dynare/mex/sources/libslicot/SB10WD.f

300 lines
9.7 KiB
Fortran

SUBROUTINE SB10WD( N, M, NP, NCON, NMEAS, A, LDA, B, LDB, C, LDC,
$ D, LDD, F, LDF, H, LDH, TU, LDTU, TY, LDTY,
$ AK, LDAK, BK, LDBK, CK, LDCK, DK, LDDK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the matrices of the H2 optimal controller
C
C | AK | BK |
C K = |----|----|,
C | CK | DK |
C
C from the state feedback matrix F and output injection matrix H as
C determined by the SLICOT Library routine SB10VD.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the system. N >= 0.
C
C M (input) INTEGER
C The column size of the matrix B. M >= 0.
C
C NP (input) INTEGER
C The row size of the matrix C. NP >= 0.
C
C NCON (input) INTEGER
C The number of control inputs (M2). M >= NCON >= 0.
C NP-NMEAS >= NCON.
C
C NMEAS (input) INTEGER
C The number of measurements (NP2). NP >= NMEAS >= 0.
C M-NCON >= NMEAS.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array must contain the
C system state matrix A.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= max(1,N).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,M)
C The leading N-by-M part of this array must contain the
C system input matrix B. Only the submatrix
C B2 = B(:,M-M2+1:M) is used.
C
C LDB INTEGER
C The leading dimension of the array B. LDB >= max(1,N).
C
C C (input) DOUBLE PRECISION array, dimension (LDC,N)
C The leading NP-by-N part of this array must contain the
C system output matrix C. Only the submatrix
C C2 = C(NP-NP2+1:NP,:) is used.
C
C LDC INTEGER
C The leading dimension of the array C. LDC >= max(1,NP).
C
C D (input) DOUBLE PRECISION array, dimension (LDD,M)
C The leading NP-by-M part of this array must contain the
C system input/output matrix D. Only the submatrix
C D22 = D(NP-NP2+1:NP,M-M2+1:M) is used.
C
C LDD INTEGER
C The leading dimension of the array D. LDD >= max(1,NP).
C
C F (input) DOUBLE PRECISION array, dimension (LDF,N)
C The leading NCON-by-N part of this array must contain the
C state feedback matrix F.
C
C LDF INTEGER
C The leading dimension of the array F. LDF >= max(1,NCON).
C
C H (input) DOUBLE PRECISION array, dimension (LDH,NMEAS)
C The leading N-by-NMEAS part of this array must contain the
C output injection matrix H.
C
C LDH INTEGER
C The leading dimension of the array H. LDH >= max(1,N).
C
C TU (input) DOUBLE PRECISION array, dimension (LDTU,M2)
C The leading M2-by-M2 part of this array must contain the
C control transformation matrix TU, as obtained by the
C SLICOT Library routine SB10UD.
C
C LDTU INTEGER
C The leading dimension of the array TU. LDTU >= max(1,M2).
C
C TY (input) DOUBLE PRECISION array, dimension (LDTY,NP2)
C The leading NP2-by-NP2 part of this array must contain the
C measurement transformation matrix TY, as obtained by the
C SLICOT Library routine SB10UD.
C
C LDTY INTEGER
C The leading dimension of the array TY.
C LDTY >= max(1,NP2).
C
C AK (output) DOUBLE PRECISION array, dimension (LDAK,N)
C The leading N-by-N part of this array contains the
C controller state matrix AK.
C
C LDAK INTEGER
C The leading dimension of the array AK. LDAK >= max(1,N).
C
C BK (output) DOUBLE PRECISION array, dimension (LDBK,NMEAS)
C The leading N-by-NMEAS part of this array contains the
C controller input matrix BK.
C
C LDBK INTEGER
C The leading dimension of the array BK. LDBK >= max(1,N).
C
C CK (output) DOUBLE PRECISION array, dimension (LDCK,N)
C The leading NCON-by-N part of this array contains the
C controller output matrix CK.
C
C LDCK INTEGER
C The leading dimension of the array CK.
C LDCK >= max(1,NCON).
C
C DK (output) DOUBLE PRECISION array, dimension (LDDK,NMEAS)
C The leading NCON-by-NMEAS part of this array contains the
C controller input/output matrix DK.
C
C LDDK INTEGER
C The leading dimension of the array DK.
C LDDK >= max(1,NCON).
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The routine implements the formulas given in [1], [2].
C
C REFERENCES
C
C [1] Zhou, K., Doyle, J.C., and Glover, K.
C Robust and Optimal Control.
C Prentice-Hall, Upper Saddle River, NJ, 1996.
C
C [2] Balas, G.J., Doyle, J.C., Glover, K., Packard, A., and
C Smith, R.
C mu-Analysis and Synthesis Toolbox.
C The MathWorks Inc., Natick, Mass., 1995.
C
C NUMERICAL ASPECTS
C
C The accuracy of the result depends on the condition numbers of the
C input and output transformations.
C
C CONTRIBUTORS
C
C P.Hr. Petkov, D.W. Gu and M.M. Konstantinov, October 1998.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, May 1999.
C
C KEYWORDS
C
C Algebraic Riccati equation, H2 optimal control, LQG, LQR, optimal
C regulator, robust control.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C ..
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD,
$ LDDK, LDF, LDH, LDTU, LDTY, M, N, NCON, NMEAS,
$ NP
C ..
C .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), AK( LDAK, * ), B( LDB, * ),
$ BK( LDBK, * ), C( LDC, * ), CK( LDCK, * ),
$ D( LDD, * ), DK( LDDK, * ), F( LDF, * ),
$ H( LDH, * ), TU( LDTU, * ), TY( LDTY, * )
C ..
C .. Local Scalars ..
INTEGER M1, M2, NP1, NP2
C ..
C .. External Subroutines ..
EXTERNAL DGEMM, DLACPY, DLASET, XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC MAX
C ..
C .. Executable Statements ..
C
C Decode and Test input parameters.
C
M1 = M - NCON
M2 = NCON
NP1 = NP - NMEAS
NP2 = NMEAS
C
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( NP.LT.0 ) THEN
INFO = -3
ELSE IF( NCON.LT.0 .OR. M1.LT.0 .OR. M2.GT.NP1 ) THEN
INFO = -4
ELSE IF( NMEAS.LT.0 .OR. NP1.LT.0 .OR. NP2.GT.M1 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( LDC.LT.MAX( 1, NP ) ) THEN
INFO = -11
ELSE IF( LDD.LT.MAX( 1, NP ) ) THEN
INFO = -13
ELSE IF( LDF.LT.MAX( 1, M2 ) ) THEN
INFO = -15
ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
INFO = -17
ELSE IF( LDTU.LT.MAX( 1, M2 ) ) THEN
INFO = -19
ELSE IF( LDTY.LT.MAX( 1, NP2 ) ) THEN
INFO = -21
ELSE IF( LDAK.LT.MAX( 1, N ) ) THEN
INFO = -23
ELSE IF( LDBK.LT.MAX( 1, N ) ) THEN
INFO = -25
ELSE IF( LDCK.LT.MAX( 1, M2 ) ) THEN
INFO = -27
ELSE IF( LDDK.LT.MAX( 1, M2 ) ) THEN
INFO = -29
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SB10WD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( N.EQ.0 .OR. M.EQ.0 .OR. NP.EQ.0 .OR. M1.EQ.0 .OR. M2.EQ.0
$ .OR. NP1.EQ.0 .OR. NP2.EQ.0 ) RETURN
C
C Compute the transpose of D22*F . BK is used as workspace.
C
CALL DGEMM( 'T', 'T', N, NP2, M2, ONE, F, LDF, D( NP1+1, M1+1 ),
$ LDD, ZERO, BK, LDBK )
C
C Find AK = A + H*C2 + B2*F + H*D22*F .
C
CALL DLACPY( 'Full', N, N, A, LDA, AK, LDAK )
CALL DGEMM( 'N', 'N', N, N, NP2, ONE, H, LDH, C( NP1+1, 1 ), LDC,
$ ONE, AK, LDAK )
CALL DGEMM( 'N', 'N', N, N, M2, ONE, B( 1, M1+1 ), LDB,
$ F, LDF, ONE, AK, LDAK )
CALL DGEMM( 'N', 'T', N, N, NP2, ONE, H, LDH, BK, LDBK, ONE, AK,
$ LDAK )
C
C Find BK = -H*Ty .
C
CALL DGEMM( 'N', 'N', N, NP2, NP2, -ONE, H, LDH, TY, LDTY, ZERO,
$ BK, LDBK )
C
C Find CK = Tu*F .
C
CALL DGEMM( 'N', 'N', M2, N, M2, ONE, TU, LDTU, F, LDF, ZERO, CK,
$ LDCK )
C
C Find DK .
C
CALL DLASET( 'Full', M2, NP2, ZERO, ZERO, DK, LDDK )
C
RETURN
C *** Last line of SB10WD ***
END