dynare/matlab/shock_decomposition/realtime_shock_decomposition.m

365 lines
15 KiB
Matlab

function oo_ = realtime_shock_decomposition(M_,oo_,options_,varlist,bayestopt_,estim_params_)
% function oo_ = realtime_shock_decomposition(M_,oo_,options_,varlist,bayestopt_,estim_params_)
% Computes shocks contribution to a simulated trajectory. The fields set are
% oo_.realtime_shock_decomposition, oo_.conditional_shock_decomposition and oo_.realtime_forecast_shock_decomposition.
% Subfields are arrays n_var by nshock+2 by nperiods. The
% first nshock columns store the respective shock contributions, column n+1
% stores the role of the initial conditions, while column n+2 stores the
% value of the smoothed variables. Both the variables and shocks are stored
% in the order of declaration, i.e. M_.endo_names and M_.exo_names, respectively.
%
% INPUTS
% M_: [structure] Definition of the model
% oo_: [structure] Storage of results
% options_: [structure] Options
% varlist: [char] List of variables
% bayestopt_: [structure] describing the priors
% estim_params_: [structure] characterizing parameters to be estimated
%
% OUTPUTS
% oo_: [structure] Storage of results
%
% SPECIAL REQUIREMENTS
% none
% Copyright © 2009-2020 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
if isfield(oo_,'shock_decomposition_info') && isfield(oo_.shock_decomposition_info,'i_var')
if isfield (oo_,'realtime_conditional_shock_decomposition') ...
|| isfield (oo_,'realtime_forecast_shock_decomposition') ...
|| isfield (oo_,'realtime_shock_decomposition') ...
|| isfield (oo_,'shock_decomposition') ...
|| isfield (oo_,'conditional_shock_decomposition') ...
|| isfield (oo_,'initval_decomposition')
error('realtime_shock_decomposition::squeezed shock decompositions are already stored in oo_')
end
end
with_epilogue = options_.shock_decomp.with_epilogue;
% indices of endogenous variables
if isempty(varlist)
varlist = M_.endo_names(1:M_.orig_endo_nbr);
end
[~, ~, index_uniques] = varlist_indices(varlist,M_.endo_names);
varlist = varlist(index_uniques);
% number of variables
endo_nbr = M_.endo_nbr;
% number of shocks
nshocks = M_.exo_nbr;
% parameter set
parameter_set = options_.parameter_set;
if isempty(parameter_set)
if isfield(oo_,'posterior_mean')
parameter_set = 'posterior_mean';
elseif isfield(oo_,'mle_mode')
parameter_set = 'mle_mode';
elseif isfield(oo_,'posterior')
parameter_set = 'posterior_mode';
else
error(['realtime_shock_decomposition: option parameter_set is not specified ' ...
'and posterior mode is not available'])
end
end
presample = max(1,options_.presample-1);
if isfield(options_.shock_decomp,'presample')
my_presample = max(1,options_.shock_decomp.presample);
presample = min(presample,my_presample);
end
% forecast_=0;
forecast_ = options_.shock_decomp.forecast;
forecast_params=0;
if forecast_ && isfield(options_.shock_decomp,'forecast_params')
forecast_params = options_.shock_decomp.forecast_params;
end
fast_realtime = 0;
if isfield(options_.shock_decomp,'fast_realtime')
fast_realtime = options_.shock_decomp.fast_realtime;
end
% save_realtime=0;
save_realtime = options_.shock_decomp.save_realtime;
% array of time points in the range options_.presample+1:options_.nobs
if isnan(options_.nobs)
error('realtime_shock_decomposition: the nobs-option must be set.')
end
zreal = zeros(endo_nbr+length(M_.epilogue_names)*with_epilogue,nshocks+2,options_.nobs+forecast_);
zcond = zeros(endo_nbr+length(M_.epilogue_names)*with_epilogue,nshocks+2,options_.nobs);
options_.selected_variables_only = 0; %make sure all variables are stored
options_.plot_priors=0;
init=1;
nobs = options_.nobs;
if forecast_ && any(forecast_params)
M1=M_;
M1.params = forecast_params;
[~,~,~,~,~,dr1] = dynare_resolve(M1,options_,oo_.dr,oo_.steady_state,oo_.exo_steady_state,oo_.exo_det_steady_state);
end
gend0=0;
skipline()
skipline()
if isequal(fast_realtime,0)
running_text = 'Realtime shock decomposition ';
else
running_text = 'Fast realtime shock decomposition ';
end
newString=sprintf(running_text);
fprintf(['%s'],newString);
for j=presample+1:nobs
% evalin('base',['options_.nobs=' int2str(j) ';'])
options_.nobs=j;
if isequal(fast_realtime,0)
[oo_local,M_,~,~,Smoothed_Variables_deviation_from_mean] = evaluate_smoother(parameter_set,varlist,M_,oo_,options_,bayestopt_,estim_params_);
gend = size(oo_local.SmoothedShocks.(M_.exo_names{1}),1);
else
if j<min(fast_realtime) && gend0<j
options_.nobs=min(fast_realtime);
[oo0,M_,~,~,Smoothed_Variables_deviation_from_mean0] = evaluate_smoother(parameter_set,varlist,M_,oo_,options_,bayestopt_,estim_params_);
gend0 = size(oo0.SmoothedShocks.(M_.exo_names{1}),1);
options_.nobs=j;
end
if ismember(j,fast_realtime) && gend0<j
[oo_local,M_,~,~,Smoothed_Variables_deviation_from_mean] = evaluate_smoother(parameter_set,varlist,M_,oo_,options_,bayestopt_,estim_params_);
gend = size(oo_local.SmoothedShocks.(M_.exo_names{1}),1);
gend0 = gend;
oo0=oo_local;
Smoothed_Variables_deviation_from_mean0=Smoothed_Variables_deviation_from_mean;
else
if j>gend0
if j>max(fast_realtime)
options_.nobs = nobs;
else
options_.nobs=min(fast_realtime(fast_realtime>j));
end
[oo0,M_,~,~,Smoothed_Variables_deviation_from_mean0] = evaluate_smoother(parameter_set,varlist,M_,oo_,options_,bayestopt_,estim_params_);
gend0 = size(oo0.SmoothedShocks.(M_.exo_names{1}),1);
options_.nobs=j;
end
gend = j;
oo_local=oo0;
Smoothed_Variables_deviation_from_mean = Smoothed_Variables_deviation_from_mean0(:,1:gend);
end
end
% reduced form
dr = oo_local.dr;
% data reordering
order_var = dr.order_var;
inv_order_var = dr.inv_order_var;
% coefficients
A = dr.ghx;
B = dr.ghu;
if forecast_
if any(forecast_params)
Af = dr1.ghx;
Bf = dr1.ghu;
else
Af = A;
Bf = B;
end
end
% initialization
epsilon=NaN(nshocks,gend);
for i = 1:nshocks
epsilon(i,:) = oo_local.SmoothedShocks.(M_.exo_names{i})(1:gend);
end
epsilon=[epsilon zeros(nshocks,forecast_)];
z = zeros(endo_nbr,nshocks+2,gend+forecast_);
z(:,end,1:gend) = Smoothed_Variables_deviation_from_mean;
maximum_lag = M_.maximum_lag;
k2 = dr.kstate(find(dr.kstate(:,2) <= maximum_lag+1),[1 2]);
i_state = order_var(k2(:,1))+(min(i,maximum_lag)+1-k2(:,2))*M_.endo_nbr;
for i=1:gend+forecast_
if i > 1 && i <= maximum_lag+1
lags = min(i-1,maximum_lag):-1:1;
end
if i > 1
tempx = permute(z(:,1:nshocks,lags),[1 3 2]);
m = min(i-1,maximum_lag);
tempx = [reshape(tempx,endo_nbr*m,nshocks); zeros(endo_nbr*(maximum_lag-i+1),nshocks)];
if i > gend
z(:,nshocks+2,i) = Af(inv_order_var,:)*z(i_state,nshocks+2,lags);
% z(:,nshocks+2,i) = A(inv_order_var,:)*permute(z(i_state,nshocks+2,lags),[1 3 2]);
z(:,1:nshocks,i) = Af(inv_order_var,:)*tempx(i_state,:);
else
z(:,1:nshocks,i) = A(inv_order_var,:)*tempx(i_state,:);
end
lags = lags+1;
z(:,1:nshocks,i) = z(:,1:nshocks,i) + B(inv_order_var,:).*repmat(epsilon(:,i)',endo_nbr,1);
end
% z(:,1:nshocks,i) = z(:,1:nshocks,i) + B(inv_order_var,:).*repmat(epsilon(:,i)',endo_nbr,1);
z(:,nshocks+1,i) = z(:,nshocks+2,i) - sum(z(:,1:nshocks,i),2);
end
if with_epilogue
[z, epilogue_steady_state] = epilogue_shock_decomposition(z, M_, oo_);
if ~isfield(oo_,'shock_decomposition_info') || ~isfield(oo_.shock_decomposition_info,'epilogue_steady_state')
oo_.shock_decomposition_info.epilogue_steady_state = epilogue_steady_state;
end
end
%% conditional shock decomp 1 step ahead
z1 = zeros(endo_nbr,nshocks+2);
z1(:,end) = Smoothed_Variables_deviation_from_mean(:,gend);
for i=gend
z1(:,1:nshocks) = z1(:,1:nshocks) + B(inv_order_var,:).*repmat(epsilon(:,i)',endo_nbr,1);
z1(:,nshocks+1) = z1(:,nshocks+2) - sum(z1(:,1:nshocks),2);
end
if with_epilogue
clear ztmp0
ztmp0(:,1,:) = Smoothed_Variables_deviation_from_mean(:,1:gend-1);
ztmp0(:,2,:) = Smoothed_Variables_deviation_from_mean(:,1:gend-1);
ztmp = cat(3,cat(2,zeros(endo_nbr,nshocks,gend-1),ztmp0),z1);
% ztmp = cat(3,zeros(endo_nbr,nshocks+2,40),ztmp); % pad with zeros in presample
z1 = epilogue_shock_decomposition(ztmp, M_, oo_);
z1=squeeze(z1(:,:,end));
end
%%
%% conditional shock decomp k step ahead
if forecast_ && forecast_<j
zn = zeros(endo_nbr,nshocks+2,forecast_+1);
zn(:,end,1:forecast_+1) = Smoothed_Variables_deviation_from_mean(:,gend-forecast_:gend);
for i=1:forecast_+1
if i > 1 && i <= maximum_lag+1
lags = min(i-1,maximum_lag):-1:1;
end
if i > 1
tempx = permute(zn(:,1:nshocks,lags),[1 3 2]);
m = min(i-1,maximum_lag);
tempx = [reshape(tempx,endo_nbr*m,nshocks); zeros(endo_nbr*(maximum_lag-i+1-1),nshocks)];
zn(:,1:nshocks,i) = A(inv_order_var,:)*tempx(i_state,:);
lags = lags+1;
zn(:,1:nshocks,i) = zn(:,1:nshocks,i) + B(inv_order_var,:).*repmat(epsilon(:,i+gend-forecast_-1)',endo_nbr,1);
end
% zn(:,1:nshocks,i) = zn(:,1:nshocks,i) + B(inv_order_var,:).*repmat(epsilon(:,i+gend-forecast_-1)',endo_nbr,1);
zn(:,nshocks+1,i) = zn(:,nshocks+2,i) - sum(zn(:,1:nshocks,i),2);
end
if with_epilogue
clear ztmp0
ztmp0(:,1,:) = Smoothed_Variables_deviation_from_mean(:,1:gend-forecast_-1);
ztmp0(:,2,:) = Smoothed_Variables_deviation_from_mean(:,1:gend-forecast_-1);
ztmp = cat(3,cat(2,zeros(endo_nbr,nshocks,gend-forecast_-1),ztmp0),zn);
% ztmp = cat(3,zeros(endo_nbr,nshocks+2,40),ztmp); % pad with zeros (st state) in presample
zn = epilogue_shock_decomposition(ztmp, M_, oo_);
zn=squeeze(zn(:,:,end-forecast_:end));
end
if ismember(j-forecast_,save_realtime)
oo_.conditional_shock_decomposition.(['time_' int2str(j-forecast_)])=zn;
end
end
%%
if init
zreal(:,:,1:j) = z(:,:,1:j);
elseif j<nobs
zreal(:,:,j) = z(:,:,gend);
else
zreal(:,:,j:end) = z(:,:,gend:end);
end
zcond(:,:,j) = z1;
if ismember(j,save_realtime)
oo_.realtime_shock_decomposition.(['time_' int2str(j)])=z;
end
if forecast_
zfrcst(:,:,j+1) = z(:,:,gend+1);
ootmp.realtime_forecast_shock_decomposition.(['time_' int2str(j)])=z(:,:,gend:end);
if ismember(j,save_realtime)
oo_.realtime_forecast_shock_decomposition.(['time_' int2str(j)]) = ...
ootmp.realtime_forecast_shock_decomposition.(['time_' int2str(j)]);
end
if j>forecast_+presample
%% realtime conditional shock decomp k step ahead
ootmp.realtime_conditional_shock_decomposition.(['time_' int2str(j-forecast_)]) = ...
zreal(:,:,j-forecast_:j) - ...
ootmp.realtime_forecast_shock_decomposition.(['time_' int2str(j-forecast_)]);
ootmp.realtime_conditional_shock_decomposition.(['time_' int2str(j-forecast_)])(:,end-1,:) = ...
ootmp.realtime_conditional_shock_decomposition.(['time_' int2str(j-forecast_)])(:,end-1,:) + ...
ootmp.realtime_forecast_shock_decomposition.(['time_' int2str(j-forecast_)])(:,end,:);
ootmp.realtime_conditional_shock_decomposition.(['time_' int2str(j-forecast_)])(:,end,:) = ...
zreal(:,end,j-forecast_:j);
if ismember(j-forecast_,save_realtime)
oo_.realtime_conditional_shock_decomposition.(['time_' int2str(j-forecast_)]) = ...
ootmp.realtime_conditional_shock_decomposition.(['time_' int2str(j-forecast_)]);
end
if j==nobs
for my_forecast_=(forecast_-1):-1:1
ootmp.realtime_conditional_shock_decomposition.(['time_' int2str(j-my_forecast_)]) = ...
zreal(:,:,j-my_forecast_:j) - ...
ootmp.realtime_forecast_shock_decomposition.(['time_' int2str(j-my_forecast_)])(:,:,1:my_forecast_+1);
ootmp.realtime_conditional_shock_decomposition.(['time_' int2str(j-my_forecast_)])(:,end-1,:) = ...
ootmp.realtime_conditional_shock_decomposition.(['time_' int2str(j-my_forecast_)])(:,end-1,:) + ...
ootmp.realtime_forecast_shock_decomposition.(['time_' int2str(j-my_forecast_)])(:,end,1:my_forecast_+1);
ootmp.realtime_conditional_shock_decomposition.(['time_' int2str(j-my_forecast_)])(:,end,:) = ...
zreal(:,end,j-my_forecast_:j);
if ismember(j-my_forecast_,save_realtime)
oo_.realtime_conditional_shock_decomposition.(['time_' int2str(j-my_forecast_)]) = ...
ootmp.realtime_conditional_shock_decomposition.(['time_' int2str(j-my_forecast_)]);
end
end
end
end
end
prctdone=(j-presample)/(nobs-presample);
if isoctave
printf([running_text,' %3.f%% done\r'], prctdone*100);
else
s0=repmat('\b',1,length(newString));
newString=sprintf([running_text,' %3.1f%% done'], prctdone*100);
fprintf([s0,'%s'],newString);
end
init=0;
end
oo_.realtime_shock_decomposition.pool = zreal;
oo_.conditional_shock_decomposition.pool = zcond;
if forecast_
oo_.realtime_forecast_shock_decomposition.pool = zfrcst;
end
oo_.gui.ran_realtime_shock_decomposition = true;
skipline()