dynare/mex/sources/libslicot/AB09KD.f

865 lines
34 KiB
Fortran

SUBROUTINE AB09KD( JOB, DICO, WEIGHT, EQUIL, ORDSEL, N, NV, NW, M,
$ P, NR, ALPHA, A, LDA, B, LDB, C, LDC, D, LDD,
$ AV, LDAV, BV, LDBV, CV, LDCV, DV, LDDV,
$ AW, LDAW, BW, LDBW, CW, LDCW, DW, LDDW,
$ NS, HSV, TOL1, TOL2, IWORK, DWORK, LDWORK,
$ IWARN, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute a reduced order model (Ar,Br,Cr,Dr) for an original
C state-space representation (A,B,C,D) by using the frequency
C weighted optimal Hankel-norm approximation method.
C The Hankel norm of the weighted error
C
C V*(G-Gr)*W or conj(V)*(G-Gr)*conj(W)
C
C is minimized, where G and Gr are the transfer-function matrices
C of the original and reduced systems, respectively, and V and W
C are the transfer-function matrices of the left and right frequency
C weights, specified by their state space realizations (AV,BV,CV,DV)
C and (AW,BW,CW,DW), respectively. When minimizing the weighted
C error V*(G-Gr)*W, V and W must be antistable transfer-function
C matrices. When minimizing conj(V)*(G-Gr)*conj(W), V and W must be
C stable transfer-function matrices.
C Additionally, V and W must be invertible transfer-function
C matrices, with the feedthrough matrices DV and DW invertible.
C If the original system is unstable, then the frequency weighted
C Hankel-norm approximation is computed only for the
C ALPHA-stable part of the system.
C
C For a transfer-function matrix G, conj(G) denotes the conjugate
C of G given by G'(-s) for a continuous-time system or G'(1/z)
C for a discrete-time system.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOB CHARACTER*1
C Specifies the frequency-weighting problem as follows:
C = 'N': solve min||V*(G-Gr)*W||_H;
C = 'C': solve min||conj(V)*(G-Gr)*conj(W)||_H.
C
C DICO CHARACTER*1
C Specifies the type of the original system as follows:
C = 'C': continuous-time system;
C = 'D': discrete-time system.
C
C WEIGHT CHARACTER*1
C Specifies the type of frequency weighting, as follows:
C = 'N': no weightings are used (V = I, W = I);
C = 'L': only left weighting V is used (W = I);
C = 'R': only right weighting W is used (V = I);
C = 'B': both left and right weightings V and W are used.
C
C EQUIL CHARACTER*1
C Specifies whether the user wishes to preliminarily
C equilibrate the triplet (A,B,C) as follows:
C = 'S': perform equilibration (scaling);
C = 'N': do not perform equilibration.
C
C ORDSEL CHARACTER*1
C Specifies the order selection method as follows:
C = 'F': the resulting order NR is fixed;
C = 'A': the resulting order NR is automatically determined
C on basis of the given tolerance TOL1.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the original state-space representation,
C i.e., the order of the matrix A. N >= 0.
C
C NV (input) INTEGER
C The order of the realization of the left frequency
C weighting V, i.e., the order of the matrix AV. NV >= 0.
C
C NW (input) INTEGER
C The order of the realization of the right frequency
C weighting W, i.e., the order of the matrix AW. NW >= 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C P (input) INTEGER
C The number of system outputs. P >= 0.
C
C NR (input/output) INTEGER
C On entry with ORDSEL = 'F', NR is the desired order of
C the resulting reduced order system. 0 <= NR <= N.
C On exit, if INFO = 0, NR is the order of the resulting
C reduced order model. For a system with NU ALPHA-unstable
C eigenvalues and NS ALPHA-stable eigenvalues (NU+NS = N),
C NR is set as follows: if ORDSEL = 'F', NR is equal to
C NU+MIN(MAX(0,NR-NU-KR+1),NMIN), where KR is the
C multiplicity of the Hankel singular value HSV(NR-NU+1),
C NR is the desired order on entry, and NMIN is the order
C of a minimal realization of the ALPHA-stable part of the
C given system; NMIN is determined as the number of Hankel
C singular values greater than NS*EPS*HNORM(As,Bs,Cs), where
C EPS is the machine precision (see LAPACK Library Routine
C DLAMCH) and HNORM(As,Bs,Cs) is the Hankel norm of the
C ALPHA-stable part of the weighted system (computed in
C HSV(1));
C if ORDSEL = 'A', NR is the sum of NU and the number of
C Hankel singular values greater than
C MAX(TOL1,NS*EPS*HNORM(As,Bs,Cs)).
C
C ALPHA (input) DOUBLE PRECISION
C Specifies the ALPHA-stability boundary for the eigenvalues
C of the state dynamics matrix A. For a continuous-time
C system (DICO = 'C'), ALPHA <= 0 is the boundary value for
C the real parts of eigenvalues, while for a discrete-time
C system (DICO = 'D'), 0 <= ALPHA <= 1 represents the
C boundary value for the moduli of eigenvalues.
C The ALPHA-stability domain does not include the boundary.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the state dynamics matrix A.
C On exit, if INFO = 0, the leading NR-by-NR part of this
C array contains the state dynamics matrix Ar of the
C reduced order system in a real Schur form.
C The resulting A has a block-diagonal form with two blocks.
C For a system with NU ALPHA-unstable eigenvalues and
C NS ALPHA-stable eigenvalues (NU+NS = N), the leading
C NU-by-NU block contains the unreduced part of A
C corresponding to ALPHA-unstable eigenvalues.
C The trailing (NR+NS-N)-by-(NR+NS-N) block contains
C the reduced part of A corresponding to ALPHA-stable
C eigenvalues.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the original input/state matrix B.
C On exit, if INFO = 0, the leading NR-by-M part of this
C array contains the input/state matrix Br of the reduced
C order system.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the original state/output matrix C.
C On exit, if INFO = 0, the leading P-by-NR part of this
C array contains the state/output matrix Cr of the reduced
C order system.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C D (input/output) DOUBLE PRECISION array, dimension (LDD,M)
C On entry, the leading P-by-M part of this array must
C contain the original input/output matrix D.
C On exit, if INFO = 0, the leading P-by-M part of this
C array contains the input/output matrix Dr of the reduced
C order system.
C
C LDD INTEGER
C The leading dimension of array D. LDD >= MAX(1,P).
C
C AV (input/output) DOUBLE PRECISION array, dimension (LDAV,NV)
C On entry, if WEIGHT = 'L' or 'B', the leading NV-by-NV
C part of this array must contain the state matrix AV of a
C state space realization of the left frequency weighting V.
C On exit, if WEIGHT = 'L' or 'B', and INFO = 0, the leading
C NV-by-NV part of this array contains a real Schur form
C of the state matrix of a state space realization of the
C inverse of V.
C AV is not referenced if WEIGHT = 'R' or 'N'.
C
C LDAV INTEGER
C The leading dimension of the array AV.
C LDAV >= MAX(1,NV), if WEIGHT = 'L' or 'B';
C LDAV >= 1, if WEIGHT = 'R' or 'N'.
C
C BV (input/output) DOUBLE PRECISION array, dimension (LDBV,P)
C On entry, if WEIGHT = 'L' or 'B', the leading NV-by-P part
C of this array must contain the input matrix BV of a state
C space realization of the left frequency weighting V.
C On exit, if WEIGHT = 'L' or 'B', and INFO = 0, the leading
C NV-by-P part of this array contains the input matrix of a
C state space realization of the inverse of V.
C BV is not referenced if WEIGHT = 'R' or 'N'.
C
C LDBV INTEGER
C The leading dimension of the array BV.
C LDBV >= MAX(1,NV), if WEIGHT = 'L' or 'B';
C LDBV >= 1, if WEIGHT = 'R' or 'N'.
C
C CV (input/output) DOUBLE PRECISION array, dimension (LDCV,NV)
C On entry, if WEIGHT = 'L' or 'B', the leading P-by-NV part
C of this array must contain the output matrix CV of a state
C space realization of the left frequency weighting V.
C On exit, if WEIGHT = 'L' or 'B', and INFO = 0, the leading
C P-by-NV part of this array contains the output matrix of a
C state space realization of the inverse of V.
C CV is not referenced if WEIGHT = 'R' or 'N'.
C
C LDCV INTEGER
C The leading dimension of the array CV.
C LDCV >= MAX(1,P), if WEIGHT = 'L' or 'B';
C LDCV >= 1, if WEIGHT = 'R' or 'N'.
C
C DV (input/output) DOUBLE PRECISION array, dimension (LDDV,P)
C On entry, if WEIGHT = 'L' or 'B', the leading P-by-P part
C of this array must contain the feedthrough matrix DV of a
C state space realization of the left frequency weighting V.
C On exit, if WEIGHT = 'L' or 'B', and INFO = 0, the leading
C P-by-P part of this array contains the feedthrough matrix
C of a state space realization of the inverse of V.
C DV is not referenced if WEIGHT = 'R' or 'N'.
C
C LDDV INTEGER
C The leading dimension of the array DV.
C LDDV >= MAX(1,P), if WEIGHT = 'L' or 'B';
C LDDV >= 1, if WEIGHT = 'R' or 'N'.
C
C AW (input/output) DOUBLE PRECISION array, dimension (LDAW,NW)
C On entry, if WEIGHT = 'R' or 'B', the leading NW-by-NW
C part of this array must contain the state matrix AW of
C a state space realization of the right frequency
C weighting W.
C On exit, if WEIGHT = 'R' or 'B', and INFO = 0, the leading
C NW-by-NW part of this array contains a real Schur form of
C the state matrix of a state space realization of the
C inverse of W.
C AW is not referenced if WEIGHT = 'L' or 'N'.
C
C LDAW INTEGER
C The leading dimension of the array AW.
C LDAW >= MAX(1,NW), if WEIGHT = 'R' or 'B';
C LDAW >= 1, if WEIGHT = 'L' or 'N'.
C
C BW (input/output) DOUBLE PRECISION array, dimension (LDBW,M)
C On entry, if WEIGHT = 'R' or 'B', the leading NW-by-M part
C of this array must contain the input matrix BW of a state
C space realization of the right frequency weighting W.
C On exit, if WEIGHT = 'R' or 'B', and INFO = 0, the leading
C NW-by-M part of this array contains the input matrix of a
C state space realization of the inverse of W.
C BW is not referenced if WEIGHT = 'L' or 'N'.
C
C LDBW INTEGER
C The leading dimension of the array BW.
C LDBW >= MAX(1,NW), if WEIGHT = 'R' or 'B';
C LDBW >= 1, if WEIGHT = 'L' or 'N'.
C
C CW (input/output) DOUBLE PRECISION array, dimension (LDCW,NW)
C On entry, if WEIGHT = 'R' or 'B', the leading M-by-NW part
C of this array must contain the output matrix CW of a state
C space realization of the right frequency weighting W.
C On exit, if WEIGHT = 'R' or 'B', and INFO = 0, the leading
C M-by-NW part of this array contains the output matrix of a
C state space realization of the inverse of W.
C CW is not referenced if WEIGHT = 'L' or 'N'.
C
C LDCW INTEGER
C The leading dimension of the array CW.
C LDCW >= MAX(1,M), if WEIGHT = 'R' or 'B';
C LDCW >= 1, if WEIGHT = 'L' or 'N'.
C
C DW (input/output) DOUBLE PRECISION array, dimension (LDDW,M)
C On entry, if WEIGHT = 'R' or 'B', the leading M-by-M part
C of this array must contain the feedthrough matrix DW of
C a state space realization of the right frequency
C weighting W.
C On exit, if WEIGHT = 'R' or 'B', and INFO = 0, the leading
C M-by-M part of this array contains the feedthrough matrix
C of a state space realization of the inverse of W.
C DW is not referenced if WEIGHT = 'L' or 'N'.
C
C LDDW INTEGER
C The leading dimension of the array DW.
C LDDW >= MAX(1,M), if WEIGHT = 'R' or 'B';
C LDDW >= 1, if WEIGHT = 'L' or 'N'.
C
C NS (output) INTEGER
C The dimension of the ALPHA-stable subsystem.
C
C HSV (output) DOUBLE PRECISION array, dimension (N)
C If INFO = 0, the leading NS elements of this array contain
C the Hankel singular values, ordered decreasingly, of the
C ALPHA-stable part of the weighted original system.
C HSV(1) is the Hankel norm of the ALPHA-stable weighted
C subsystem.
C
C Tolerances
C
C TOL1 DOUBLE PRECISION
C If ORDSEL = 'A', TOL1 contains the tolerance for
C determining the order of reduced system.
C For model reduction, the recommended value is
C TOL1 = c*HNORM(As,Bs,Cs), where c is a constant in the
C interval [0.00001,0.001], and HNORM(As,Bs,Cs) is the
C Hankel-norm of the ALPHA-stable part of the weighted
C original system (computed in HSV(1)).
C If TOL1 <= 0 on entry, the used default value is
C TOL1 = NS*EPS*HNORM(As,Bs,Cs), where NS is the number of
C ALPHA-stable eigenvalues of A and EPS is the machine
C precision (see LAPACK Library Routine DLAMCH).
C If ORDSEL = 'F', the value of TOL1 is ignored.
C
C TOL2 DOUBLE PRECISION
C The tolerance for determining the order of a minimal
C realization of the ALPHA-stable part of the given system.
C The recommended value is TOL2 = NS*EPS*HNORM(As,Bs,Cs).
C This value is used by default if TOL2 <= 0 on entry.
C If TOL2 > 0 and ORDSEL = 'A', then TOL2 <= TOL1.
C
C Workspace
C
C IWORK INTEGER array, dimension (LIWORK)
C LIWORK = MAX(1,M,c), if DICO = 'C',
C LIWORK = MAX(1,N,M,c), if DICO = 'D',
C where c = 0, if WEIGHT = 'N',
C c = 2*P, if WEIGHT = 'L',
C c = 2*M, if WEIGHT = 'R',
C c = MAX(2*M,2*P), if WEIGHT = 'B'.
C On exit, if INFO = 0, IWORK(1) contains NMIN, the order of
C the computed minimal realization.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX( LDW1, LDW2, LDW3, LDW4 ), where
C LDW1 = 0 if WEIGHT = 'R' or 'N' and
C LDW1 = MAX( NV*(NV+5), NV*N + MAX( a, P*N, P*M ) )
C if WEIGHT = 'L' or WEIGHT = 'B',
C LDW2 = 0 if WEIGHT = 'L' or 'N' and
C LDW2 = MAX( NW*(NW+5), NW*N + MAX( b, M*N, P*M ) )
C if WEIGHT = 'R' or WEIGHT = 'B', with
C a = 0, b = 0, if DICO = 'C' or JOB = 'N',
C a = 2*NV, b = 2*NW, if DICO = 'D' and JOB = 'C';
C LDW3 = N*(2*N + MAX(N,M,P) + 5) + N*(N+1)/2,
C LDW4 = N*(M+P+2) + 2*M*P + MIN(N,M) +
C MAX( 3*M+1, MIN(N,M)+P ).
C For optimum performance LDWORK should be larger.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = 1: with ORDSEL = 'F', the selected order NR is greater
C than NSMIN, the sum of the order of the
C ALPHA-unstable part and the order of a minimal
C realization of the ALPHA-stable part of the given
C system; in this case, the resulting NR is set equal
C to NSMIN;
C = 2: with ORDSEL = 'F', the selected order NR is less
C than the order of the ALPHA-unstable part of the
C given system; in this case NR is set equal to the
C order of the ALPHA-unstable part.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the computation of the ordered real Schur form of A
C failed;
C = 2: the separation of the ALPHA-stable/unstable
C diagonal blocks failed because of very close
C eigenvalues;
C = 3: the reduction of AV or AV-BV*inv(DV)*CV to a
C real Schur form failed;
C = 4: the reduction of AW or AW-BW*inv(DW)*CW to a
C real Schur form failed;
C = 5: JOB = 'N' and AV is not antistable, or
C JOB = 'C' and AV is not stable;
C = 6: JOB = 'N' and AW is not antistable, or
C JOB = 'C' and AW is not stable;
C = 7: the computation of Hankel singular values failed;
C = 8: the computation of stable projection in the
C Hankel-norm approximation algorithm failed;
C = 9: the order of computed stable projection in the
C Hankel-norm approximation algorithm differs
C from the order of Hankel-norm approximation;
C = 10: DV is singular;
C = 11: DW is singular;
C = 12: the solution of the Sylvester equation failed
C because the zeros of V (if JOB = 'N') or of conj(V)
C (if JOB = 'C') are not distinct from the poles
C of G1sr (see METHOD);
C = 13: the solution of the Sylvester equation failed
C because the zeros of W (if JOB = 'N') or of conj(W)
C (if JOB = 'C') are not distinct from the poles
C of G1sr (see METHOD).
C
C METHOD
C
C Let G be the transfer-function matrix of the original
C linear system
C
C d[x(t)] = Ax(t) + Bu(t)
C y(t) = Cx(t) + Du(t), (1)
C
C where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
C for a discrete-time system. The subroutine AB09KD determines
C the matrices of a reduced order system
C
C d[z(t)] = Ar*z(t) + Br*u(t)
C yr(t) = Cr*z(t) + Dr*u(t), (2)
C
C such that the corresponding transfer-function matrix Gr minimizes
C the Hankel-norm of the frequency-weighted error
C
C V*(G-Gr)*W, (3)
C or
C conj(V)*(G-Gr)*conj(W). (4)
C
C For minimizing (3), V and W are assumed to be antistable, while
C for minimizing (4), V and W are assumed to be stable transfer-
C function matrices.
C
C Note: conj(G) = G'(-s) for a continuous-time system and
C conj(G) = G'(1/z) for a discrete-time system.
C
C The following procedure is used to reduce G (see [1]):
C
C 1) Decompose additively G as
C
C G = G1 + G2,
C
C such that G1 = (A1,B1,C1,D) has only ALPHA-stable poles and
C G2 = (A2,B2,C2,0) has only ALPHA-unstable poles.
C
C 2) Compute G1s, the stable projection of V*G1*W or
C conj(V)*G1*conj(W), using explicit formulas [4].
C
C 3) Determine G1sr, the optimal Hankel-norm approximation of G1s
C of order r.
C
C 4) Compute G1r, the stable projection of either inv(V)*G1sr*inv(W)
C or conj(inv(V))*G1sr*conj(inv(W)), using explicit formulas [4].
C
C 5) Assemble the reduced model Gr as
C
C Gr = G1r + G2.
C
C To reduce the weighted ALPHA-stable part G1s at step 3, the
C optimal Hankel-norm approximation method of [2], based on the
C square-root balancing projection formulas of [3], is employed.
C
C The optimal weighted approximation error satisfies
C
C HNORM[V*(G-Gr)*W] = S(r+1),
C or
C HNORM[conj(V)*(G-Gr)*conj(W)] = S(r+1),
C
C where S(r+1) is the (r+1)-th Hankel singular value of G1s, the
C transfer-function matrix computed at step 2 of the above
C procedure, and HNORM(.) denotes the Hankel-norm.
C
C REFERENCES
C
C [1] Latham, G.A. and Anderson, B.D.O.
C Frequency-weighted optimal Hankel-norm approximation of stable
C transfer functions.
C Systems & Control Letters, Vol. 5, pp. 229-236, 1985.
C
C [2] Glover, K.
C All optimal Hankel norm approximation of linear
C multivariable systems and their L-infinity error bounds.
C Int. J. Control, Vol. 36, pp. 1145-1193, 1984.
C
C [3] Tombs M.S. and Postlethwaite I.
C Truncated balanced realization of stable, non-minimal
C state-space systems.
C Int. J. Control, Vol. 46, pp. 1319-1330, 1987.
C
C [4] Varga A.
C Explicit formulas for an efficient implementation
C of the frequency-weighting model reduction approach.
C Proc. 1993 European Control Conference, Groningen, NL,
C pp. 693-696, 1993.
C
C NUMERICAL ASPECTS
C
C The implemented methods rely on an accuracy enhancing square-root
C technique.
C 3
C The algorithms require less than 30N floating point operations.
C
C CONTRIBUTORS
C
C A. Varga, German Aerospace Center, Oberpfaffenhofen, April 2000.
C D. Sima, University of Bucharest, May 2000.
C V. Sima, Research Institute for Informatics, Bucharest, May 2000.
C Based on the RASP routines SFRLW, SFRLW1, SFRRW and SFRRW1,
C by A. Varga, 1992.
C
C REVISIONS
C
C A. Varga, Australian National University, Canberra, November 2000.
C V. Sima, Research Institute for Informatics, Bucharest, Dec. 2000.
C Oct. 2001, March 2005.
C
C KEYWORDS
C
C Frequency weighting, model reduction, multivariable system,
C state-space model, state-space representation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION C100, ONE, ZERO
PARAMETER ( C100 = 100.0D0, ONE = 1.0D0, ZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO, EQUIL, JOB, ORDSEL, WEIGHT
INTEGER INFO, IWARN, LDA, LDAV, LDAW, LDB, LDBV, LDBW,
$ LDC, LDCV, LDCW, LDD, LDDV, LDDW, LDWORK, M, N,
$ NR, NS, NV, NW, P
DOUBLE PRECISION ALPHA, TOL1, TOL2
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), AV(LDAV,*), AW(LDAW,*),
$ B(LDB,*), BV(LDBV,*), BW(LDBW,*),
$ C(LDC,*), CV(LDCV,*), CW(LDCW,*),
$ D(LDD,*), DV(LDDV,*), DW(LDDW,*), DWORK(*),
$ HSV(*)
C .. Local Scalars ..
LOGICAL CONJS, DISCR, FIXORD, FRWGHT, LEFTW, RIGHTW
INTEGER IA, IB, IERR, IWARNL, KI, KL, KU, KW, LW, NMIN,
$ NRA, NU, NU1
DOUBLE PRECISION ALPWRK, MAXRED, RCOND, WRKOPT
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, LSAME
C .. External Subroutines ..
EXTERNAL AB07ND, AB09CX, AB09KX, TB01ID, TB01KD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN, SQRT
C .. Executable Statements ..
C
INFO = 0
IWARN = 0
CONJS = LSAME( JOB, 'C' )
DISCR = LSAME( DICO, 'D' )
FIXORD = LSAME( ORDSEL, 'F' )
LEFTW = LSAME( WEIGHT, 'L' ) .OR. LSAME( WEIGHT, 'B' )
RIGHTW = LSAME( WEIGHT, 'R' ) .OR. LSAME( WEIGHT, 'B' )
FRWGHT = LEFTW .OR. RIGHTW
C
IF ( DISCR .AND. CONJS ) THEN
IA = 2*NV
IB = 2*NW
ELSE
IA = 0
IB = 0
END IF
LW = 1
IF( LEFTW )
$ LW = MAX( LW, NV*(NV+5), NV*N + MAX( IA, P*N, P*M ) )
IF( RIGHTW )
$ LW = MAX( LW, MAX( NW*(NW+5), NW*N + MAX( IB, M*N, P*M ) ) )
LW = MAX( LW, N*( 2*N + MAX( N, M, P ) + 5 ) + ( N*( N + 1 ) )/2 )
LW = MAX( LW, N*( M + P + 2 ) + 2*M*P + MIN( N, M ) +
$ MAX ( 3*M + 1, MIN( N, M ) + P ) )
C
C Check the input scalar arguments.
C
IF( .NOT. ( LSAME( JOB, 'N' ) .OR. CONJS ) ) THEN
INFO = -1
ELSE IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
INFO = -2
ELSE IF( .NOT.( FRWGHT .OR. LSAME( WEIGHT, 'N' ) ) ) THEN
INFO = -3
ELSE IF( .NOT. ( LSAME( EQUIL, 'S' ) .OR.
$ LSAME( EQUIL, 'N' ) ) ) THEN
INFO = -4
ELSE IF( .NOT. ( FIXORD .OR. LSAME( ORDSEL, 'A' ) ) ) THEN
INFO = -5
ELSE IF( N.LT.0 ) THEN
INFO = -6
ELSE IF( NV.LT.0 ) THEN
INFO = -7
ELSE IF( NW.LT.0 ) THEN
INFO = -8
ELSE IF( M.LT.0 ) THEN
INFO = -9
ELSE IF( P.LT.0 ) THEN
INFO = -10
ELSE IF( FIXORD .AND. ( NR.LT.0 .OR. NR.GT.N ) ) THEN
INFO = -11
ELSE IF( ( DISCR .AND. ( ALPHA.LT.ZERO .OR. ALPHA.GT.ONE ) ) .OR.
$ ( .NOT.DISCR .AND. ALPHA.GT.ZERO ) ) THEN
INFO = -12
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -14
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -16
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -18
ELSE IF( LDD.LT.MAX( 1, P ) ) THEN
INFO = -20
ELSE IF( LDAV.LT.1 .OR. ( LEFTW .AND. LDAV.LT.NV ) ) THEN
INFO = -22
ELSE IF( LDBV.LT.1 .OR. ( LEFTW .AND. LDBV.LT.NV ) ) THEN
INFO = -24
ELSE IF( LDCV.LT.1 .OR. ( LEFTW .AND. LDCV.LT.P ) ) THEN
INFO = -26
ELSE IF( LDDV.LT.1 .OR. ( LEFTW .AND. LDDV.LT.P ) ) THEN
INFO = -28
ELSE IF( LDAW.LT.1 .OR. ( RIGHTW .AND. LDAW.LT.NW ) ) THEN
INFO = -30
ELSE IF( LDBW.LT.1 .OR. ( RIGHTW .AND. LDBW.LT.NW ) ) THEN
INFO = -32
ELSE IF( LDCW.LT.1 .OR. ( RIGHTW .AND. LDCW.LT.M ) ) THEN
INFO = -34
ELSE IF( LDDW.LT.1 .OR. ( RIGHTW .AND. LDDW.LT.M ) ) THEN
INFO = -36
ELSE IF( TOL2.GT.ZERO .AND. .NOT.FIXORD .AND. TOL2.GT.TOL1 ) THEN
INFO = -40
ELSE IF( LDWORK.LT.LW ) THEN
INFO = -43
END IF
C
IF( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'AB09KD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( MIN( N, M, P ).EQ.0 ) THEN
NR = 0
NS = 0
IWORK(1) = 0
DWORK(1) = ONE
RETURN
END IF
C
IF( LSAME( EQUIL, 'S' ) ) THEN
C
C Scale simultaneously the matrices A, B and C:
C A <- inv(D)*A*D, B <- inv(D)*B and C <- C*D, where D is a
C diagonal matrix.
C Workspace: N.
C
MAXRED = C100
CALL TB01ID( 'All', N, M, P, MAXRED, A, LDA, B, LDB, C, LDC,
$ DWORK, INFO )
END IF
C
C Correct the value of ALPHA to ensure stability.
C
ALPWRK = ALPHA
IF( DISCR ) THEN
IF( ALPHA.EQ.ONE ) ALPWRK = ONE - SQRT( DLAMCH( 'E' ) )
ELSE
IF( ALPHA.EQ.ZERO ) ALPWRK = -SQRT( DLAMCH( 'E' ) )
END IF
C
C Allocate working storage.
C
KU = 1
KL = KU + N*N
KI = KL + N
KW = KI + N
C
C Reduce A to a block-diagonal real Schur form, with the
C ALPHA-unstable part in the leading diagonal position, using a
C non-orthogonal similarity transformation, A <- inv(T)*A*T, and
C apply the transformation to B and C: B <- inv(T)*B and C <- C*T.
C
C Workspace needed: N*(N+2);
C Additional workspace: need 3*N;
C prefer larger.
C
CALL TB01KD( DICO, 'Unstable', 'General', N, M, P, ALPWRK, A, LDA,
$ B, LDB, C, LDC, NU, DWORK(KU), N, DWORK(KL),
$ DWORK(KI), DWORK(KW), LDWORK-KW+1, IERR )
C
IF( IERR.NE.0 ) THEN
IF( IERR.NE.3 ) THEN
INFO = 1
ELSE
INFO = 2
END IF
RETURN
END IF
C
WRKOPT = DWORK(KW) + DBLE( KW-1 )
C
C Compute the stable projection of the weighted ALPHA-stable part.
C
C Workspace: need MAX( 1, LDW1, LDW2 ),
C LDW1 = 0 if WEIGHT = 'R' or 'N' and
C LDW1 = MAX( NV*(NV+5), NV*N + MAX( a, P*N, P*M ) )
C if WEIGHT = 'L' or 'B',
C LDW2 = 0 if WEIGHT = 'L' or 'N' and
C LDW2 = MAX( NW*(NW+5), NW*N + MAX( b, M*N, P*M ) )
C if WEIGHT = 'R' or 'B',
C where a = 0, b = 0, if DICO = 'C' or JOB = 'N',
C a = 2*NV, b = 2*NW, if DICO = 'D' and JOB = 'C';
C prefer larger.
C
NS = N - NU
C
C Finish if only unstable part is present.
C
IF( NS.EQ.0 ) THEN
NR = NU
IWORK(1) = 0
DWORK(1) = WRKOPT
RETURN
END IF
C
NU1 = NU + 1
IF( FRWGHT ) THEN
CALL AB09KX( JOB, DICO, WEIGHT, NS, NV, NW, M, P, A(NU1,NU1),
$ LDA, B(NU1,1), LDB, C(1,NU1), LDC, D, LDD,
$ AV, LDAV, BV, LDBV, CV, LDCV, DV, LDDV,
$ AW, LDAW, BW, LDBW, CW, LDCW, DW, LDDW,
$ DWORK, LDWORK, IWARNL, IERR )
C
IF( IERR.NE.0 ) THEN
C
C Note: Only IERR = 1 or IERR = 2 are possible.
C Set INFO to 3 or 4.
C
INFO = IERR + 2
RETURN
END IF
C
IF( IWARNL.NE.0 ) THEN
C
C Stability/antistability of V and W are compulsory.
C
IF( IWARNL.EQ.1 .OR. IWARNL.EQ.3 ) THEN
INFO = 5
ELSE
INFO = 6
END IF
RETURN
END IF
C
DWORK(1) = MAX( WRKOPT, DWORK(1) )
END IF
C
C Determine a reduced order approximation of the ALPHA-stable part.
C
C Workspace: need MAX( LDW3, LDW4 ),
C LDW3 = N*(2*N + MAX(N,M,P) + 5) + N*(N+1)/2,
C LDW4 = N*(M+P+2) + 2*M*P + MIN(N,M) +
C MAX( 3*M+1, MIN(N,M)+P );
C prefer larger.
C
IWARNL = 0
IF( FIXORD ) THEN
NRA = MAX( 0, NR - NU )
IF( NRA.EQ.0 )
$ IWARNL = 2
ELSE
NRA = 0
END IF
CALL AB09CX( DICO, ORDSEL, NS, M, P, NRA, A(NU1,NU1), LDA,
$ B(NU1,1), LDB, C(1,NU1), LDC, D, LDD, HSV, TOL1,
$ TOL2, IWORK, DWORK, LDWORK, IWARN, IERR )
C
IWARN = MAX( IWARN, IWARNL )
IF( IERR.NE.0 ) THEN
C
C Set INFO = 7, 8 or 9.
C
INFO = IERR + 5
RETURN
END IF
C
WRKOPT = MAX( WRKOPT, DWORK(1) )
NMIN = IWORK(1)
C
C Compute the state space realizations of the inverses of V and W.
C
C Integer workspace: need c,
C Real workspace: need MAX(1,2*c),
C where c = 0, if WEIGHT = 'N',
C c = 2*P, if WEIGHT = 'L',
C c = 2*M, if WEIGHT = 'R',
C c = MAX(2*M,2*P), if WEIGHT = 'B'.
C
IF( LEFTW ) THEN
CALL AB07ND( NV, P, AV, LDAV, BV, LDBV, CV, LDCV, DV, LDDV,
$ RCOND, IWORK, DWORK, LDWORK, IERR )
IF( IERR.NE.0 ) THEN
INFO = 10
RETURN
END IF
END IF
IF( RIGHTW ) THEN
CALL AB07ND( NW, M, AW, LDAW, BW, LDBW, CW, LDCW, DW, LDDW,
$ RCOND, IWORK, DWORK, LDWORK, IERR )
IF( IERR.NE.0 ) THEN
INFO = 11
RETURN
END IF
END IF
C
WRKOPT = MAX( WRKOPT, DWORK(1) )
C
C Compute the stable projection of weighted reduced ALPHA-stable
C part.
C
IF( FRWGHT ) THEN
CALL AB09KX( JOB, DICO, WEIGHT, NRA, NV, NW, M, P, A(NU1,NU1),
$ LDA, B(NU1,1), LDB, C(1,NU1), LDC, D, LDD,
$ AV, LDAV, BV, LDBV, CV, LDCV, DV, LDDV,
$ AW, LDAW, BW, LDBW, CW, LDCW, DW, LDDW,
$ DWORK, LDWORK, IWARNL, IERR )
C
IF( IERR.NE.0 ) THEN
IF( IERR.LE.2 ) THEN
C
C Set INFO to 3 or 4.
C
INFO = IERR + 2
ELSE
C
C Set INFO to 12 or 13.
C
INFO = IERR + 9
END IF
RETURN
END IF
END IF
C
NR = NRA + NU
IWORK(1) = NMIN
DWORK(1) = MAX( WRKOPT, DWORK(1) )
C
RETURN
C *** Last line of AB09KD ***
END