dynare/tests/estimation/method_of_moments/RBC_MoM_prefilter.mod

179 lines
9.0 KiB
Modula-2

% Tests SMM and GMM routines with prefilter, explicit initialization, and estimated_params_init(use_calibration);
%
% Copyright (C) 2020 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% =========================================================================
% Define testscenario
@#define orderApp = 2
% Note that we will set the numerical optimization tolerance levels very large to speed up the testsuite
@#define optimizer = 13
@#include "RBC_MoM_common.inc"
shocks;
var u_a; stderr 0.0072;
end;
varobs n c iv;
% Simulate data
stoch_simul(order=@{orderApp},pruning,nodisplay,nomoments,periods=250,TeX);
save('RBC_MoM_data_@{orderApp}.mat', options_.varobs{:} );
pause(1);
set_param_value('DELTA',NaN);
estimated_params;
DELTA, 0.025, 0, 1;
BETTA, , 0, 1;
B, , 0, 1;
%ETAl, 1, 0, 10;
ETAc, , 0, 10;
ALFA, , 0, 1;
RHOA, , 0, 1;
stderr u_a, , 0, 1;
%THETA, 3.48, 0, 10;
end;
estimated_params_init(use_calibration);
end;
%--------------------------------------------------------------------------
% Method of Moments Estimation
%--------------------------------------------------------------------------
matched_moments;
c;
n;
iv;
c*c;
c*iv;
c*n;
iv*c;
iv*iv;
iv*n;
n*n;
c*c(-1);
n*n(-1);
iv*iv(-1);
end;
% get indices in declaration order
ic = strmatch('c', M_.endo_names,'exact');
iiv = strmatch('iv', M_.endo_names,'exact');
in = strmatch('n', M_.endo_names,'exact');
% first entry: number of variable in declaration order
% second entry: lag
% third entry: power
matched_moments_ = {
[ic ] [0 ], [1 ];
[in ] [0 ], [1 ];
[iiv ] [0 ], [1 ];
[ic ic ] [0 0], [1 1];
[ic iiv] [0 0], [1 1];
[ic in ] [0 0], [1 1];
[ic iiv] [0 0], [1 1];
[iiv iiv] [0 0], [1 1];
[in iiv] [0 0], [1 1];
[in in ] [0 0], [1 1];
[ic ic ] [0 -1], [1 1];
[in in ] [0 -1], [1 1];
[iiv iiv] [0 -1], [1 1];
};
if ~isequal(M_.matched_moments,matched_moments_)
error('Translation to matched_moments-block failed')
end
weighting_matrix=diag([1000;ones(8,1)]);
save('test_matrix.mat','weighting_matrix')
@#for mommethod in ["GMM", "SMM"]
method_of_moments(
% Necessery options
mom_method = @{mommethod} % method of moments method; possible values: GMM|SMM
, datafile = 'RBC_MoM_data_@{orderApp}.mat' % name of filename with data
% Options for both GMM and SMM
% , bartlett_kernel_lag = 20 % bandwith in optimal weighting matrix
, order = @{orderApp} % order of Taylor approximation in perturbation
% , penalized_estimator % use penalized optimization
, pruning % use pruned state space system at higher-order
% , verbose % display and store intermediate estimation results
% , weighting_matrix = 'test_matrix.mat' % weighting matrix in moments distance objective function; possible values: OPTIMAL|IDENTITY_MATRIX|DIAGONAL|filename
, weighting_matrix =['test_matrix.mat','optimal']
%, weighting_matrix = optimal % weighting matrix in moments distance objective function; possible values: OPTIMAL|IDENTITY_MATRIX|DIAGONAL|filename
%, additional_optimizer_steps = [4] % vector of additional mode-finders run after mode_compute
, prefilter=1 % demean each data series by its empirical mean and use centered moments
, se_tolx=1e-5
%
% Options for SMM
% , bounded_shock_support % trim shocks in simulation to +- 2 stdev
, burnin = 500 % number of periods dropped at beginning of simulation
% , seed = 24051986 % seed used in simulations
% , simulation_multiple = 5 % multiple of the data length used for simulation
%
% General options
%, dirname = 'MM' % directory in which to store estimation output
% , graph_format = EPS % specify the file format(s) for graphs saved to disk
% , nodisplay % do not display the graphs, but still save them to disk
% , nograph % do not create graphs (which implies that they are not saved to the disk nor displayed)
% , noprint % do not print stuff to console
% , plot_priors = 1 % control plotting of priors
% , prior_trunc = 1e-10 % probability of extreme values of the prior density that is ignored when computing bounds for the parameters
% , TeX % print TeX tables and graphics
%
% Data and model options
%, first_obs = 501 % number of first observation
% , logdata % if loglinear is set, this option is necessary if the user provides data already in logs, otherwise the log transformation will be applied twice (this may result in complex data)
% , loglinear % computes a log-linear approximation of the model instead of a linear approximation
%, nobs = 500 % number of observations
% , xls_sheet = willi % name of sheet with data in Excel
% , xls_range = B2:D200 % range of data in Excel sheet
%
% Optimization options that can be set by the user in the mod file, otherwise default values are provided
% , analytic_derivation % uses analytic derivatives to compute standard errors for GMM
%, huge_number=1D10 % value for replacing the infinite bounds on parameters by finite numbers. Used by some optimizers for numerical reasons
, mode_compute = @{optimizer} % specifies the optimizer for minimization of moments distance, note that by default there is a new optimizer
%, optim = ('TolFun', 1e-3
% ,'TolX', 1e-5
% ) % a list of NAME and VALUE pairs to set options for the optimization routines. Available options depend on mode_compute
%, silent_optimizer % run minimization of moments distance silently without displaying results or saving files in between
%
% % Numerical algorithms options
% , aim_solver % Use AIM algorithm to compute perturbation approximation
% , dr=default % method used to compute the decision rule; possible values are DEFAULT, CYCLE_REDUCTION, LOGARITHMIC_REDUCTION
% , dr_cycle_reduction_tol = 1e-7 % convergence criterion used in the cycle reduction algorithm
% , dr_logarithmic_reduction_maxiter = 100 % maximum number of iterations used in the logarithmic reduction algorithm
% , dr_logarithmic_reduction_tol = 1e-12 % convergence criterion used in the cycle reduction algorithm
% , k_order_solver % use k_order_solver in higher order perturbation approximations
% , lyapunov = DEFAULT % algorithm used to solve lyapunov equations; possible values are DEFAULT, FIXED_POINT, DOUBLING, SQUARE_ROOT_SOLVER
% , lyapunov_complex_threshold = 1e-15 % complex block threshold for the upper triangular matrix in symmetric Lyapunov equation solver
% , lyapunov_fixed_point_tol = 1e-10 % convergence criterion used in the fixed point Lyapunov solver
% , lyapunov_doubling_tol = 1e-16 % convergence criterion used in the doubling algorithm
% , sylvester = default % algorithm to solve Sylvester equation; possible values are DEFAULT, FIXED_POINT
% , sylvester_fixed_point_tol = 1e-12 % convergence criterion used in the fixed point Sylvester solver
% , qz_criterium = 0.999999 % value used to split stable from unstable eigenvalues in reordering the Generalized Schur decomposition used for solving first order problems [IS THIS CORRET @wmutschl]
% , qz_zero_threshold = 1e-6 % value used to test if a generalized eigenvalue is 0/0 in the generalized Schur decomposition
);
@#endfor