dynare/mex/sources/libkorder/sylv/QuasiTriangular.hh

471 lines
12 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/*
* Copyright © 2004-2011 Ondra Kamenik
* Copyright © 2019-2024 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef QUASI_TRIANGULAR_HH
#define QUASI_TRIANGULAR_HH
#include "KronVector.hh"
#include "SylvMatrix.hh"
#include "Vector.hh"
#include <list>
#include <memory>
class DiagonalBlock;
class Diagonal;
class DiagPair
{
private:
double* a1;
double* a2;
public:
DiagPair() = default;
DiagPair(double* aa1, double* aa2) : a1 {aa1}, a2 {aa2}
{
}
DiagPair(const DiagPair& p) = default;
DiagPair& operator=(const DiagPair& p) = default;
DiagPair&
operator=(double v)
{
*a1 = v;
*a2 = v;
return *this;
}
const double&
operator*() const
{
return *a1;
}
/* Here we must not define double& operator*(), since it wouldn't
rewrite both values, we use operator=() for this */
friend class Diagonal;
friend class DiagonalBlock;
};
/* Stores a diagonal block of a quasi-triangular real matrix:
either a 1×1 block, i.e. a real scalar, stored in α₁
⎛α₁ β₁⎞
or a 2×2 block, stored as ⎝β₂ α₂⎠
*/
class DiagonalBlock
{
private:
int jbar; // Index of block in the diagonal
bool real;
DiagPair alpha;
double* beta1;
double* beta2;
public:
DiagonalBlock() = default;
DiagonalBlock(int jb, bool r, double* a1, double* a2, double* b1, double* b2) :
jbar {jb}, real {r}, alpha {a1, a2}, beta1 {b1}, beta2 {b2}
{
}
// Construct a complex 2×2 block
/* β₁ and β₂ will be deduced from pointers to α₁ and α₂ */
DiagonalBlock(int jb, double* a1, double* a2) :
jbar {jb}, real {false}, alpha {a1, a2}, beta1 {a2 - 1}, beta2 {a1 + 1}
{
}
// Construct a real 1×1 block
DiagonalBlock(int jb, double* a1) :
jbar {jb}, real {true}, alpha {a1, a1}, beta1 {nullptr}, beta2 {nullptr}
{
}
DiagonalBlock(const DiagonalBlock& b) = default;
DiagonalBlock& operator=(const DiagonalBlock& b) = default;
[[nodiscard]] int
getIndex() const
{
return jbar;
}
[[nodiscard]] bool
isReal() const
{
return real;
}
[[nodiscard]] const DiagPair&
getAlpha() const
{
return alpha;
}
DiagPair&
getAlpha()
{
return alpha;
}
[[nodiscard]] double&
getBeta1() const
{
return *beta1;
}
[[nodiscard]] double&
getBeta2() const
{
return *beta2;
}
// Returns determinant of this block (assuming it is 2×2)
[[nodiscard]] double getDeterminant() const;
// Returns −β₁β₂
[[nodiscard]] double getSBeta() const;
// Returns the modulus of the eigenvalue(s) contained in this block
[[nodiscard]] double getSize() const;
// Transforms this block into a real one
void setReal();
// Verifies that the block information is consistent with the matrix d (for debugging)
void checkBlock(const double* d, int d_size);
friend class Diagonal;
};
// Stores the diagonal blocks of a quasi-triangular real matrix
class Diagonal
{
public:
using const_diag_iter = std::list<DiagonalBlock>::const_iterator;
using diag_iter = std::list<DiagonalBlock>::iterator;
private:
int num_all {0}; // Total number of blocks
std::list<DiagonalBlock> blocks;
int num_real {0}; // Number of 1×1 (real) blocks
public:
Diagonal() = default;
// Construct the diagonal blocks of (quasi-triangular) matrix data
Diagonal(double* data, int d_size);
/* Construct the diagonal blocks of (quasi-triangular) matrix data,
assuming it has the same shape as d */
Diagonal(double* data, const Diagonal& d);
Diagonal(const Diagonal& d) = default;
Diagonal& operator=(const Diagonal& d) = default;
virtual ~Diagonal() = default;
// Returns number of 2×2 blocks on the diagonal
[[nodiscard]] int
getNumComplex() const
{
return num_all - num_real;
}
// Returns number of 1×1 blocks on the diagonal
[[nodiscard]] int
getNumReal() const
{
return num_real;
}
// Returns number of scalar elements on the diagonal
[[nodiscard]] int
getSize() const
{
return getNumReal() + 2 * getNumComplex();
}
// Returns total number of blocks on the diagonal
[[nodiscard]] int
getNumBlocks() const
{
return num_all;
}
void getEigenValues(Vector& eig) const;
void swapLogically(diag_iter it);
void checkConsistency(diag_iter it);
double getAverageSize(diag_iter start, diag_iter end);
diag_iter findClosestBlock(diag_iter start, diag_iter end, double a);
diag_iter findNextLargerBlock(diag_iter start, diag_iter end, double a);
void print() const;
diag_iter
begin()
{
return blocks.begin();
}
[[nodiscard]] const_diag_iter
begin() const
{
return blocks.begin();
}
diag_iter
end()
{
return blocks.end();
}
[[nodiscard]] const_diag_iter
end() const
{
return blocks.end();
}
/* redefine pointers as data start at p */
void changeBase(double* p);
private:
constexpr static double EPS = 1.0e-300;
/* Computes number of 2×2 diagonal blocks on the quasi-triangular matrix
represented by data (of size d_size×d_size) */
static int getNumComplex(const double* data, int d_size);
// Checks whether |p|<EPS
static bool isZero(double p);
};
template<class _TRef, class _TPtr>
struct _matrix_iter
{
using _Self = _matrix_iter<_TRef, _TPtr>;
int d_size;
bool real;
_TPtr ptr;
public:
_matrix_iter(_TPtr base, int ds, bool r)
{
ptr = base;
d_size = ds;
real = r;
}
virtual ~_matrix_iter() = default;
[[nodiscard]] bool
operator==(const _Self& it) const
{
return ptr == it.ptr;
}
_TRef
operator*() const
{
return *ptr;
}
_TRef
a() const
{
return *ptr;
}
virtual _Self& operator++() = 0;
};
template<class _TRef, class _TPtr>
class _column_iter : public _matrix_iter<_TRef, _TPtr>
{
using _Tparent = _matrix_iter<_TRef, _TPtr>;
using _Self = _column_iter<_TRef, _TPtr>;
int row;
public:
_column_iter(_TPtr base, int ds, bool r, int rw) :
_matrix_iter<_TRef, _TPtr>(base, ds, r), row(rw) {};
_Self&
operator++() override
{
_Tparent::ptr++;
row++;
return *this;
}
_TRef
b() const
{
if (_Tparent::real)
return *(_Tparent::ptr);
else
return *(_Tparent::ptr + _Tparent::d_size);
}
[[nodiscard]] int
getRow() const
{
return row;
}
};
template<class _TRef, class _TPtr>
class _row_iter : public _matrix_iter<_TRef, _TPtr>
{
using _Tparent = _matrix_iter<_TRef, _TPtr>;
using _Self = _row_iter<_TRef, _TPtr>;
int col;
public:
_row_iter(_TPtr base, int ds, bool r, int cl) :
_matrix_iter<_TRef, _TPtr>(base, ds, r), col(cl) {};
_Self&
operator++() override
{
_Tparent::ptr += _Tparent::d_size;
col++;
return *this;
}
virtual _TRef
b() const
{
if (_Tparent::real)
return *(_Tparent::ptr);
else
return *(_Tparent::ptr + 1);
}
[[nodiscard]] int
getCol() const
{
return col;
}
};
class SchurDecomp;
class SchurDecompZero;
/* Represents an upper quasi-triangular matrix.
All the elements are stored in the SqSylvMatrix super-class.
Additionally, a list of the diagonal blocks (1×1 or 2×2), is stored in the
“diagonal” member, in order to optimize some operations (where the matrix is
seen as an upper-triangular matrix, plus sub-diagonal elements of the 2×2
diagonal blocks) */
class QuasiTriangular : public SqSylvMatrix
{
public:
using const_col_iter = _column_iter<const double&, const double*>;
using col_iter = _column_iter<double&, double*>;
using const_row_iter = _row_iter<const double&, const double*>;
using row_iter = _row_iter<double&, double*>;
using const_diag_iter = Diagonal::const_diag_iter;
using diag_iter = Diagonal::diag_iter;
protected:
Diagonal diagonal;
public:
QuasiTriangular(const ConstVector& d, int d_size);
// Initializes with r·t
QuasiTriangular(double r, const QuasiTriangular& t);
// Initializes with r·t+r₂·t₂
QuasiTriangular(double r, const QuasiTriangular& t, double r2, const QuasiTriangular& t2);
// Initializes with t²
QuasiTriangular(const std::string& dummy, const QuasiTriangular& t);
explicit QuasiTriangular(const SchurDecomp& decomp);
explicit QuasiTriangular(const SchurDecompZero& decomp);
QuasiTriangular(const QuasiTriangular& t);
~QuasiTriangular() override = default;
[[nodiscard]] const Diagonal&
getDiagonal() const
{
return diagonal;
}
[[nodiscard]] int getNumOffdiagonal() const;
void swapDiagLogically(diag_iter it);
void checkDiagConsistency(diag_iter it);
double getAverageDiagSize(diag_iter start, diag_iter end);
diag_iter findClosestDiagBlock(diag_iter start, diag_iter end, double a);
diag_iter findNextLargerBlock(diag_iter start, diag_iter end, double a);
/* (I+this)·y = x, y→x */
virtual void solvePre(Vector& x, double& eig_min);
/* (I+thisᵀ)·y = x, y→x */
virtual void solvePreTrans(Vector& x, double& eig_min);
/* (I+this)·x = b */
virtual void solve(Vector& x, const ConstVector& b, double& eig_min);
/* (I+thisᵀ)·x = b */
virtual void solveTrans(Vector& x, const ConstVector& b, double& eig_min);
/* x = this·b */
virtual void multVec(Vector& x, const ConstVector& b) const;
/* x = thisᵀ·b */
virtual void multVecTrans(Vector& x, const ConstVector& b) const;
/* x = x + this·b */
virtual void multaVec(Vector& x, const ConstVector& b) const;
/* x = x + thisᵀ·b */
virtual void multaVecTrans(Vector& x, const ConstVector& b) const;
/* x = (this⊗I)·x */
virtual void multKron(KronVector& x) const;
/* x = (thisᵀ⊗I)·x */
virtual void multKronTrans(KronVector& x) const;
/* A = this·A */
virtual void multLeftOther(GeneralMatrix& a) const;
/* A = thisᵀ·A */
virtual void multLeftOtherTrans(GeneralMatrix& a) const;
[[nodiscard]] const_diag_iter
diag_begin() const
{
return diagonal.begin();
}
diag_iter
diag_begin()
{
return diagonal.begin();
}
[[nodiscard]] const_diag_iter
diag_end() const
{
return diagonal.end();
}
diag_iter
diag_end()
{
return diagonal.end();
}
/* iterators for off diagonal elements */
[[nodiscard]] virtual const_col_iter col_begin(const DiagonalBlock& b) const;
virtual col_iter col_begin(const DiagonalBlock& b);
[[nodiscard]] virtual const_row_iter row_begin(const DiagonalBlock& b) const;
virtual row_iter row_begin(const DiagonalBlock& b);
[[nodiscard]] virtual const_col_iter col_end(const DiagonalBlock& b) const;
virtual col_iter col_end(const DiagonalBlock& b);
[[nodiscard]] virtual const_row_iter row_end(const DiagonalBlock& b) const;
virtual row_iter row_end(const DiagonalBlock& b);
[[nodiscard]] virtual std::unique_ptr<QuasiTriangular>
clone() const
{
return std::make_unique<QuasiTriangular>(*this);
}
// Returns this²
[[nodiscard]] virtual std::unique_ptr<QuasiTriangular>
square() const
{
return std::make_unique<QuasiTriangular>("square", *this);
}
// Returns r·this
[[nodiscard]] virtual std::unique_ptr<QuasiTriangular>
scale(double r) const
{
return std::make_unique<QuasiTriangular>(r, *this);
}
// Returns r·this + r₂·t₂
[[nodiscard]] virtual std::unique_ptr<QuasiTriangular>
linearlyCombine(double r, double r2, const QuasiTriangular& t2) const
{
return std::make_unique<QuasiTriangular>(r, *this, r2, t2);
}
protected:
// this = r·t
void setMatrix(double r, const QuasiTriangular& t);
// this = this + r·t
void addMatrix(double r, const QuasiTriangular& t);
private:
// this = this + I
void addUnit();
/* x = x + (this⊗I)·b */
void multaKron(KronVector& x, const ConstKronVector& b) const;
/* x = x + (thisᵀ⊗I)·b */
void multaKronTrans(KronVector& x, const ConstKronVector& b) const;
/* hide noneffective implementations of parents */
void multsVec(Vector& x, const ConstVector& d) const;
void multsVecTrans(Vector& x, const ConstVector& d) const;
};
#endif