dynare/mex/sources/libslicot/AB09FD.f

650 lines
25 KiB
Fortran

SUBROUTINE AB09FD( DICO, JOBCF, FACT, JOBMR, EQUIL, ORDSEL, N, M,
$ P, NR, ALPHA, A, LDA, B, LDB, C, LDC, NQ, HSV,
$ TOL1, TOL2, IWORK, DWORK, LDWORK, IWARN, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute a reduced order model (Ar,Br,Cr) for an original
C state-space representation (A,B,C) by using either the square-root
C or the balancing-free square-root Balance & Truncate (B & T)
C model reduction method in conjunction with stable coprime
C factorization techniques.
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies the type of the original system as follows:
C = 'C': continuous-time system;
C = 'D': discrete-time system.
C
C JOBCF CHARACTER*1
C Specifies whether left or right coprime factorization is
C to be used as follows:
C = 'L': use left coprime factorization;
C = 'R': use right coprime factorization.
C
C FACT CHARACTER*1
C Specifies the type of coprime factorization to be computed
C as follows:
C = 'S': compute a coprime factorization with prescribed
C stability degree ALPHA;
C = 'I': compute a coprime factorization with inner
C denominator.
C
C JOBMR CHARACTER*1
C Specifies the model reduction approach to be used
C as follows:
C = 'B': use the square-root Balance & Truncate method;
C = 'N': use the balancing-free square-root
C Balance & Truncate method.
C
C EQUIL CHARACTER*1
C Specifies whether the user wishes to preliminarily
C equilibrate the triplet (A,B,C) as follows:
C = 'S': perform equilibration (scaling);
C = 'N': do not perform equilibration.
C
C ORDSEL CHARACTER*1
C Specifies the order selection method as follows:
C = 'F': the resulting order NR is fixed;
C = 'A': the resulting order NR is automatically determined
C on basis of the given tolerance TOL1.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the original state-space representation, i.e.
C the order of the matrix A. N >= 0.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C P (input) INTEGER
C The number of system outputs. P >= 0.
C
C NR (input/output) INTEGER
C On entry with ORDSEL = 'F', NR is the desired order of the
C resulting reduced order system. 0 <= NR <= N.
C On exit, if INFO = 0, NR is the order of the resulting
C reduced order model. NR is set as follows:
C if ORDSEL = 'F', NR is equal to MIN(NR,NQ,NMIN), where NR
C is the desired order on entry, NQ is the order of the
C computed coprime factorization of the given system, and
C NMIN is the order of a minimal realization of the extended
C system (see METHOD); NMIN is determined as the number of
C Hankel singular values greater than NQ*EPS*HNORM(Ge),
C where EPS is the machine precision (see LAPACK Library
C Routine DLAMCH) and HNORM(Ge) is the Hankel norm of the
C extended system (computed in HSV(1));
C if ORDSEL = 'A', NR is equal to the number of Hankel
C singular values greater than MAX(TOL1,NQ*EPS*HNORM(Ge)).
C
C ALPHA (input) DOUBLE PRECISION
C If FACT = 'S', the desired stability degree for the
C factors of the coprime factorization (see SLICOT Library
C routines SB08ED/SB08FD).
C ALPHA < 0 for a continuous-time system (DICO = 'C'), and
C 0 <= ALPHA < 1 for a discrete-time system (DICO = 'D').
C If FACT = 'I', ALPHA is not used.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the original state dynamics matrix A.
C On exit, if INFO = 0, the leading NR-by-NR part of this
C array contains the state dynamics matrix Ar of the reduced
C order system.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the original input/state matrix B.
C On exit, if INFO = 0, the leading NR-by-M part of this
C array contains the input/state matrix Br of the reduced
C order system.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the original state/output matrix C.
C On exit, if INFO = 0, the leading P-by-NR part of this
C array contains the state/output matrix Cr of the reduced
C order system.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C NQ (output) INTEGER
C The order of the computed extended system Ge (see METHOD).
C
C HSV (output) DOUBLE PRECISION array, dimension (N)
C If INFO = 0, it contains the NQ Hankel singular values of
C the extended system Ge ordered decreasingly (see METHOD).
C
C Tolerances
C
C TOL1 DOUBLE PRECISION
C If ORDSEL = 'A', TOL1 contains the tolerance for
C determining the order of reduced extended system.
C For model reduction, the recommended value is
C TOL1 = c*HNORM(Ge), where c is a constant in the
C interval [0.00001,0.001], and HNORM(Ge) is the
C Hankel-norm of the extended system (computed in HSV(1)).
C The value TOL1 = NQ*EPS*HNORM(Ge) is used by default if
C TOL1 <= 0 on entry, where EPS is the machine precision
C (see LAPACK Library Routine DLAMCH).
C If ORDSEL = 'F', the value of TOL1 is ignored.
C
C TOL2 DOUBLE PRECISION
C The absolute tolerance level below which the elements of
C B or C are considered zero (used for controllability or
C observability tests).
C If the user sets TOL2 <= 0, then an implicitly computed,
C default tolerance TOLDEF is used:
C TOLDEF = N*EPS*NORM(C'), if JOBCF = 'L', or
C TOLDEF = N*EPS*NORM(B), if JOBCF = 'R',
C where EPS is the machine precision, and NORM(.) denotes
C the 1-norm of a matrix.
C
C Workspace
C
C IWORK INTEGER array, dimension (LIWORK)
C LIWORK = PM, if JOBMR = 'B',
C LIWORK = MAX(N,PM), if JOBMR = 'N', where
C PM = P, if JOBCF = 'L',
C PM = M, if JOBCF = 'R'.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX(1,LW1) if JOBCF = 'L' and FACT = 'S',
C LDWORK >= MAX(1,LW2) if JOBCF = 'L' and FACT = 'I',
C LDWORK >= MAX(1,LW3) if JOBCF = 'R' and FACT = 'S',
C LDWORK >= MAX(1,LW4) if JOBCF = 'R' and FACT = 'I', where
C LW1 = N*(2*MAX(M,P) + P) + MAX(M,P)*(MAX(M,P) + P) +
C MAX( N*P+MAX(N*(N+5), 5*P, 4*M), LWR ),
C LW2 = N*(2*MAX(M,P) + P) + MAX(M,P)*(MAX(M,P) + P) +
C MAX( N*P+MAX(N*(N+5), P*(P+2), 4*P, 4*M), LWR ),
C LW3 = (N+M)*(M+P) + MAX( 5*M, 4*P, LWR ),
C LW4 = (N+M)*(M+P) + MAX( M*(M+2), 4*M, 4*P, LWR ), and
C LWR = 2*N*N + N*(MAX(N,M+P)+5) + N*(N+1)/2.
C For optimum performance LDWORK should be larger.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = 10*K+I:
C I = 1: with ORDSEL = 'F', the selected order NR is
C greater than the order of the computed coprime
C factorization of the given system. In this case,
C the resulting NR is set automatically to a value
C corresponding to the order of a minimal
C realization of the system;
C K > 0: K violations of the numerical stability
C condition occured when computing the coprime
C factorization using pole assignment (see SLICOT
C Library routines SB08CD/SB08ED, SB08DD/SB08FD).
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the reduction of A to a real Schur form failed;
C = 2: a failure was detected during the ordering of the
C real Schur form of A, or in the iterative process
C for reordering the eigenvalues of Z'*(A + H*C)*Z
C (or Z'*(A + B*F)*Z) along the diagonal; see SLICOT
C Library routines SB08CD/SB08ED (or SB08DD/SB08FD);
C = 3: the matrix A has an observable or controllable
C eigenvalue on the imaginary axis if DICO = 'C' or
C on the unit circle if DICO = 'D';
C = 4: the computation of Hankel singular values failed.
C
C METHOD
C
C Let be the linear system
C
C d[x(t)] = Ax(t) + Bu(t)
C y(t) = Cx(t) (1)
C
C where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
C for a discrete-time system, and let G be the corresponding
C transfer-function matrix. The subroutine AB09FD determines
C the matrices of a reduced order system
C
C d[z(t)] = Ar*z(t) + Br*u(t)
C yr(t) = Cr*z(t) (2)
C
C with the transfer-function matrix Gr, by using the
C balanced-truncation model reduction method in conjunction with
C a left coprime factorization (LCF) or a right coprime
C factorization (RCF) technique:
C
C 1. Compute the appropriate stable coprime factorization of G:
C -1 -1
C G = R *Q (LCF) or G = Q*R (RCF).
C
C 2. Perform the model reduction algorithm on the extended system
C ( Q )
C Ge = ( Q R ) (LCF) or Ge = ( R ) (RCF)
C
C to obtain a reduced extended system with reduced factors
C ( Qr )
C Ger = ( Qr Rr ) (LCF) or Ger = ( Rr ) (RCF).
C
C 3. Recover the reduced system from the reduced factors as
C -1 -1
C Gr = Rr *Qr (LCF) or Gr = Qr*Rr (RCF).
C
C The approximation error for the extended system satisfies
C
C HSV(NR) <= INFNORM(Ge-Ger) <= 2*[HSV(NR+1) + ... + HSV(NQ)],
C
C where INFNORM(G) is the infinity-norm of G.
C
C If JOBMR = 'B', the square-root Balance & Truncate method of [1]
C is used for model reduction.
C If JOBMR = 'N', the balancing-free square-root version of the
C Balance & Truncate method [2] is used for model reduction.
C
C If FACT = 'S', the stable coprime factorization with prescribed
C stability degree ALPHA is computed by using the algorithm of [3].
C If FACT = 'I', the stable coprime factorization with inner
C denominator is computed by using the algorithm of [4].
C
C REFERENCES
C
C [1] Tombs M.S. and Postlethwaite I.
C Truncated balanced realization of stable, non-minimal
C state-space systems.
C Int. J. Control, Vol. 46, pp. 1319-1330, 1987.
C
C [2] Varga A.
C Efficient minimal realization procedure based on balancing.
C Proc. of IMACS/IFAC Symp. MCTS, Lille, France, May 1991,
C A. El Moudui, P. Borne, S. G. Tzafestas (Eds.), Vol. 2,
C pp. 42-46, 1991.
C
C [3] Varga A.
C Coprime factors model reduction method based on square-root
C balancing-free techniques.
C System Analysis, Modelling and Simulation, Vol. 11,
C pp. 303-311, 1993.
C
C [4] Varga A.
C A Schur method for computing coprime factorizations with
C inner denominators and applications in model reduction.
C Proc. ACC'93, San Francisco, CA, pp. 2130-2131, 1993.
C
C NUMERICAL ASPECTS
C
C The implemented methods rely on accuracy enhancing square-root or
C balancing-free square-root techniques.
C 3
C The algorithms require less than 30N floating point operations.
C
C CONTRIBUTOR
C
C C. Oara and A. Varga, German Aerospace Center,
C DLR Oberpfaffenhofen, August 1998.
C
C REVISIONS
C
C Nov. 1998, V. Sima, Research Institute for Informatics, Bucharest.
C Dec. 1998, V. Sima, Katholieke Univ. Leuven, Leuven.
C
C KEYWORDS
C
C Balancing, coprime factorization, minimal realization,
C model reduction, multivariable system, state-space model.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION C100, ONE, ZERO
PARAMETER ( C100 = 100.0D0, ONE = 1.0D0, ZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO, EQUIL, FACT, JOBCF, JOBMR, ORDSEL
INTEGER INFO, IWARN, LDA, LDB, LDC, LDWORK, M, N, NQ,
$ NR, P
DOUBLE PRECISION ALPHA, TOL1, TOL2
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*), HSV(*)
C .. Local Scalars ..
LOGICAL DISCR, FIXORD, LEFT, STABD
INTEGER IERR, IWARNK, KB, KBR, KBT, KC, KCR, KD, KDR,
$ KDT, KT, KTI, KW, LW1, LW2, LW3, LW4, LWR,
$ MAXMP, MP, NDR, PM, WRKOPT
DOUBLE PRECISION MAXRED
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL AB09AX, DLACPY, DLASET, SB08CD, SB08DD, SB08ED,
$ SB08FD, SB08GD, SB08HD, TB01ID, XERBLA
C .. Intrinsic Functions ..
INTRINSIC INT, MAX, MIN
C .. Executable Statements ..
C
INFO = 0
IWARN = 0
DISCR = LSAME( DICO, 'D' )
FIXORD = LSAME( ORDSEL, 'F' )
LEFT = LSAME( JOBCF, 'L' )
STABD = LSAME( FACT, 'S' )
MAXMP = MAX( M, P )
C
LWR = 2*N*N + N*( MAX( N, M + P ) + 5 ) + ( N*( N + 1 ) )/2
LW1 = N*( 2*MAXMP + P ) + MAXMP*( MAXMP + P )
LW2 = LW1 +
$ MAX( N*P + MAX( N*( N + 5 ), P*( P+2 ), 4*P, 4*M ), LWR )
LW1 = LW1 + MAX( N*P + MAX( N*( N + 5 ), 5*P, 4*M ), LWR )
LW3 = ( N + M )*( M + P ) + MAX( 5*M, 4*P, LWR )
LW4 = ( N + M )*( M + P ) + MAX( M*( M + 2 ), 4*M, 4*P, LWR )
C
C Test the input scalar arguments.
C
IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
INFO = -1
ELSE IF( .NOT. ( LEFT .OR. LSAME( JOBCF, 'R' ) ) ) THEN
INFO = -2
ELSE IF( .NOT. ( STABD .OR. LSAME( FACT, 'I' ) ) ) THEN
INFO = -3
ELSE IF( .NOT. ( LSAME( JOBMR, 'B' ) .OR.
$ LSAME( JOBMR, 'N' ) ) ) THEN
INFO = -4
ELSE IF( .NOT. ( LSAME( EQUIL, 'S' ) .OR.
$ LSAME( EQUIL, 'N' ) ) ) THEN
INFO = -5
ELSE IF( .NOT. ( FIXORD .OR. LSAME( ORDSEL, 'A' ) ) ) THEN
INFO = -6
ELSE IF( STABD .AND. ( ( .NOT.DISCR .AND. ALPHA.GE.ZERO ) .OR.
$ ( DISCR .AND. ( ALPHA.LT.ZERO .OR. ALPHA.GE.ONE ) ) ) )
$ THEN
INFO = -7
ELSE IF( N.LT.0 ) THEN
INFO = -8
ELSE IF( M.LT.0 ) THEN
INFO = -9
ELSE IF( P.LT.0 ) THEN
INFO = -10
ELSE IF( FIXORD .AND. ( NR.LT.0 .OR. NR.GT.N ) ) THEN
INFO = -11
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -13
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -15
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -17
ELSE IF( ( LDWORK.LT.1 ) .OR.
$ ( STABD .AND. LEFT .AND. LDWORK.LT.LW1 ) .OR.
$ ( .NOT.STABD .AND. LEFT .AND. LDWORK.LT.LW2 ) .OR.
$ ( STABD .AND. .NOT.LEFT .AND. LDWORK.LT.LW3 ) .OR.
$ ( .NOT.STABD .AND. .NOT.LEFT .AND. LDWORK.LT.LW4 ) ) THEN
INFO = -24
END IF
C
IF( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'AB09FD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( MIN( N, M, P ).EQ.0 .OR. ( FIXORD .AND. NR.EQ.0 ) ) THEN
NR = 0
NQ = 0
DWORK(1) = ONE
RETURN
END IF
C
IF( LSAME( EQUIL, 'S' ) ) THEN
C
C Scale simultaneously the matrices A, B and C:
C A <- inv(D)*A*D, B <- inv(D)*B and C <- C*D, where D is a
C diagonal matrix.
C
MAXRED = C100
CALL TB01ID( 'A', N, M, P, MAXRED, A, LDA, B, LDB, C, LDC,
$ DWORK, INFO )
END IF
C
C Perform the coprime factor model reduction procedure.
C
KD = 1
IF( LEFT ) THEN
C -1
C Compute a LCF G = R *Q.
C
MP = M + P
KDR = KD + MAXMP*MAXMP
KC = KDR + MAXMP*P
KB = KC + MAXMP*N
KBR = KB + N*MAXMP
KW = KBR + N*P
LWR = LDWORK - KW + 1
CALL DLACPY( 'Full', N, M, B, LDB, DWORK(KB), N )
CALL DLACPY( 'Full', P, N, C, LDC, DWORK(KC), MAXMP )
CALL DLASET( 'Full', P, M, ZERO, ZERO, DWORK(KD), MAXMP )
C
IF( STABD ) THEN
C
C Compute a LCF with prescribed stability degree.
C
C Workspace needed: N*(2*MAX(M,P)+P) +
C MAX(M,P)*(MAX(M,P)+P);
C Additional workspace: need N*P+MAX(N*(N+5),5*P,4*M);
C prefer larger.
C
CALL SB08ED( DICO, N, M, P, ALPHA, A, LDA, DWORK(KB), N,
$ DWORK(KC), MAXMP, DWORK(KD), MAXMP, NQ, NDR,
$ DWORK(KBR), N, DWORK(KDR), MAXMP, TOL2,
$ DWORK(KW), LWR, IWARN, INFO )
ELSE
C
C Compute a LCF with inner denominator.
C
C Workspace needed: N*(2*MAX(M,P)+P) +
C MAX(M,P)*(MAX(M,P)+P);
C Additional workspace: need N*P +
C MAX(N*(N+5),P*(P+2),4*P,4*M).
C prefer larger;
C
CALL SB08CD( DICO, N, M, P, A, LDA, DWORK(KB), N,
$ DWORK(KC), MAXMP, DWORK(KD), MAXMP, NQ, NDR,
$ DWORK(KBR), N, DWORK(KDR), MAXMP, TOL2,
$ DWORK(KW), LWR, IWARN, INFO )
END IF
C
IWARN = 10*IWARN
IF( INFO.NE.0 )
$ RETURN
C
WRKOPT = INT( DWORK(KW) ) + KW - 1
C
IF( NQ.EQ.0 ) THEN
NR = 0
DWORK(1) = WRKOPT
RETURN
END IF
C
IF( MAXMP.GT.M ) THEN
C
C Form the matrices ( BQ, BR ) and ( DQ, DR ) in consecutive
C columns (see SLICOT Library routines SB08CD/SB08ED).
C
KBT = KBR
KBR = KB + N*M
KDT = KDR
KDR = KD + MAXMP*M
CALL DLACPY( 'Full', NQ, P, DWORK(KBT), N, DWORK(KBR), N )
CALL DLACPY( 'Full', P, P, DWORK(KDT), MAXMP, DWORK(KDR),
$ MAXMP )
END IF
C
C Perform model reduction on ( Q, R ) to determine ( Qr, Rr ).
C
C Workspace needed: N*(2*MAX(M,P)+P) +
C MAX(M,P)*(MAX(M,P)+P) + 2*N*N;
C Additional workspace: need N*(MAX(N,M+P)+5) + N*(N+1)/2;
C prefer larger.
C
KT = KW
KTI = KT + NQ*NQ
KW = KTI + NQ*NQ
CALL AB09AX( DICO, JOBMR, ORDSEL, NQ, MP, P, NR, A, LDA,
$ DWORK(KB), N, DWORK(KC), MAXMP, HSV, DWORK(KT),
$ N, DWORK(KTI), N, TOL1, IWORK, DWORK(KW),
$ LDWORK-KW+1, IWARNK, IERR )
C
IWARN = IWARN + IWARNK
IF( IERR.NE.0 ) THEN
INFO = 4
RETURN
END IF
C
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C -1
C Compute the reduced order system Gr = Rr *Qr.
C
C Workspace needed: N*(2*MAX(M,P)+P) +
C MAX(M,P)*(MAX(M,P)+P);
C Additional workspace: need 4*P.
C
KW = KT
CALL SB08GD( NR, M, P, A, LDA, DWORK(KB), N, DWORK(KC), MAXMP,
$ DWORK(KD), MAXMP, DWORK(KBR), N, DWORK(KDR),
$ MAXMP, IWORK, DWORK(KW), INFO )
C
C Copy the reduced system matrices Br and Cr to B and C.
C
CALL DLACPY( 'Full', NR, M, DWORK(KB), N, B, LDB )
CALL DLACPY( 'Full', P, NR, DWORK(KC), MAXMP, C, LDC )
C
ELSE
C -1
C Compute a RCF G = Q*R .
C
PM = P + M
KDR = KD + P
KC = KD + PM*M
KCR = KC + P
KW = KC + PM*N
LWR = LDWORK - KW + 1
CALL DLACPY( 'Full', P, N, C, LDC, DWORK(KC), PM )
CALL DLASET( 'Full', P, M, ZERO, ZERO, DWORK(KD), PM )
C
IF( STABD ) THEN
C
C Compute a RCF with prescribed stability degree.
C
C Workspace needed: (N+M)*(M+P);
C Additional workspace: need MAX( N*(N+5), 5*M, 4*P );
C prefer larger.
C
CALL SB08FD( DICO, N, M, P, ALPHA, A, LDA, B, LDB,
$ DWORK(KC), PM, DWORK(KD), PM, NQ, NDR,
$ DWORK(KCR), PM, DWORK(KDR), PM, TOL2,
$ DWORK(KW), LWR, IWARN, INFO )
ELSE
C
C Compute a RCF with inner denominator.
C
C Workspace needed: (N+M)*(M+P);
C Additional workspace: need MAX(N*(N+5),M*(M+2),4*M,4*P);
C prefer larger.
C
CALL SB08DD( DICO, N, M, P, A, LDA, B, LDB,
$ DWORK(KC), PM, DWORK(KD), PM, NQ, NDR,
$ DWORK(KCR), PM, DWORK(KDR), PM, TOL2,
$ DWORK(KW), LWR, IWARN, INFO )
END IF
C
IWARN = 10*IWARN
IF( INFO.NE.0 )
$ RETURN
C
WRKOPT = INT( DWORK(KW) ) + KW - 1
C
IF( NQ.EQ.0 ) THEN
NR = 0
DWORK(1) = WRKOPT
RETURN
END IF
C ( Q ) ( Qr )
C Perform model reduction on ( R ) to determine ( Rr ).
C
C Workspace needed: (N+M)*(M+P) + 2*N*N;
C Additional workspace: need N*(MAX(N,M+P)+5) + N*(N+1)/2;
C prefer larger.
C
KT = KW
KTI = KT + NQ*NQ
KW = KTI + NQ*NQ
CALL AB09AX( DICO, JOBMR, ORDSEL, NQ, M, PM, NR, A, LDA, B,
$ LDB, DWORK(KC), PM, HSV, DWORK(KT), N, DWORK(KTI),
$ N, TOL1, IWORK, DWORK(KW), LDWORK-KW+1, IWARNK,
$ IERR )
C
IWARN = IWARN + IWARNK
IF( IERR.NE.0 ) THEN
INFO = 4
RETURN
END IF
C
WRKOPT = MAX( WRKOPT, INT( DWORK(KW) ) + KW - 1 )
C -1
C Compute the reduced order system Gr = Qr*Rr .
C
C Workspace needed: (N+M)*(M+P);
C Additional workspace: need 4*M.
C
KW = KT
CALL SB08HD( NR, M, P, A, LDA, B, LDB, DWORK(KC), PM,
$ DWORK(KD), PM, DWORK(KCR), PM, DWORK(KDR), PM,
$ IWORK, DWORK(KW), INFO )
C
C Copy the reduced system matrix Cr to C.
C
CALL DLACPY( 'Full', P, NR, DWORK(KC), PM, C, LDC )
END IF
C
DWORK(1) = WRKOPT
C
RETURN
C *** Last line of AB09FD ***
END