dynare/mex/sources/libslicot/SG03AX.f

688 lines
22 KiB
Fortran

SUBROUTINE SG03AX( TRANS, N, A, LDA, E, LDE, X, LDX, SCALE, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To solve for X either the reduced generalized discrete-time
C Lyapunov equation
C
C T T
C A * X * A - E * X * E = SCALE * Y (1)
C
C or
C
C T T
C A * X * A - E * X * E = SCALE * Y (2)
C
C where the right hand side Y is symmetric. A, E, Y, and the
C solution X are N-by-N matrices. The pencil A - lambda * E must be
C in generalized Schur form (A upper quasitriangular, E upper
C triangular). SCALE is an output scale factor, set to avoid
C overflow in X.
C
C ARGUMENTS
C
C Mode Parameters
C
C TRANS CHARACTER*1
C Specifies whether the transposed equation is to be solved
C or not:
C = 'N': Solve equation (1);
C = 'T': Solve equation (2).
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A. N >= 0.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N upper Hessenberg part of this array
C must contain the quasitriangular matrix A.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= MAX(1,N).
C
C E (input) DOUBLE PRECISION array, dimension (LDE,N)
C The leading N-by-N upper triangular part of this array
C must contain the matrix E.
C
C LDE INTEGER
C The leading dimension of the array E. LDE >= MAX(1,N).
C
C X (input/output) DOUBLE PRECISION array, dimension (LDX,N)
C On entry, the leading N-by-N part of this array must
C contain the right hand side matrix Y of the equation. Only
C the upper triangular part of this matrix need be given.
C On exit, the leading N-by-N part of this array contains
C the solution matrix X of the equation.
C
C LDX INTEGER
C The leading dimension of the array X. LDX >= MAX(1,N).
C
C SCALE (output) DOUBLE PRECISION
C The scale factor set to avoid overflow in X.
C (0 < SCALE <= 1)
C
C Error indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: equation is (almost) singular to working precision;
C perturbed values were used to solve the equation
C (but the matrices A and E are unchanged).
C
C METHOD
C
C The solution X of (1) or (2) is computed via block back
C substitution or block forward substitution, respectively. (See
C [1] and [2] for details.)
C
C REFERENCES
C
C [1] Bartels, R.H., Stewart, G.W.
C Solution of the equation A X + X B = C.
C Comm. A.C.M., 15, pp. 820-826, 1972.
C
C [2] Penzl, T.
C Numerical solution of generalized Lyapunov equations.
C Advances in Comp. Math., vol. 8, pp. 33-48, 1998.
C
C NUMERICAL ASPECTS
C
C 8/3 * N**3 flops are required by the routine. Note that we count a
C single floating point arithmetic operation as one flop.
C
C The algorithm is backward stable if the eigenvalues of the pencil
C A - lambda * E are real. Otherwise, linear systems of order at
C most 4 are involved into the computation. These systems are solved
C by Gauss elimination with complete pivoting. The loss of stability
C of the Gauss elimination with complete pivoting is rarely
C encountered in practice.
C
C CONTRIBUTOR
C
C T. Penzl, Technical University Chemnitz, Germany, Aug. 1998.
C
C REVISIONS
C
C Sep. 1998 (V. Sima).
C Dec. 1998 (V. Sima).
C
C KEYWORDS
C
C Lyapunov equation
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION MONE, ONE, ZERO
PARAMETER ( MONE = -1.0D+0, ONE = 1.0D+0, ZERO = 0.0D+0 )
C .. Scalar Arguments ..
CHARACTER TRANS
DOUBLE PRECISION SCALE
INTEGER INFO, LDA, LDE, LDX, N
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), E(LDE,*), X(LDX,*)
C .. Local Scalars ..
DOUBLE PRECISION AK11, AK12, AK21, AK22, AL11, AL12, AL21, AL22,
$ EK11, EK12, EK22, EL11, EL12, EL22, SCALE1
INTEGER DIMMAT, I, INFO1, KB, KH, KL, LB, LH, LL
LOGICAL NOTRNS
C .. Local Arrays ..
DOUBLE PRECISION MAT(4,4), RHS(4), TM(2,2)
INTEGER PIV1(4), PIV2(4)
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DGEMM, DGEMV, DSCAL, MB02UU,
$ MB02UV, XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX
C .. Executable Statements ..
C
C Decode input parameter.
C
NOTRNS = LSAME( TRANS, 'N' )
C
C Check the scalar input parameters.
C
IF ( .NOT.( NOTRNS .OR. LSAME( TRANS, 'T' ) ) ) THEN
INFO = -1
ELSEIF ( N .LT. 0 ) THEN
INFO = -2
ELSEIF ( LDA .LT. MAX( 1, N ) ) THEN
INFO = -4
ELSEIF ( LDE .LT. MAX( 1, N ) ) THEN
INFO = -6
ELSEIF ( LDX .LT. MAX( 1, N ) ) THEN
INFO = -8
ELSE
INFO = 0
END IF
IF ( INFO .NE. 0 ) THEN
CALL XERBLA( 'SG03AX', -INFO )
RETURN
END IF
C
SCALE = ONE
C
C Quick return if possible.
C
IF ( N .EQ. 0 ) RETURN
C
IF ( NOTRNS ) THEN
C
C Solve equation (1).
C
C Outer Loop. Compute block row X(KL:KH,:). KB denotes the number
C of rows in this block row.
C
KL = 0
KB = 1
C WHILE ( KL+KB .LE. N ) DO
20 IF ( KL+KB .LE. N ) THEN
KL = KL + KB
IF ( KL .EQ. N ) THEN
KB = 1
ELSE
IF ( A(KL+1,KL) .NE. ZERO ) THEN
KB = 2
ELSE
KB = 1
END IF
END IF
KH = KL + KB - 1
C
C Copy elements of solution already known by symmetry.
C
C X(KL:KH,1:KL-1) = X(1:KL-1,KL:KH)'
C
IF ( KL .GT. 1 ) THEN
DO 40 I = KL, KH
CALL DCOPY( KL-1, X(1,I), 1, X(I,1), LDX )
40 CONTINUE
END IF
C
C Inner Loop. Compute block X(KL:KH,LL:LH). LB denotes the
C number of columns in this block.
C
LL = KL - 1
LB = 1
C WHILE ( LL+LB .LE. N ) DO
60 IF ( LL+LB .LE. N ) THEN
LL = LL + LB
IF ( LL .EQ. N ) THEN
LB = 1
ELSE
IF ( A(LL+1,LL) .NE. ZERO ) THEN
LB = 2
ELSE
LB = 1
END IF
END IF
LH = LL + LB - 1
C
C Update right hand sides (I).
C
C X(KL:LH,LL:LH) = X(KL:LH,LL:LH) -
C A(KL:KH,KL:LH)'*(X(KL:KH,1:LL-1)*A(1:LL-1,LL:LH))
C
C X(KL:LH,LL:LH) = X(KL:LH,LL:LH) +
C E(KL:KH,KL:LH)'*(X(KL:KH,1:LL-1)*E(1:LL-1,LL:LH))
C
IF ( LL .GT. 1 ) THEN
CALL DGEMM( 'N', 'N', KB, LB, LL-1, ONE, X(KL,1), LDX,
$ A(1,LL), LDA, ZERO, TM, 2 )
CALL DGEMM( 'T', 'N', LH-KL+1, LB, KB, MONE, A(KL,KL),
$ LDA, TM, 2, ONE, X(KL,LL), LDX )
CALL DGEMM( 'N', 'N', KB, LB, LL-1, ONE, X(KL,1),
$ LDX, E(1,LL), LDE, ZERO, TM, 2 )
CALL DGEMM( 'T', 'N', LH-KH+1, LB, KB, ONE, E(KL,KH),
$ LDE, TM, 2, ONE, X(KH,LL), LDX )
IF ( KB .EQ. 2 ) CALL DAXPY( LB, E(KL,KL), TM, 2,
$ X(KL,LL), LDX )
END IF
C
C Solve small Sylvester equations of order at most (2,2).
C
IF ( KB.EQ.1 .AND. LB.EQ.1 ) THEN
C
DIMMAT = 1
C
MAT(1,1) = A(LL,LL)*A(KL,KL) - E(LL,LL)*E(KL,KL)
C
RHS(1) = X(KL,LL)
C
ELSEIF ( KB.EQ.2 .AND. LB.EQ.1 ) THEN
C
DIMMAT = 2
C
AK11 = A(KL,KL)
AK12 = A(KL,KH)
AK21 = A(KH,KL)
AK22 = A(KH,KH)
C
AL11 = A(LL,LL)
C
EK11 = E(KL,KL)
EK12 = E(KL,KH)
EK22 = E(KH,KH)
C
EL11 = E(LL,LL)
C
MAT(1,1) = AL11*AK11 - EL11*EK11
MAT(1,2) = AL11*AK21
MAT(2,1) = AL11*AK12 - EL11*EK12
MAT(2,2) = AL11*AK22 - EL11*EK22
C
RHS(1) = X(KL,LL)
RHS(2) = X(KH,LL)
C
ELSEIF ( KB.EQ.1 .AND. LB.EQ.2 ) THEN
C
DIMMAT = 2
C
AK11 = A(KL,KL)
C
AL11 = A(LL,LL)
AL12 = A(LL,LH)
AL21 = A(LH,LL)
AL22 = A(LH,LH)
C
EK11 = E(KL,KL)
C
EL11 = E(LL,LL)
EL12 = E(LL,LH)
EL22 = E(LH,LH)
C
MAT(1,1) = AL11*AK11 - EL11*EK11
MAT(1,2) = AL21*AK11
MAT(2,1) = AL12*AK11 - EL12*EK11
MAT(2,2) = AL22*AK11 - EL22*EK11
C
RHS(1) = X(KL,LL)
RHS(2) = X(KL,LH)
C
ELSE
C
DIMMAT = 4
C
AK11 = A(KL,KL)
AK12 = A(KL,KH)
AK21 = A(KH,KL)
AK22 = A(KH,KH)
C
AL11 = A(LL,LL)
AL12 = A(LL,LH)
AL21 = A(LH,LL)
AL22 = A(LH,LH)
C
EK11 = E(KL,KL)
EK12 = E(KL,KH)
EK22 = E(KH,KH)
C
EL11 = E(LL,LL)
EL12 = E(LL,LH)
EL22 = E(LH,LH)
C
MAT(1,1) = AL11*AK11 - EL11*EK11
MAT(1,2) = AL11*AK21
MAT(1,3) = AL21*AK11
MAT(1,4) = AL21*AK21
C
MAT(2,1) = AL11*AK12 - EL11*EK12
MAT(2,2) = AL11*AK22 - EL11*EK22
MAT(2,3) = AL21*AK12
MAT(2,4) = AL21*AK22
C
MAT(3,1) = AL12*AK11 - EL12*EK11
MAT(3,2) = AL12*AK21
MAT(3,3) = AL22*AK11 - EL22*EK11
MAT(3,4) = AL22*AK21
C
MAT(4,1) = AL12*AK12 - EL12*EK12
MAT(4,2) = AL12*AK22 - EL12*EK22
MAT(4,3) = AL22*AK12 - EL22*EK12
MAT(4,4) = AL22*AK22 - EL22*EK22
C
RHS(1) = X(KL,LL)
IF ( KL .EQ. LL ) THEN
RHS(2) = X(KL,KH)
ELSE
RHS(2) = X(KH,LL)
END IF
RHS(3) = X(KL,LH)
RHS(4) = X(KH,LH)
C
END IF
C
CALL MB02UV( DIMMAT, MAT, 4, PIV1, PIV2, INFO1 )
IF ( INFO1 .NE. 0 )
$ INFO = 1
CALL MB02UU( DIMMAT, MAT, 4, RHS, PIV1, PIV2, SCALE1 )
C
C Scaling.
C
IF ( SCALE1 .NE. ONE ) THEN
DO 80 I = 1, N
CALL DSCAL( N, SCALE1, X(1,I), 1 )
80 CONTINUE
SCALE = SCALE*SCALE1
END IF
C
IF ( LB.EQ.1 .AND. KB.EQ.1 ) THEN
X(KL,LL) = RHS(1)
ELSEIF ( LB.EQ.1 .AND. KB.EQ.2 ) THEN
X(KL,LL) = RHS(1)
X(KH,LL) = RHS(2)
ELSEIF ( LB.EQ.2 .AND. KB.EQ.1 ) THEN
X(KL,LL) = RHS(1)
X(KL,LH) = RHS(2)
ELSE
X(KL,LL) = RHS(1)
X(KH,LL) = RHS(2)
X(KL,LH) = RHS(3)
X(KH,LH) = RHS(4)
END IF
C
C Update right hand sides (II).
C
C X(KH+1:LH,LL:LH) = X(KH+1:LH,LL:LH) -
C A(KL:KH,KH+1:LH)'*(X(KL:KH,LL:LH)*A(LL:LH,LL:LH))
C
C X(KH+1:LH,LL:LH) = X(KH+1:LH,LL:LH) +
C E(KL:KH,KH+1:LH)'*(X(KL:KH,LL:LH)*E(LL:LH,LL:LH))
C
IF ( KL .LT. LL ) THEN
CALL DGEMM( 'N', 'N', KB, LB, LB, ONE, X(KL,LL), LDX,
$ A(LL,LL), LDA, ZERO, TM, 2 )
CALL DGEMM( 'T', 'N', LH-KH, LB, KB, MONE, A(KL,KH+1),
$ LDA, TM, 2, ONE, X(KH+1,LL), LDX )
IF ( LB .EQ. 2 ) THEN
CALL DCOPY( KB, X(KL,LL), 1, TM, 1 )
CALL DSCAL( KB, E(LL,LL), TM, 1 )
END IF
CALL DGEMV( 'N', KB, LB, ONE, X(KL,LL), LDX, E(LL,LH),
$ 1, ZERO, TM(1,LB), 1 )
CALL DGEMM( 'T', 'N', LH-KH, LB, KB, ONE, E(KL,KH+1),
$ LDE, TM, 2, ONE, X(KH+1,LL), LDX )
END IF
C
GOTO 60
END IF
C END WHILE 60
C
GOTO 20
END IF
C END WHILE 20
C
ELSE
C
C Solve equation (2).
C
C Outer Loop. Compute block column X(:,LL:LH). LB denotes the
C number of columns in this block column.
C
LL = N + 1
C WHILE ( LL .GT. 1 ) DO
100 IF ( LL .GT. 1 ) THEN
LH = LL - 1
IF ( LH .EQ. 1 ) THEN
LB = 1
ELSE
IF ( A(LL-1,LL-2) .NE. ZERO ) THEN
LB = 2
ELSE
LB = 1
END IF
END IF
LL = LL - LB
C
C Copy elements of solution already known by symmetry.
C
C X(LH+1:N,LL:LH) = X(LL:LH,LH+1:N)'
C
IF ( LH .LT. N ) THEN
DO 120 I = LL, LH
CALL DCOPY( N-LH, X(I,LH+1), LDX, X(LH+1,I), 1 )
120 CONTINUE
END IF
C
C Inner Loop. Compute block X(KL:KH,LL:LH). KB denotes the
C number of rows in this block.
C
KL = LH + 1
C WHILE ( KL .GT. 1 ) DO
140 IF ( KL .GT. 1 ) THEN
KH = KL - 1
IF ( KH .EQ. 1 ) THEN
KB = 1
ELSE
IF ( A(KL-1,KL-2) .NE. ZERO ) THEN
KB =2
ELSE
KB = 1
END IF
END IF
KL = KL - KB
C
C Update right hand sides (I).
C
C X(KL:KH,KL:LH) = X(KL:KH,KL:LH) -
C (A(KL:KH,KH+1:N)*X(KH+1:N,LL:LH))*A(KL:LH,LL:LH)'
C
C X(KL:KH,KL:LH) = X(KL:KH,KL:LH) +
C (E(KL:KH,KH+1:N)*X(KH+1:N,LL:LH))*E(KL:LH,LL:LH)'
C
IF ( KH .LT. N ) THEN
CALL DGEMM( 'N', 'N', KB, LB, N-KH, ONE, A(KL,KH+1),
$ LDA, X(KH+1,LL), LDX, ZERO, TM, 2 )
CALL DGEMM( 'N', 'T', KB, LH-KL+1, LB, MONE, TM, 2,
$ A(KL,LL), LDA, ONE, X(KL,KL), LDX )
CALL DGEMM( 'N', 'N', KB, LB, N-KH, ONE, E(KL,KH+1),
$ LDE, X(KH+1,LL), LDX, ZERO, TM, 2 )
CALL DGEMM( 'N', 'T', KB, LL-KL+1, LB, ONE, TM, 2,
$ E(KL,LL), LDE, ONE, X(KL,KL), LDX )
IF ( LB .EQ. 2 ) CALL DAXPY( KB, E(LH,LH), TM(1,2), 1,
$ X(KL,LH), 1 )
END IF
C
C Solve small Sylvester equations of order at most (2,2).
C
IF ( KB.EQ.1 .AND. LB.EQ.1 ) THEN
C
DIMMAT = 1
C
MAT(1,1) = A(LL,LL)*A(KL,KL) - E(LL,LL)*E(KL,KL)
C
RHS(1) = X(KL,LL)
C
ELSEIF ( KB.EQ.2 .AND. LB.EQ.1 ) THEN
C
DIMMAT = 2
C
AK11 = A(KL,KL)
AK12 = A(KL,KH)
AK21 = A(KH,KL)
AK22 = A(KH,KH)
C
AL11 = A(LL,LL)
C
EK11 = E(KL,KL)
EK12 = E(KL,KH)
EK22 = E(KH,KH)
C
EL11 = E(LL,LL)
C
MAT(1,1) = AL11*AK11 - EL11*EK11
MAT(1,2) = AL11*AK12 - EL11*EK12
MAT(2,1) = AL11*AK21
MAT(2,2) = AL11*AK22 - EL11*EK22
C
RHS(1) = X(KL,LL)
RHS(2) = X(KH,LL)
C
ELSEIF ( KB.EQ.1 .AND. LB.EQ.2 ) THEN
C
DIMMAT = 2
C
AK11 = A(KL,KL)
C
AL11 = A(LL,LL)
AL12 = A(LL,LH)
AL21 = A(LH,LL)
AL22 = A(LH,LH)
C
EK11 = E(KL,KL)
C
EL11 = E(LL,LL)
EL12 = E(LL,LH)
EL22 = E(LH,LH)
C
MAT(1,1) = AL11*AK11 - EL11*EK11
MAT(1,2) = AL12*AK11 - EL12*EK11
MAT(2,1) = AL21*AK11
MAT(2,2) = AL22*AK11 - EL22*EK11
C
RHS(1) = X(KL,LL)
RHS(2) = X(KL,LH)
C
ELSE
C
DIMMAT = 4
C
AK11 = A(KL,KL)
AK12 = A(KL,KH)
AK21 = A(KH,KL)
AK22 = A(KH,KH)
C
AL11 = A(LL,LL)
AL12 = A(LL,LH)
AL21 = A(LH,LL)
AL22 = A(LH,LH)
C
EK11 = E(KL,KL)
EK12 = E(KL,KH)
EK22 = E(KH,KH)
C
EL11 = E(LL,LL)
EL12 = E(LL,LH)
EL22 = E(LH,LH)
C
MAT(1,1) = AL11*AK11 - EL11*EK11
MAT(1,2) = AL11*AK12 - EL11*EK12
MAT(1,3) = AL12*AK11 - EL12*EK11
MAT(1,4) = AL12*AK12 - EL12*EK12
C
MAT(2,1) = AL11*AK21
MAT(2,2) = AL11*AK22 - EL11*EK22
MAT(2,3) = AL12*AK21
MAT(2,4) = AL12*AK22 - EL12*EK22
C
MAT(3,1) = AL21*AK11
MAT(3,2) = AL21*AK12
MAT(3,3) = AL22*AK11 - EL22*EK11
MAT(3,4) = AL22*AK12 - EL22*EK12
C
MAT(4,1) = AL21*AK21
MAT(4,2) = AL21*AK22
MAT(4,3) = AL22*AK21
MAT(4,4) = AL22*AK22 - EL22*EK22
C
RHS(1) = X(KL,LL)
IF ( KL .EQ. LL ) THEN
RHS(2) = X(KL,KH)
ELSE
RHS(2) = X(KH,LL)
END IF
RHS(3) = X(KL,LH)
RHS(4) = X(KH,LH)
C
END IF
C
CALL MB02UV( DIMMAT, MAT, 4, PIV1, PIV2, INFO1 )
IF ( INFO1 .NE. 0 )
$ INFO = 1
CALL MB02UU( DIMMAT, MAT, 4, RHS, PIV1, PIV2, SCALE1 )
C
C Scaling.
C
IF ( SCALE1 .NE. ONE ) THEN
DO 160 I = 1, N
CALL DSCAL( N, SCALE1, X(1,I), 1 )
160 CONTINUE
SCALE = SCALE*SCALE1
END IF
C
IF ( LB.EQ.1 .AND. KB.EQ.1 ) THEN
X(KL,LL) = RHS(1)
ELSEIF ( LB.EQ.1 .AND. KB.EQ.2 ) THEN
X(KL,LL) = RHS(1)
X(KH,LL) = RHS(2)
ELSEIF ( LB.EQ.2 .AND. KB.EQ.1 ) THEN
X(KL,LL) = RHS(1)
X(KL,LH) = RHS(2)
ELSE
X(KL,LL) = RHS(1)
X(KH,LL) = RHS(2)
X(KL,LH) = RHS(3)
X(KH,LH) = RHS(4)
END IF
C
C Update right hand sides (II).
C
C X(KL:KH,KL:LL-1) = X(KL:KH,KL:LL-1) -
C (A(KL:KH,KL:KH)*X(KL:KH,LL:LH))*A(KL:LL-1,LL:LH)'
C
C X(KL:KH,KL:LL-1) = X(KL:KH,KL:LL-1) +
C (E(KL:KH,KL:KH)*X(KL:KH,LL:LH))*E(KL:LL-1,LL:LH)'
C
IF ( KL .LT. LL ) THEN
CALL DGEMM( 'N', 'N', KB, LB, KB, ONE, A(KL,KL), LDA,
$ X(KL,LL), LDX, ZERO, TM, 2 )
CALL DGEMM( 'N', 'T', KB, LL-KL, LB, MONE, TM, 2,
$ A(KL,LL), LDA, ONE, X(KL,KL), LDX )
CALL DGEMV( 'T', KB, LB, ONE, X(KL,LL), LDX, E(KL,KL),
$ LDE, ZERO, TM, 2 )
IF ( KB .EQ. 2 ) THEN
CALL DCOPY( LB, X(KH,LL), LDX, TM(2,1), 2 )
CALL DSCAL( LB, E(KH,KH), TM(2,1), 2 )
END IF
CALL DGEMM( 'N', 'T', KB, LL-KL, LB, ONE, TM, 2,
$ E(KL,LL), LDE, ONE, X(KL,KL), LDX )
END IF
C
GOTO 140
END IF
C END WHILE 140
C
GOTO 100
END IF
C END WHILE 100
C
END IF
C
RETURN
C *** Last line of SG03AX ***
END