dynare/mex/sources/libslicot/MB04PU.f

370 lines
12 KiB
Fortran

SUBROUTINE MB04PU( N, ILO, A, LDA, QG, LDQG, CS, TAU, DWORK,
$ LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To reduce a Hamiltonian matrix,
C
C [ A G ]
C H = [ T ] ,
C [ Q -A ]
C
C where A is an N-by-N matrix and G,Q are N-by-N symmetric matrices,
C to Paige/Van Loan (PVL) form. That is, an orthogonal symplectic U
C is computed so that
C
C T [ Aout Gout ]
C U H U = [ T ] ,
C [ Qout -Aout ]
C
C where Aout is upper Hessenberg and Qout is diagonal.
C Unblocked version.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A. N >= 0.
C
C ILO (input) INTEGER
C It is assumed that A is already upper triangular and Q is
C zero in rows and columns 1:ILO-1. ILO is normally set by a
C previous call to MB04DD; otherwise it should be set to 1.
C 1 <= ILO <= N, if N > 0; ILO = 1, if N = 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the matrix A.
C On exit, the leading N-by-N part of this array contains
C the matrix Aout and, in the zero part of Aout,
C information about the elementary reflectors used to
C compute the PVL factorization.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= MAX(1,N).
C
C QG (input/output) DOUBLE PRECISION array, dimension
C (LDQG,N+1)
C On entry, the leading N-by-N+1 part of this array must
C contain the lower triangular part of the matrix Q and
C the upper triangular part of the matrix G.
C On exit, the leading N-by-N+1 part of this array contains
C the diagonal of the matrix Qout, the upper triangular part
C of the matrix Gout and, in the zero parts of Qout,
C information about the elementary reflectors used to
C compute the PVL factorization.
C
C LDQG INTEGER
C The leading dimension of the array QG. LDQG >= MAX(1,N).
C
C CS (output) DOUBLE PRECISION array, dimension (2N-2)
C On exit, the first 2N-2 elements of this array contain the
C cosines and sines of the symplectic Givens rotations used
C to compute the PVL factorization.
C
C TAU (output) DOUBLE PRECISION array, dimension (N-1)
C On exit, the first N-1 elements of this array contain the
C scalar factors of some of the elementary reflectors.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal
C value of LDWORK.
C On exit, if INFO = -10, DWORK(1) returns the minimum
C value of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK. LDWORK >= MAX(1,N-1).
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The matrix U is represented as a product of symplectic reflectors
C and Givens rotators
C
C U = diag( H(1),H(1) ) G(1) diag( F(1),F(1) )
C diag( H(2),H(2) ) G(2) diag( F(2),F(2) )
C ....
C diag( H(n-1),H(n-1) ) G(n-1) diag( F(n-1),F(n-1) ).
C
C Each H(i) has the form
C
C H(i) = I - tau * v * v'
C
C where tau is a real scalar, and v is a real vector with
C v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in
C QG(i+2:n,i), and tau in QG(i+1,i).
C
C Each F(i) has the form
C
C F(i) = I - nu * w * w'
C
C where nu is a real scalar, and w is a real vector with
C w(1:i) = 0 and w(i+1) = 1; w(i+2:n) is stored on exit in
C A(i+2:n,i), and nu in TAU(i).
C
C Each G(i) is a Givens rotator acting on rows i+1 and n+i+1,
C where the cosine is stored in CS(2*i-1) and the sine in
C CS(2*i).
C
C NUMERICAL ASPECTS
C
C The algorithm requires 40/3 N**3 + O(N) floating point operations
C and is strongly backward stable.
C
C REFERENCES
C
C [1] C. F. VAN LOAN:
C A symplectic method for approximating all the eigenvalues of
C a Hamiltonian matrix.
C Linear Algebra and its Applications, 61, pp. 233-251, 1984.
C
C CONTRIBUTORS
C
C D. Kressner (Technical Univ. Berlin, Germany) and
C P. Benner (Technical Univ. Chemnitz, Germany), December 2003.
C
C REVISIONS
C
C V. Sima, Nov. 2008 (SLICOT version of the HAPACK routine DHAPVL).
C
C KEYWORDS
C
C Elementary matrix operations, Hamiltonian matrix.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, HALF, ONE
PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
INTEGER ILO, INFO, LDA, LDQG, LDWORK, N
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), CS(*), DWORK(*), QG(LDQG,*), TAU(*)
C .. Local Scalars ..
INTEGER I
DOUBLE PRECISION ALPHA, C, MU, NU, S, TEMP, TTEMP
C .. External Functions ..
DOUBLE PRECISION DDOT
EXTERNAL DDOT
C .. External Subroutines ..
EXTERNAL DAXPY, DLARF, DLARFG, DLARTG, DROT, DSYMV,
$ DSYR2, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
C
C .. Executable Statements ..
C
C Check the scalar input parameters.
C
INFO = 0
IF ( N.LT.0 ) THEN
INFO = -1
ELSE IF ( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
INFO = -2
ELSE IF ( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF ( LDQG.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF ( LDWORK.LT.MAX( 1, N-1 ) ) THEN
DWORK(1) = DBLE( MAX( 1, N-1 ) )
INFO = -10
END IF
C
C Return if there were illegal values.
C
IF ( INFO.NE.0 ) THEN
CALL XERBLA( 'MB04PU', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( N.LE.ILO ) THEN
DWORK(1) = ONE
RETURN
END IF
C
DO 10 I = ILO, N-1
C
C Generate elementary reflector H(i) to annihilate QG(i+2:n,i).
C
ALPHA = QG(I+1,I)
CALL DLARFG( N-I, ALPHA, QG(MIN( I+2,N ),I), 1, NU )
IF ( NU.NE.ZERO ) THEN
QG(I+1,I) = ONE
C
C Apply H(i) from both sides to QG(i+1:n,i+1:n).
C Compute x := nu * QG(i+1:n,i+1:n) * v.
C
CALL DSYMV( 'Lower', N-I, NU, QG(I+1,I+1), LDQG, QG(I+1,I),
$ 1, ZERO, DWORK, 1 )
C
C Compute w := x - 1/2 * nu * (x'*v) * v.
C
MU = -HALF*NU*DDOT( N-I, DWORK, 1, QG(I+1,I), 1 )
CALL DAXPY( N-I, MU, QG(I+1,I), 1, DWORK, 1 )
C
C Apply the transformation as a rank-2 update:
C QG := QG - v * w' - w * v'.
C
CALL DSYR2( 'Lower', N-I, -ONE, QG(I+1,I), 1, DWORK, 1,
$ QG(I+1,I+1), LDQG )
C
C Apply H(i) from the right hand side to QG(1:i,i+2:n+1).
C
CALL DLARF( 'Right', I, N-I, QG(I+1,I), 1, NU, QG(1,I+2),
$ LDQG, DWORK )
C
C Apply H(i) from both sides to QG(i+1:n,i+2:n+1).
C Compute x := nu * QG(i+1:n,i+2:n+1) * v.
C
CALL DSYMV( 'Upper', N-I, NU, QG(I+1,I+2), LDQG, QG(I+1,I),
$ 1, ZERO, DWORK, 1 )
C
C Compute w := x - 1/2 * nu * (x'*v) * v.
C
MU = -HALF*NU*DDOT( N-I, DWORK, 1, QG(I+1,I), 1 )
CALL DAXPY( N-I, MU, QG(I+1,I), 1, DWORK, 1 )
C
C Apply the transformation as a rank-2 update:
C QG(i+1:n,i+2:n+1) := QG(i+1:n,i+2:n+1) - v * w' - w * v'.
C
CALL DSYR2( 'Upper', N-I, -ONE, QG(I+1,I), 1, DWORK, 1,
$ QG(I+1,I+2), LDQG )
C
C Apply H(i) from the left hand side to A(i+1:n,i:n).
C
CALL DLARF( 'Left', N-I, N-I+1, QG(I+1,I), 1, NU,
$ A(I+1,I), LDA, DWORK )
C
C Apply H(i) from the right hand side to A(1:n,i+1:n).
C
CALL DLARF( 'Right', N, N-I, QG(I+1,I), 1, NU,
$ A(1,I+1), LDA, DWORK )
END IF
QG(I+1,I) = NU
C
C Generate symplectic Givens rotation G(i) to annihilate
C QG(i+1,i).
C
TEMP = A(I+1,I)
CALL DLARTG( TEMP, ALPHA, C, S, A(I+1,I) )
C
C Apply G(i) to [A(I+1,I+2:N); QG(I+2:N,I+1)'].
C
CALL DROT( N-I-1, A(I+1,I+2), LDA, QG(I+2,I+1), 1, C, S )
C
C Apply G(i) to [A(1:I,I+1) QG(1:I,I+2)].
C
CALL DROT(I, A(1,I+1), 1, QG(1,I+2), 1, C, S )
C
C Apply G(i) to [A(I+2:N,I+1) QG(I+1, I+3:N+1)'] from the right.
C
CALL DROT(N-I-1, A(I+2,I+1), 1, QG(I+1,I+3), LDQG, C, S )
C
C Fix the diagonal part.
C
TEMP = A(I+1,I+1)
TTEMP = QG(I+1,I+2)
A(I+1,I+1) = C*TEMP + S*QG(I+1,I+1)
QG(I+1,I+2) = C*TTEMP - S * TEMP
QG(I+1,I+1) = -S*TEMP + C*QG(I+1,I+1)
TTEMP = -S*TTEMP - C*TEMP
TEMP = A(I+1,I+1)
QG(I+1,I+1) = C*QG(I+1,I+1) + S*TTEMP
A(I+1,I+1) = C*TEMP + S*QG(I+1,I+2)
QG(I+1,I+2) = -S*TEMP + C*QG(I+1,I+2)
CS(2*I-1) = C
CS(2*I) = S
C
C Generate elementary reflector F(i) to annihilate A(i+2:n,i).
C
CALL DLARFG( N-I, A(I+1,I), A(MIN( I+2,N ),I), 1, NU )
IF ( NU.NE.ZERO ) THEN
TEMP = A(I+1,I)
A(I+1,I) = ONE
C
C Apply F(i) from the left hand side to A(i+1:n,i+1:n).
C
CALL DLARF( 'Left', N-I, N-I, A(I+1,I), 1, NU, A(I+1,I+1),
$ LDA, DWORK )
C
C Apply G(i) from the right hand side to A(1:n,i+1:n).
C
CALL DLARF( 'Right', N, N-I, A(I+1,I), 1, NU,
$ A(1,I+1), LDA, DWORK )
C
C Apply G(i) from both sides to QG(i+1:n,i+1:n).
C Compute x := nu * QG(i+1:n,i+1:n) * v.
C
CALL DSYMV( 'Lower', N-I, NU, QG(I+1,I+1), LDQG, A(I+1,I),
$ 1, ZERO, DWORK, 1 )
C
C Compute w := x - 1/2 * tau * (x'*v) * v.
C
MU = -HALF*NU*DDOT( N-I, DWORK, 1, A(I+1,I), 1 )
CALL DAXPY( N-I, MU, A(I+1,I), 1, DWORK, 1 )
C
C Apply the transformation as a rank-2 update:
C QG := QG - v * w' - w * v'.
C
CALL DSYR2( 'Lower', N-I, -ONE, A(I+1,I), 1, DWORK, 1,
$ QG(I+1,I+1), LDQG )
C
C Apply G(i) from the right hand side to QG(1:i,i+2:n+1).
C
CALL DLARF( 'Right', I, N-I, A(I+1,I), 1, NU, QG(1,I+2),
$ LDQG, DWORK )
C
C Apply G(i) from both sides to QG(i+1:n,i+2:n+1).
C Compute x := nu * QG(i+1:n,i+2:n+1) * v.
C
CALL DSYMV( 'Upper', N-I, NU, QG(I+1,I+2), LDQG, A(I+1,I),
$ 1, ZERO, DWORK, 1 )
C
C Compute w := x - 1/2 * tau * (x'*v) * v.
C
MU = -HALF*NU*DDOT( N-I, DWORK, 1, A(I+1,I), 1 )
CALL DAXPY( N-I, MU, A(I+1,I), 1, DWORK, 1 )
C
C Apply the transformation as a rank-2 update:
C QG(i+1:n,i+2:n+1) := QG(i+1:n,i+2:n+1) - v * w' - w * v'.
C
CALL DSYR2( 'Upper', N-I, -ONE, A(I+1,I), 1, DWORK, 1,
$ QG(I+1,I+2), LDQG )
A(I+1,I) = TEMP
END IF
TAU(I) = NU
10 CONTINUE
DWORK(1) = DBLE( MAX( 1, N-1 ) )
RETURN
C *** Last line of MB04PU ***
END