dynare/matlab/simplex_optimization_routine.m

549 lines
20 KiB
Matlab
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

function [x,fval,exitflag] = simplex_optimization_routine(objective_function,x,options,varargin)
% Nelder-Mead like optimization routine.
% By default, we use standard values for the reflection, the expansion, the contraction and the shrink coefficients (alpha = 1, chi = 2, psi = 1 / 2 and σ = 1 / 2).
% See http://en.wikipedia.org/wiki/Nelder-Mead_method
%
% This routine uses the Nelder-Mead simplex (direct search) method.
% As chaining could reveal interesting to reach the solution neighborhood,
% the function automatically restarts from the current solution while
% amelioration is possible.
%
% INPUTS
% objective_function [string] Name of the objective function to be minimized.
% x [double] n*1 vector, starting guess of the optimization routine.
% options [structure]
%
% OUTPUTS
%
%
% Copyright (C) 2010-2013 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global bayestopt_
% Set verbose mode
verbose = 2;
% Set number of control variables.
number_of_variables = length(x);
% get options.
if isempty(simplex.maxfcall)
max_func_calls = simplex.maxfcallfactor*number_of_variables
end
% Set tolerance parameter.
if isfield(options,'tolerance') && isfield(options.tolerance,'x')
x_tolerance = options.tolerance.x;
else
x_tolerance = 1e-4;
end
% Set tolerance parameter.
if isfield(options,'tolerance') && isfield(options.tolerance,'f')
f_tolerance = options.tolerance.f;
else
f_tolerance = 1e-4;
end
% Set maximum number of iterations.
if isfield(options,'maxiter')
max_iterations = options.maxiter;
else
max_iterations = 5000;
end
% Set reflection parameter.
if isfield(options,'reflection_parameter')
if isfield(options.reflection_parameter,'value')
rho = options.reflection_parameter.value;
else
rho = 1.0;
end
if isfield(options.reflection_parameter,'random')
randomize_rho = options.reflection_parameter.random;
lambda_rho = 1/rho;
else
randomize_rho = 0;
end
else
rho = 1.0;
randomize_rho = 0;
end
% Set expansion parameter.
if isfield(options,'expansion_parameter')
if isfield(options.expansion_parameter,'value')
chi = options.expansion_parameter.value;
else
chi = 2.0;
end
if isfield(options.expansion_parameter,'random')
randomize_chi = options.expansion_parameter.random;
lambda_chi = 1/chi;
else
randomize_chi = 0;
end
if isfield(options.expansion_parameter,'optim')
optimize_expansion_parameter = options.expansion_parameter.optim;
else
optimize_expansion_parameter = 0;
end
else
chi = 2.0;
randomize_chi = 0;
optimize_expansion_parameter = 1;
end
% Set contraction parameter.
if isfield(options,'contraction_parameter')
if isfield(options.contraction_parameter,'value')
psi = options.contraction_parameter.value;
else
psi = 0.5;
end
if isfield(options.contraction_parameter,'random')
randomize_psi = options.expansion_parameter.random;
else
randomize_psi = 0;
end
else
psi = 0.5;
randomize_psi = 0;
end
% Set shrink parameter.
if isfield(options,'shrink_parameter')
if isfield(options.shrink_parameter,'value')
sigma = options.shrink_parameter.value;
else
sigma = 0.5;
end
if isfield(options.shrink_parameter,'random')
randomize_sigma = options.shrink_parameter.random;
else
randomize_sigma = 0;
end
else
sigma = 0.5;
randomize_sigma = 0;
end
% Set delta parameter.
if isfield(options,'delta_parameter')% Size of the simplex
delta = options.delta_parameter;
else
delta = 0.05;
end
DELTA = delta;
zero_delta = delta/200;% To be used instead of delta if x(i) is zero.
% Set max_no_improvements.
if isfield(options,'max_no_improvements')
max_no_improvements = options.max_no_improvements;
else
max_no_improvements = number_of_variables*10;
end
% Set vector of indices.
unit_vector = ones(1,number_of_variables);
trend_vector_1 = 1:number_of_variables;
trend_vector_2 = 2:(number_of_variables+1);
% Set initial simplex around the initial guess (x).
if verbose
skipline(3)
disp('+----------------------+')
disp(' SIMPLEX INITIALIZATION ')
disp('+----------------------+')
skipline()
end
initial_point = x;
[initial_score,junk1,junk2,nopenalty] = feval(objective_function,x,varargin{:});
if ~nopenalty
error('simplex_optimization_routine:: Initial condition is wrong!')
else
[v,fv,delta] = simplex_initialization(objective_function,initial_point,initial_score,delta,zero_delta,1,varargin{:});
func_count = number_of_variables + 1;
iter_count = 1;
if verbose
disp(['Objective function value: ' num2str(fv(1))])
disp(['Current parameter values: '])
fprintf(1,'%s: \t\t\t %s \t\t\t %s \t\t\t %s \t\t\t %s \t\t\t %s \n','Names','Best point', 'Worst point', 'Mean values', 'Min values', 'Max values');
for i=1:number_of_variables
fprintf(1,'%s: \t\t\t %+8.6f \t\t\t %+8.6f \t\t\t %+8.6f \t\t\t %+8.6f \t\t\t %+8.6f \n',bayestopt_.name{i},v(i,1), v(i,end), mean(v(i,:),2), min(v(i,:),[],2), max(v(i,:),[],2));
end
skipline()
end
end
vold = v;
no_improvements = 0;
simplex_init = 1;
simplex_iterations = 1;
max_simplex_algo_iterations = 3;
simplex_algo_iterations = 1;
best_point = v(:,1);
best_point_score = fv(1);
convergence = 0;
tooslow = 0;
iter_no_improvement_break = 0;
max_no_improvement_break = 1;
while (func_count < max_func_calls) && (iter_count < max_iterations) && (simplex_algo_iterations<=max_simplex_algo_iterations)
% Do we really need to continue?
critF = max(abs(fv(1)-fv(trend_vector_2)));
critX = max(max(abs(v(:,trend_vector_2)-v(:,unit_vector))));
if critF <= max(f_tolerance,10*eps(fv(1))) && critX <= max(x_tolerance,10*eps(max(v(:,1))))
convergence = 1;
end
if critX <= x_tolerance^2 && critF>1
tooslow = 1;
end
% Set random reflection and expansion parameters if needed.
if randomize_rho
rho = -log(rand)/lambda_rho;
end
if randomize_chi
chi = -log(rand)/lambda_chi;
end
% Set random contraction and shrink parameters if needed.
if randomize_psi
psi = rand;
end
if randomize_sigma
sigma = rand;
end
% Compute the reflection point
xbar = mean(v(:,trend_vector_1),2); % Average of the n best points.
xr = xbar + rho*(xbar-v(:,end));
x = xr;
fxr = feval(objective_function,x,varargin{:});
func_count = func_count+1;
if fxr < fv(1)% xr is better than previous best point v(:,1).
% Calculate the expansion point
xe = xbar + rho*chi*(xbar-v(:,end));
x = xe;
fxe = feval(objective_function,x,varargin{:});
func_count = func_count+1;
if fxe < fxr% xe is even better than xr.
if optimize_expansion_parameter
if verbose>1
skipline(2)
disp('Compute optimal expansion...')
end
xee = xbar + rho*chi*1.01*(xbar-v(:,end));
x = xee;
fxee = feval(objective_function,x,varargin{:});
func_count = func_count+1;
if fxee<fxe
decrease = 1;
weight = rho*chi*1.02;
fxeee_old = fxee;
xeee_old = xee;
if verbose>1
fprintf(1,'Weight = ');
end
while decrease
weight = 1.02*weight;
if verbose>1
fprintf(1,'\b\b\b\b\b\b\b %6.4f',weight);
end
xeee = xbar + weight*(xbar-v(:,end));
x = xeee;
fxeee = feval(objective_function,x,varargin{:});
func_count = func_count+1;
if (fxeee<fxeee_old) && -(fxeee-fxeee_old)>f_tolerance*10*fxeee_old
fxeee_old = fxeee;
xeee_old = xeee;
else
decrease = 0;
end
end
if verbose>1
fprintf(1,'\n');
end
xe = xeee_old;
fxe = fxeee_old;
else
decrease = 1;
weight = rho*chi;
fxeee_old = fxee;
xeee_old = xee;
if verbose>1
fprintf(1,'Weight = ');
end
while decrease
weight = weight/1.02;
if verbose>1
fprintf(1,'\b\b\b\b\b\b\b %6.4f',weight);
end
xeee = xbar + weight*(xbar-v(:,end));
x = xeee;
fxeee = feval(objective_function,x,varargin{:});
func_count = func_count+1;
if (fxeee<fxeee_old) && -(fxeee-fxeee_old)>f_tolerance*10*fxeee_old
fxeee_old = fxeee;
xeee_old = xeee;
else
decrease = 0;
end
end
if verbose>1
fprintf(1,'\n');
end
xe = xeee_old;
fxe = fxeee_old;
end
if verbose>1
disp('Done!')
skipline(2)
end
end
v(:,end) = xe;
fv(end) = fxe;
move = 'expand';
else% if xe is not better than xr.
v(:,end) = xr;
fv(end) = fxr;
move = 'reflect-1';
end
else% xr is not better than previous best point v(:,1).
if fxr < fv(number_of_variables)% xr is better than previous point v(:,n).
v(:,end) = xr;
fv(end) = fxr;
move = 'reflect-0';
else% xr is not better than previous point v(:,n).
if fxr < fv(end)% xr is better than previous worst point [=> outside contraction].
xc = (1 + psi*rho)*xbar - psi*rho*v(:,end);
x = xc;
fxc = feval(objective_function,x,varargin{:});
func_count = func_count+1;
if fxc <= fxr
v(:,end) = xc;
fv(end) = fxc;
move = 'contract outside';
else
move = 'shrink';
end
else% xr is the worst point [=> inside contraction].
xcc = (1-psi)*xbar + psi*v(:,end);
x = xcc;
fxcc = feval(objective_function,x,varargin{:});
func_count = func_count+1;
if fxcc < fv(end)
v(:,end) = xcc;
fv(end) = fxcc;
move = 'contract inside';
else
% perform a shrink
move = 'shrink';
end
end
if strcmp(move,'shrink')
for j=trend_vector_2
v(:,j)=v(:,1)+sigma*(v(:,j) - v(:,1));
x = v(:,j);
fv(j) = feval(objective_function,x,varargin{:});
end
func_count = func_count + number_of_variables;
end
end
end
% Sort n+1 points by incresing order of the objective function values.
[fv,sort_idx] = sort(fv);
v = v(:,sort_idx);
iter_count = iter_count + 1;
simplex_iterations = simplex_iterations+1;
if verbose>1
disp(['Simplex iteration number: ' int2str(simplex_iterations) '-' int2str(simplex_init) '-' int2str(simplex_algo_iterations)])
disp(['Simplex move: ' move])
disp(['Objective function value: ' num2str(fv(1))])
disp(['Mode improvement: ' num2str(best_point_score-fv(1))])
disp(['Norm of dx: ' num2str(norm(best_point-v(:,1)))])
disp(['Norm of dSimplex: ' num2str(norm(v-vold,'fro'))])
disp(['Crit. f: ' num2str(critF)])
disp(['Crit. x: ' num2str(critX)])
skipline()
end
if verbose && max(abs(best_point-v(:,1)))>x_tolerance;
if verbose<2
disp(['Simplex iteration number: ' int2str(simplex_iterations) '-' int2str(simplex_init) '-' int2str(simplex_algo_iterations)])
disp(['Objective function value: ' num2str(fv(1))])
disp(['Mode improvement: ' num2str(best_point_score-fv(1))])
disp(['Norm of dx: ' num2str(norm(best_point-v(:,1)))])
disp(['Norm of dSimplex: ' num2str(norm(v-vold,'fro'))])
disp(['Crit. f: ' num2str(critF)])
disp(['Crit. x: ' num2str(critX)])
skipline()
end
disp(['Current parameter values: '])
fprintf(1,'%s: \t\t\t %s \t\t\t %s \t\t\t %s \t\t\t %s \t\t\t %s \n','Names','Best point', 'Worst point', 'Mean values', 'Min values', 'Max values');
for i=1:number_of_variables
fprintf(1,'%s: \t\t\t %+8.6f \t\t\t %+8.6f \t\t\t %+8.6f \t\t\t %+8.6f \t\t\t %+8.6f \n',bayestopt_.name{i}, v(i,1), v(i,end), mean(v(i,:),2), min(v(i,:),[],2), max(v(i,:),[],2));
end
skipline()
end
if abs(best_point_score-fv(1))<f_tolerance
no_improvements = no_improvements+1;
else
no_improvements = 0;
end
best_point = v(:,1);
best_point_score = fv(1);
vold = v;
if no_improvements>max_no_improvements
if verbose
disp(['NO SIGNIFICANT IMPROVEMENT AFTER ' int2str(no_improvements) ' ITERATIONS!'])
end
if simplex_algo_iterations<=max_simplex_algo_iterations
% Compute the size of the simplex
delta = delta*1.05;
% Compute the new initial simplex.
[v,fv,delta] = simplex_initialization(objective_function,best_point,best_point_score,delta,zero_delta,1,varargin{:});
if verbose
disp(['(Re)Start with a lager simplex around the based on the best current '])
disp(['values for the control variables. '])
disp(['New value of delta (size of the new simplex) is: '])
for i=1:number_of_variables
fprintf(1,'%s: \t\t\t %+8.6f \n',bayestopt_.name{i}, delta(i));
end
end
% Reset counters
no_improvements = 0;
func_count = func_count + number_of_variables;
iter_count = iter_count+1;
iter_no_improvement_break = iter_no_improvement_break + 1;
simplex_init = simplex_init+1;
simplex_iterations = simplex_iterations+1;
skipline(2)
end
end
if ((func_count==max_func_calls) || (iter_count==max_iterations) || (iter_no_improvement_break==max_no_improvement_break) || convergence || tooslow)
[v,fv,delta] = simplex_initialization(objective_function,best_point,best_point_score,DELTA,zero_delta,1,varargin{:});
if func_count==max_func_calls
if verbose
disp(['MAXIMUM NUMBER OF OBJECTIVE FUNCTION CALLS EXCEEDED (' int2str(max_func_calls) ')!'])
end
elseif iter_count== max_iterations
if verbose
disp(['MAXIMUM NUMBER OF ITERATIONS EXCEEDED (' int2str(max_iterations) ')!'])
end
elseif iter_no_improvement_break==max_no_improvement_break
if verbose
disp(['MAXIMUM NUMBER OF SIMPLEX REINITIALIZATION EXCEEDED (' int2str(max_no_improvement_break) ')!'])
end
iter_no_improvement_break = 0;
if simplex_algo_iterations==max_simplex_algo_iterations
max_no_improvements = Inf;% Do not stop until convergence is reached!
continue
end
elseif tooslow
disp(['CONVERGENCE NOT ACHIEVED AFTER ' int2str(simplex_iterations) ' ITERATIONS! IMPROVING TOO SLOWLY!'])
else
disp(['CONVERGENCE ACHIEVED AFTER ' int2str(simplex_iterations) ' ITERATIONS!'])
end
if simplex_algo_iterations<max_simplex_algo_iterations
% Compute the size of the simplex
delta = delta*1.05;
% Compute the new initial simplex.
[v,fv,delta] = simplex_initialization(objective_function,best_point,best_point_score,delta,zero_delta,1,varargin{:});
if verbose
disp(['(Re)Start with a lager simplex around the based on the best current '])
disp(['values for the control variables. '])
disp(['New value of delta (size of the new simplex) is: '])
for i=1:number_of_variables
fprintf(1,'%s: \t\t\t %+8.6f \n',bayestopt_.name{i}, delta(i));
end
end
% Reset counters
func_count=0;
iter_count=0;
convergence = 0;
no_improvements = 0;
func_count = func_count + number_of_variables;
iter_count = iter_count+1;
simplex_iterations = simplex_iterations+1;
simplex_algo_iterations = simplex_algo_iterations+1;
skipline(2)
else
break
end
end
end% while loop.
x(:) = v(:,1);
fval = fv(:,1);
exitflag = 1;
if func_count>= max_func_calls
disp('Maximum number of objective function calls has been exceeded!')
exitflag = 0;
end
if iter_count>= max_iterations
disp('Maximum number of iterations has been exceeded!')
exitflag = 0;
end
function [v,fv,delta] = simplex_initialization(objective_function,point,point_score,delta,zero_delta,check_delta,varargin)
n = length(point);
v = zeros(n,n+1);
v(:,1) = point;
fv = zeros(n+1,1);
fv(1) = point_score;
if length(delta)==1
delta = repmat(delta,n,1);
end
for j = 1:n
y = point;
if y(j) ~= 0
y(j) = (1 + delta(j))*y(j);
else
y(j) = zero_delta;
end
v(:,j+1) = y;
x = y;
[fv(j+1),junk1,junk2,nopenalty_flag] = feval(objective_function,x,varargin{:});
if check_delta
while ~nopenalty_flag
if y(j)~=0
delta(j) = delta(j)/1.1;
else
zero_delta = zero_delta/1.1;
end
y = point;
if y(j) ~= 0
y(j) = (1 + delta(j))*y(j);
else
y(j) = zero_delta;
end
v(:,j+1) = y;
x = y;
[fv(j+1),junk1,junk2,nopenalty_flag] = feval(objective_function,x,varargin{:});
end
end
end
% Sort by increasing order of the objective function values.
[fv,sort_idx] = sort(fv);
v = v(:,sort_idx);