, B, LDB, C, LDC, D, LDD,
$ DWORK(KTI), N, DWORK(KT), N, NMR, HSV, TOL, TOL,
$ IWORK, DWORK(KW), LDWORK-KW+1, IWARN, IERR )
IF( IERR.NE.0 ) THEN
INFO = 6
RETURN
END IF
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C
C Compute reduced gains Bc = Gr = TI*G and Cc = Fr = F*T.
C Workspace: need N*(2*N+MAX(M,P)).
C
CALL DLACPY( 'Full', N, P, G, LDG, DWORK(KW), N )
CALL DGEMM( 'NoTranspose', 'NoTranspose', NCR, P, N, ONE,
$ DWORK(KTI), N, DWORK(KW), N, ZERO, G, LDG )
C
CALL DLACPY( 'Full', M, N, F, LDF, DWORK(KW), M )
CALL DGEMM( 'NoTranspose', 'NoTranspose', M, NCR, N, ONE,
$ DWORK(KW), M, DWORK(KT), N, ZERO, F, LDF )
C
C Form the reduced controller state matrix,
C Ac = Ar + Br*Fr + Gr*Cr + Gr*D*Fr = Ar + Br*Fr + Gr*(Cr+D*Fr) .
C
C Workspace: need P*N.
C
CALL DLACPY( 'Full', P, NCR, C, LDC, DWORK, P )
IF( WITHD) CALL DGEMM( 'NoTranspose', 'NoTranspose', P, NCR, M,
$ ONE, D, LDD, F, LDF, ONE, DWORK, P )
CALL DGEMM( 'NoTranspose', 'NoTranspose', NCR, NCR, P, ONE, G,
$ LDG, DWORK, P, ONE, A, LDA )
CALL DGEMM( 'NoTranspose', 'NoTranspose', NCR, NCR, M, ONE, B,
$ LDB, F, LDF, ONE, A, LDA )
C
DWORK(1) = WRKOPT
C
RETURN
C *** Last line of SB16CD ***
END