dynare/matlab/estimation/dsge_likelihood.m

913 lines
36 KiB
Matlab
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

function [fval,info,exit_flag,DLIK,Hess,SteadyState,trend_coeff,M_,options_,bayestopt_,dr] = dsge_likelihood(xparam1,dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,BoundsInfo,dr, endo_steady_state, exo_steady_state, exo_det_steady_state,derivatives_info)
% [fval,info,exit_flag,DLIK,Hess,SteadyState,trend_coeff,M_,options_,bayestopt_,oo_] = dsge_likelihood(xparam1,dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,BoundsInfo,oo_,derivatives_info)
% Evaluates the posterior kernel of a DSGE model using the specified
% kalman_algo; the resulting posterior includes the 2*pi constant of the
% likelihood function
%
% INPUTS
% - xparam1 [double] current values for the estimated parameters.
% - dataset_ [structure] dataset after transformations
% - dataset_info [structure] storing informations about the
% sample; not used but required for interface
% - options_ [structure] Matlab's structure describing the current options
% - M_ [structure] Matlab's structure describing the model
% - estim_params_ [structure] characterizing parameters to be estimated
% - bayestopt_ [structure] describing the priors
% - BoundsInfo [structure] containing prior bounds
% - dr [structure] Reduced form model.
% - endo_steady_state [vector] steady state value for endogenous variables
% - exo_steady_state [vector] steady state value for exogenous variables
% - exo_det_steady_state [vector] steady state value for exogenous deterministic variables
% - derivatives_info [structure] derivative info for identification
%
% OUTPUTS
% - fval [double] scalar, value of the likelihood or posterior kernel.
% - info [integer] 4×1 vector, informations resolution of the model and evaluation of the likelihood.
% - exit_flag [integer] scalar, equal to 1 (no issues when evaluating the likelihood) or 0 (not able to evaluate the likelihood).
% - DLIK [double] Vector with score of the likelihood
% - Hess [double] asymptotic hessian matrix.
% - SteadyState [double] steady state level for the endogenous variables
% - trend_coeff [double] Matrix of doubles, coefficients of the deterministic trend in the measurement equation.
% - M_ [struct] Updated M_ structure described in INPUTS section.
% - options_ [struct] Updated options_ structure described in INPUTS section.
% - bayestopt_ [struct] See INPUTS section.
% - dr [structure] Reduced form model.
%
% This function is called by: dynare_estimation_1, mode_check
% This function calls: dynare_resolve, lyapunov_symm, lyapunov_solver, compute_Pinf_Pstar, kalman_filter_d, missing_observations_kalman_filter_d,
% univariate_kalman_filter_d, kalman_steady_state, get_perturbation_params_deriv, kalman_filter, missing_observations_kalman_filter, univariate_kalman_filter, priordens
% Copyright © 2004-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
% Initial author: stephane DOT adjemian AT univ DASH lemans DOT FR
% Initialization of the returned variables and others...
fval = [];
SteadyState = [];
trend_coeff = [];
exit_flag = 1;
info = zeros(4,1);
if options_.analytic_derivation
DLIK = NaN(1,length(xparam1));
else
DLIK = [];
end
Hess = [];
% Ensure that xparam1 is a column vector.
% (Don't do the transformation if xparam1 is empty, otherwise it would become a
% 0×1 matrix, which create issues with older MATLABs when comparing with [] in
% check_bounds_and_definiteness_estimation)
if ~isempty(xparam1)
xparam1 = xparam1(:);
end
% Set flag related to analytical derivatives.
analytic_derivation = options_.analytic_derivation;
if analytic_derivation
if options_.loglinear
error('The analytic_derivation and loglinear options are not compatible')
end
if options_.endogenous_prior
error('The analytic_derivation and endogenous_prior options are not compatible')
end
end
if nargout==1
analytic_derivation=0;
end
if analytic_derivation
kron_flag=options_.analytic_derivation_mode;
end
%------------------------------------------------------------------------------
% 1. Get the structural parameters & define penalties
%------------------------------------------------------------------------------
M_ = set_all_parameters(xparam1,estim_params_,M_);
[fval,info,exit_flag,Q,H]=check_bounds_and_definiteness_estimation(xparam1, M_, estim_params_, BoundsInfo);
if info(1)
return
end
%------------------------------------------------------------------------------
% 2. call model setup & reduction program
%------------------------------------------------------------------------------
is_restrict_state_space = true;
if options_.occbin.likelihood.status
occbin_options = set_occbin_options(options_);
if occbin_options.opts_simul.restrict_state_space
[T,R,SteadyState,info,dr, M_.params,TTx,RRx,CCx, T0, R0] = ...
occbin.dynare_resolve(M_,options_,dr, endo_steady_state, exo_steady_state, exo_det_steady_state,[],'restrict');
else
is_restrict_state_space = false;
oldoo.restrict_var_list = dr.restrict_var_list;
oldoo.restrict_columns = dr.restrict_columns;
dr.restrict_var_list = bayestopt_.smoother_var_list;
dr.restrict_columns = bayestopt_.smoother_restrict_columns;
% Linearize the model around the deterministic steady state and extract the matrices of the state equation (T and R).
[T,R,SteadyState,info,M_,dr, M_.params,TTx,RRx,CCx, T0, R0] = ...
occbin.dynare_resolve(M_,options_,dr, endo_steady_state, exo_steady_state, exo_det_steady_state);
dr.restrict_var_list = oldoo.restrict_var_list;
dr.restrict_columns = oldoo.restrict_columns;
end
occbin_.status = true;
occbin_.info= {options_, dr,endo_steady_state,exo_steady_state,exo_det_steady_state, M_, occbin_options, TTx, RRx, CCx,T0,R0};
else
% Linearize the model around the deterministic steady state and extract the matrices of the state equation (T and R).
[T,R,SteadyState,info,dr, M_.params] = dynare_resolve(M_,options_,dr, endo_steady_state, exo_steady_state, exo_det_steady_state,'restrict');
occbin_.status = false;
end
% Return, with endogenous penalty when possible, if dynare_resolve issues an error code (defined in resol).
if info(1)
if info(1) == 3 || info(1) == 4 || info(1) == 5 || info(1)==6 ||info(1) == 19 ||...
info(1) == 20 || info(1) == 21 || info(1) == 23 || info(1) == 26 || ...
info(1) == 81 || info(1) == 84 || info(1) == 85 || info(1) == 86 || ...
info(1) == 401 || info(1) == 402 || info(1) == 403 || ... %cycle reduction
info(1) == 411 || info(1) == 412 || info(1) == 413 % logarithmic reduction
%meaningful second entry of output that can be used
fval = Inf;
if isnan(info(2))
info(4) = 0.1;
else
info(4) = info(2);
end
exit_flag = 0;
if analytic_derivation
DLIK=ones(length(xparam1),1);
end
return
else
fval = Inf;
info(4) = 0.1;
exit_flag = 0;
if analytic_derivation
DLIK=ones(length(xparam1),1);
end
return
end
end
% check endogenous prior restrictions
info=endogenous_prior_restrictions(T,R,M_,options_,dr,endo_steady_state,exo_steady_state,exo_det_steady_state);
if info(1)
fval = Inf;
info(4)=info(2);
exit_flag = 0;
if analytic_derivation
DLIK=ones(length(xparam1),1);
end
return
end
if is_restrict_state_space
%% Define a vector of indices for the observed variables. Is this really usefull?...
bayestopt_.mf = bayestopt_.mf1;
else
%get location of observed variables and requested smoothed variables in
%decision rules
bayestopt_.mf = bayestopt_.smoother_var_list(bayestopt_.smoother_mf);
end
% Define the constant vector of the measurement equation.
if options_.noconstant
constant = zeros(dataset_.vobs,1);
else
if options_.loglinear
constant = log(SteadyState(bayestopt_.mfys));
else
constant = SteadyState(bayestopt_.mfys);
end
end
% Define the deterministic linear trend of the measurement equation.
if bayestopt_.with_trend
[trend_addition, trend_coeff]=compute_trend_coefficients(M_,options_,dataset_.vobs,dataset_.nobs);
trend = repmat(constant,1,dataset_.nobs)+trend_addition;
else
trend_coeff = zeros(dataset_.vobs,1);
trend = repmat(constant,1,dataset_.nobs);
end
% Get needed informations for kalman filter routines.
start = options_.presample+1;
Z = bayestopt_.mf; %selector for observed variables
no_missing_data_flag = ~dataset_info.missing.state;
mm = length(T); %number of states
pp = dataset_.vobs; %number of observables
rr = length(Q); %number of shocks
kalman_tol = options_.kalman_tol;
diffuse_kalman_tol = options_.diffuse_kalman_tol;
riccati_tol = options_.riccati_tol;
Y = transpose(dataset_.data)-trend;
smpl = size(Y,2);
%------------------------------------------------------------------------------
% 3. Initial condition of the Kalman filter
%------------------------------------------------------------------------------
kalman_algo = options_.kalman_algo;
diffuse_periods = 0;
expanded_state_vector_for_univariate_filter=0;
singular_diffuse_filter = 0;
if options_.heteroskedastic_filter
Qvec=get_Qvec_heteroskedastic_filter(Q,smpl,M_);
end
switch options_.lik_init
case 1% Standard initialization with the steady state of the state equation.
if kalman_algo~=2
% Use standard kalman filter except if the univariate filter is explicitely choosen.
kalman_algo = 1;
end
Pstar=lyapunov_solver(T,R,Q,options_);
Pinf = [];
a = zeros(mm,1);
a=set_Kalman_starting_values(a,M_,dr,options_,bayestopt_);
a_0_given_tm1=T*a; %set state prediction for first Kalman step;
if options_.occbin.likelihood.status
Z =zeros(length(bayestopt_.mf),size(T,1));
for i = 1:length(bayestopt_.mf)
Z(i,bayestopt_.mf(i))=1;
end
Zflag = 1;
else
Zflag = 0;
end
case 2% Initialization with large numbers on the diagonal of the covariance matrix if the states (for non stationary models).
if kalman_algo ~= 2
% Use standard kalman filter except if the univariate filter is explicitely choosen.
kalman_algo = 1;
end
Pstar = options_.Harvey_scale_factor*eye(mm);
Pinf = [];
a = zeros(mm,1);
a = set_Kalman_starting_values(a,M_,dr,options_,bayestopt_);
a_0_given_tm1 = T*a; %set state prediction for first Kalman step;
if options_.occbin.likelihood.status
Z =zeros(length(bayestopt_.mf),size(T,1));
for i = 1:length(bayestopt_.mf)
Z(i,bayestopt_.mf(i))=1;
end
Zflag = 1;
else
Zflag = 0;
end
case 3% Diffuse Kalman filter (Durbin and Koopman)
% Use standard kalman filter except if the univariate filter is explicitely choosen.
if kalman_algo == 0
kalman_algo = 3;
elseif ~((kalman_algo == 3) || (kalman_algo == 4))
error(['The model requires Diffuse filter, but you specified a different Kalman filter. You must set options_.kalman_algo ' ...
'to 0 (default), 3 or 4'])
end
[Pstar,Pinf] = compute_Pinf_Pstar(Z,T,R,Q,options_.qz_criterium);
Z =zeros(length(bayestopt_.mf),size(T,1));
for i = 1:length(bayestopt_.mf)
Z(i,bayestopt_.mf(i))=1;
end
Zflag = 1;
if options_.heteroskedastic_filter
QQ=Qvec;
else
QQ=Q;
end
% Run diffuse kalman filter on first periods.
if (kalman_algo==3)
% Multivariate Diffuse Kalman Filter
a = zeros(mm,1);
a = set_Kalman_starting_values(a,M_,dr,options_,bayestopt_);
a_0_given_tm1 = T*a; %set state prediction for first Kalman step;
Pstar0 = Pstar; % store Pstar
if no_missing_data_flag
[dLIK,dlik,a_0_given_tm1,Pstar] = kalman_filter_d(Y, 1, size(Y,2), ...
a_0_given_tm1, Pinf, Pstar, ...
kalman_tol, diffuse_kalman_tol, riccati_tol, options_.presample, ...
T,R,QQ,H,Z,mm,pp,rr);
else
[dLIK,dlik,a_0_given_tm1,Pstar] = missing_observations_kalman_filter_d(dataset_info.missing.aindex,dataset_info.missing.number_of_observations,dataset_info.missing.no_more_missing_observations, ...
Y, 1, size(Y,2), ...
a_0_given_tm1, Pinf, Pstar, ...
kalman_tol, diffuse_kalman_tol, riccati_tol, options_.presample, ...
T,R,QQ,H,Z,mm,pp,rr);
end
diffuse_periods = length(dlik);
if isinf(dLIK)
% Go to univariate diffuse filter if singularity problem.
singular_diffuse_filter = 1;
Pstar = Pstar0;
end
end
if singular_diffuse_filter || (kalman_algo==4)
% Univariate Diffuse Kalman Filter
if isequal(H,0)
H1 = zeros(pp,1);
mmm = mm;
else
if all(all(abs(H-diag(diag(H)))<1e-14))% ie, the covariance matrix is diagonal...
H1 = diag(H);
mmm = mm;
else
%Augment state vector (follows Section 6.4.3 of DK (2012))
expanded_state_vector_for_univariate_filter=1;
if Zflag
Z1=Z;
else
Z1=zeros(pp,size(T,2));
for jz=1:length(Z)
Z1(jz,Z(jz))=1;
end
end
Z = [Z1, eye(pp)];
Zflag=1;
T = blkdiag(T,zeros(pp));
Q = blkdiag(Q,H);
R = blkdiag(R,eye(pp));
Pstar = blkdiag(Pstar,H);
Pinf = blkdiag(Pinf,zeros(pp));
H1 = zeros(pp,1);
mmm = mm+pp;
if options_.heteroskedastic_filter
clear QQ
for kv=1:size(Qvec,3)
QQ(:,:,kv) = blkdiag(Qvec(:,:,kv),H);
end
Qvec=QQ;
else
QQ = Q;
end
end
end
a = zeros(mmm,1);
a = set_Kalman_starting_values(a,M_,dr,options_,bayestopt_);
a_0_given_tm1 = T*a;
[dLIK,dlik,a_0_given_tm1,Pstar] = univariate_kalman_filter_d(dataset_info.missing.aindex,...
dataset_info.missing.number_of_observations,...
dataset_info.missing.no_more_missing_observations, ...
Y, 1, size(Y,2), ...
a_0_given_tm1, Pinf, Pstar, ...
kalman_tol, diffuse_kalman_tol, riccati_tol, options_.presample, ...
T,R,QQ,H1,Z,mmm,pp,rr);
diffuse_periods = size(dlik,1);
end
if isnan(dLIK)
fval = Inf;
info(1) = 45;
info(4) = 0.1;
exit_flag = 0;
return
end
case 4% Start from the solution of the Riccati equation.
if kalman_algo ~= 2
kalman_algo = 1;
end
try
if isequal(H,0)
Pstar = kalman_steady_state(transpose(T),R*Q*transpose(R),transpose(build_selection_matrix(Z,mm,length(Z))));
else
Pstar = kalman_steady_state(transpose(T),R*Q*transpose(R),transpose(build_selection_matrix(Z,mm,length(Z))),H);
end
catch ME
disp(ME.message)
disp(['dsge_likelihood:: I am not able to solve the Riccati equation, so I switch to lik_init=1!']);
options_.lik_init = 1;
Pstar=lyapunov_solver(T,R,Q,options_);
end
Pinf = [];
a = zeros(mm,1);
a = set_Kalman_starting_values(a,M_,dr,options_,bayestopt_);
a_0_given_tm1 = T*a;
if options_.occbin.likelihood.status
Z =zeros(length(bayestopt_.mf),size(T,1));
for i = 1:length(bayestopt_.mf)
Z(i,bayestopt_.mf(i))=1;
end
Zflag = 1;
else
Zflag = 0;
end
case 5 % Old diffuse Kalman filter only for the non stationary variables
[eigenvect, eigenv] = eig(T);
eigenv = diag(eigenv);
nstable = length(find(abs(abs(eigenv)-1) > 1e-7));
unstable = find(abs(abs(eigenv)-1) < 1e-7);
V = eigenvect(:,unstable);
indx_unstable = find(sum(abs(V),2)>1e-5);
stable = find(sum(abs(V),2)<1e-5);
nunit = length(eigenv) - nstable;
Pstar = options_.Harvey_scale_factor*eye(nunit);
if kalman_algo ~= 2
kalman_algo = 1;
end
R_tmp = R(stable, :);
T_tmp = T(stable,stable);
Pstar_tmp=lyapunov_solver(T_tmp,R_tmp,Q,options_);
Pstar(stable, stable) = Pstar_tmp;
Pinf = [];
a = zeros(mm,1);
a = set_Kalman_starting_values(a,M_,dr,options_,bayestopt_);
a_0_given_tm1 = T*a;
if options_.occbin.likelihood.status
Z =zeros(length(bayestopt_.mf),size(T,1));
for i = 1:length(bayestopt_.mf)
Z(i,bayestopt_.mf(i))=1;
end
Zflag = 1;
else
Zflag = 0;
end
otherwise
error('dsge_likelihood:: Unknown initialization approach for the Kalman filter!')
end
if analytic_derivation
offset = estim_params_.nvx;
offset = offset+estim_params_.nvn;
offset = offset+estim_params_.ncx;
offset = offset+estim_params_.ncn;
no_DLIK = 0;
full_Hess = analytic_derivation==2;
asy_Hess = analytic_derivation==-2;
outer_product_gradient = analytic_derivation==-1;
if asy_Hess
analytic_derivation=1;
end
if outer_product_gradient
analytic_derivation=1;
end
DLIK = [];
AHess = [];
iv = dr.restrict_var_list;
if nargin<13 || isempty(derivatives_info)
[A,B,nou,nou,dr, M_.params] = dynare_resolve(M_,options_,dr, endo_steady_state, exo_steady_state, exo_det_steady_state);
if ~isempty(estim_params_.var_exo)
indexo=estim_params_.var_exo(:,1);
else
indexo=[];
end
if ~isempty(estim_params_.param_vals)
indparam=estim_params_.param_vals(:,1);
else
indparam=[];
end
old_order = options_.order;
if options_.order > 1%not sure whether this check is necessary
options_.order = 1; fprintf('Reset order to 1 for analytical parameter derivatives.\n');
end
old_analytic_derivation_mode = options_.analytic_derivation_mode;
options_.analytic_derivation_mode = kron_flag;
if full_Hess
DERIVS = identification.get_perturbation_params_derivs(M_, options_, estim_params_, dr, endo_steady_state, exo_steady_state, exo_det_steady_state, indparam, indexo, [], true);
indD2T = reshape(1:M_.endo_nbr^2, M_.endo_nbr, M_.endo_nbr);
indD2Om = dyn_unvech(1:M_.endo_nbr*(M_.endo_nbr+1)/2);
D2T = DERIVS.d2KalmanA(indD2T(iv,iv),:);
D2Om = DERIVS.d2Om(dyn_vech(indD2Om(iv,iv)),:);
D2Yss = DERIVS.d2Yss(iv,:,:);
else
DERIVS = identification.get_perturbation_params_derivs(M_, options_, estim_params_, dr, endo_steady_state, exo_steady_state, exo_det_steady_state, indparam, indexo, [], false);
end
DT = zeros(M_.endo_nbr, M_.endo_nbr, size(DERIVS.dghx,3));
DT(:,M_.nstatic+(1:M_.nspred),:) = DERIVS.dghx;
DT = DT(iv,iv,:);
DOm = DERIVS.dOm(iv,iv,:);
DYss = DERIVS.dYss(iv,:);
options_.order = old_order; %make sure order is reset (not sure if necessary)
options_.analytic_derivation_mode = old_analytic_derivation_mode;%make sure analytic_derivation_mode is reset (not sure if necessary)
else
DT = derivatives_info.DT(iv,iv,:);
DOm = derivatives_info.DOm(iv,iv,:);
DYss = derivatives_info.DYss(iv,:);
if isfield(derivatives_info,'full_Hess')
full_Hess = derivatives_info.full_Hess;
end
if full_Hess
D2T = derivatives_info.D2T;
D2Om = derivatives_info.D2Om;
D2Yss = derivatives_info.D2Yss;
end
if isfield(derivatives_info,'no_DLIK')
no_DLIK = derivatives_info.no_DLIK;
end
clear('derivatives_info');
end
DYss = [zeros(size(DYss,1),offset) DYss];
DH=zeros([length(H),length(H),length(xparam1)]);
DQ=zeros([size(Q),length(xparam1)]);
DP=zeros([size(T),length(xparam1)]);
if full_Hess
for j=1:size(D2Yss,1)
tmp(j,:,:) = blkdiag(zeros(offset,offset), squeeze(D2Yss(j,:,:)));
end
D2Yss = tmp;
D2H=sparse(size(D2Om,1),size(D2Om,2)); %zeros([size(H),length(xparam1),length(xparam1)]);
D2P=sparse(size(D2Om,1),size(D2Om,2)); %zeros([size(T),length(xparam1),length(xparam1)]);
jcount=0;
end
if options_.lik_init==1
for i=1:estim_params_.nvx
k =estim_params_.var_exo(i,1);
DQ(k,k,i) = 2*sqrt(Q(k,k));
dum = lyapunov_symm(T,DOm(:,:,i),options_.lyapunov_fixed_point_tol,options_.qz_criterium,options_.lyapunov_complex_threshold,[],options_.debug);
% kk = find(abs(dum) < 1e-12);
% dum(kk) = 0;
DP(:,:,i)=dum;
if full_Hess
for j=1:i
jcount=jcount+1;
dum = lyapunov_symm(T,dyn_unvech(D2Om(:,jcount)),options_.lyapunov_fixed_point_tol,options_.qz_criterium,options_.lyapunov_complex_threshold,[],options_.debug);
% kk = (abs(dum) < 1e-12);
% dum(kk) = 0;
D2P(:,jcount)=dyn_vech(dum);
% D2P(:,:,j,i)=dum;
end
end
end
end
offset = estim_params_.nvx;
for i=1:estim_params_.nvn
k = estim_params_.var_endo(i,1);
DH(k,k,i+offset) = 2*sqrt(H(k,k));
if full_Hess
D2H(k,k,i+offset,i+offset) = 2;
end
end
offset = offset + estim_params_.nvn;
if options_.lik_init==1
for j=1:estim_params_.np
dum = lyapunov_symm(T,DT(:,:,j+offset)*Pstar*T'+T*Pstar*DT(:,:,j+offset)'+DOm(:,:,j+offset),options_.lyapunov_fixed_point_tol,options_.qz_criterium,options_.lyapunov_complex_threshold,[],options_.debug);
% kk = find(abs(dum) < 1e-12);
% dum(kk) = 0;
DP(:,:,j+offset)=dum;
if full_Hess
DTj = DT(:,:,j+offset);
DPj = dum;
for i=1:j+offset
jcount=jcount+1;
DTi = DT(:,:,i);
DPi = DP(:,:,i);
D2Tij = reshape(D2T(:,jcount),size(T));
D2Omij = dyn_unvech(D2Om(:,jcount));
tmp = D2Tij*Pstar*T' + T*Pstar*D2Tij' + DTi*DPj*T' + DTj*DPi*T' + T*DPj*DTi' + T*DPi*DTj' + DTi*Pstar*DTj' + DTj*Pstar*DTi' + D2Omij;
dum = lyapunov_symm(T,tmp,options_.lyapunov_fixed_point_tol,options_.qz_criterium,options_.lyapunov_complex_threshold,[],options_.debug);
% dum(abs(dum)<1.e-12) = 0;
D2P(:,jcount) = dyn_vech(dum);
% D2P(:,:,j+offset,i) = dum;
end
end
end
end
if analytic_derivation==1
analytic_deriv_info={analytic_derivation,DT,DYss,DOm,DH,DP,asy_Hess};
else
analytic_deriv_info={analytic_derivation,DT,DYss,DOm,DH,DP,D2T,D2Yss,D2Om,D2H,D2P};
clear DT DYss DOm DP D2T D2Yss D2Om D2H D2P
end
else
analytic_deriv_info={0};
end
%------------------------------------------------------------------------------
% 4. Likelihood evaluation
%------------------------------------------------------------------------------
if options_.heteroskedastic_filter
Q=Qvec;
end
singularity_has_been_detected = false;
% First test multivariate filter if specified; potentially abort and use univariate filter instead
if ((kalman_algo==1) || (kalman_algo==3))% Multivariate Kalman Filter
if no_missing_data_flag && ~options_.occbin.likelihood.status
if options_.fast_kalman_filter
if diffuse_periods
%kalman_algo==3 requires no diffuse periods (stationary
%observables) as otherwise FE matrix will not be positive
%definite
fval = Inf;
info(1) = 55;
info(4) = 0.1;
exit_flag = 0;
return
end
[LIK,lik] = kalman_filter_fast(Y,diffuse_periods+1,size(Y,2), ...
a_0_given_tm1,Pstar, ...
kalman_tol, riccati_tol, ...
options_.presample, ...
T,Q,R,H,Z,mm,pp,rr,Zflag,diffuse_periods, ...
analytic_deriv_info{:});
else
if options_.kalman_filter_mex
[LIK,lik] = kalman_filter_mex(Y,a_0_given_tm1,Pstar, ...
kalman_tol, riccati_tol, ...
T,Q,R,Z,Zflag,H,diffuse_periods, ...
options_.presample);
else
[LIK,lik] = kalman_filter(Y,diffuse_periods+1,size(Y,2), ...
a_0_given_tm1,Pstar, ...
kalman_tol, riccati_tol, ...
options_.rescale_prediction_error_covariance, ...
options_.presample, ...
T,Q,R,H,Z,mm,pp,rr,Zflag,diffuse_periods, ...
analytic_deriv_info{:});
end
end
else
[LIK,lik] = missing_observations_kalman_filter(dataset_info.missing.aindex,dataset_info.missing.number_of_observations,dataset_info.missing.no_more_missing_observations,Y,diffuse_periods+1,size(Y,2), ...
a_0_given_tm1, Pstar, ...
kalman_tol, options_.riccati_tol, ...
options_.rescale_prediction_error_covariance, ...
options_.presample, ...
T,Q,R,H,Z,mm,pp,rr,Zflag,diffuse_periods, occbin_);
if occbin_.status && isinf(LIK)
fval = Inf;
info(1) = 320;
info(4) = 0.1;
exit_flag = 0;
return
end
end
if analytic_derivation
LIK1=LIK;
LIK=LIK1{1};
lik1=lik;
lik=lik1{1};
end
if isinf(LIK)
if options_.use_univariate_filters_if_singularity_is_detected
singularity_has_been_detected = true;
if kalman_algo == 1
kalman_algo = 2;
else
kalman_algo = 4;
end
else
fval = Inf;
info(1) = 50;
info(4) = 0.1;
exit_flag = 0;
return
end
else
if options_.lik_init==3
LIK = LIK + dLIK;
if analytic_derivation==0 && nargout>3
if ~singular_diffuse_filter
lik = [dlik; lik];
else
lik = [sum(dlik,2); lik];
end
end
end
end
end
if (kalman_algo==2) || (kalman_algo==4)
% Univariate Kalman Filter
% resetting measurement error covariance matrix when necessary following DK (2012), Section 6.4.3 %
if isequal(H,0)
H1 = zeros(pp,1);
mmm = mm;
if analytic_derivation
DH = zeros(pp,length(xparam1));
end
else
if all(all(abs(H-diag(diag(H)))<1e-14))% ie, the covariance matrix is diagonal...
H1 = diag(H);
mmm = mm;
clear('tmp')
if analytic_derivation
for j=1:pp
tmp(j,:)=DH(j,j,:);
end
DH=tmp;
end
else
if ~expanded_state_vector_for_univariate_filter
Z1=zeros(pp,size(T,2));
for jz=1:length(Z)
Z1(jz,Z(jz))=1;
end
Z = [Z1, eye(pp)];
Zflag=1;
T = blkdiag(T,zeros(pp));
if options_.heteroskedastic_filter
clear Q
for kv=1:size(Qvec,3)
Q(:,:,kv) = blkdiag(Qvec(:,:,kv),H);
end
else
Q = blkdiag(Q,H);
end
R = blkdiag(R,eye(pp));
Pstar = blkdiag(Pstar,H);
Pinf = blkdiag(Pinf,zeros(pp));
H1 = zeros(pp,1);
Zflag=1;
end
mmm = mm+pp;
if singularity_has_been_detected
a_tmp = zeros(mmm,1);
a_tmp(1:length(a_0_given_tm1)) = a_0_given_tm1;
a_0_given_tm1 = a_tmp;
elseif ~expanded_state_vector_for_univariate_filter
a_0_given_tm1 = [a_0_given_tm1; zeros(pp,1)];
end
end
end
if analytic_derivation
analytic_deriv_info{5}=DH;
end
[LIK, lik] = univariate_kalman_filter(dataset_info.missing.aindex,dataset_info.missing.number_of_observations,dataset_info.missing.no_more_missing_observations,Y,diffuse_periods+1,size(Y,2), ...
a_0_given_tm1,Pstar, ...
options_.kalman_tol, ...
options_.riccati_tol, ...
options_.presample, ...
T,Q,R,H1,Z,mmm,pp,rr,Zflag,diffuse_periods,analytic_deriv_info{:});
if analytic_derivation
LIK1=LIK;
LIK=LIK1{1};
lik1=lik;
lik=lik1{1};
end
if options_.lik_init==3
LIK = LIK+dLIK;
if analytic_derivation==0 && nargout>3
lik = [dlik; lik];
end
end
end
if analytic_derivation
if no_DLIK==0
DLIK = LIK1{2};
end
if full_Hess
Hess = -LIK1{3};
end
if asy_Hess
Hess = LIK1{3};
end
end
if isnan(LIK)
fval = Inf;
info(1) = 45;
info(4) = 0.1;
exit_flag = 0;
return
end
if imag(LIK)~=0
fval = Inf;
info(1) = 46;
info(4) = 0.1;
exit_flag = 0;
return
end
if isinf(LIK)~=0
fval = Inf;
info(1) = 50;
info(4) = 0.1;
exit_flag = 0;
return
end
likelihood = LIK;
% ------------------------------------------------------------------------------
% 5. Adds prior if necessary
% ------------------------------------------------------------------------------
if analytic_derivation
if full_Hess
[lnprior, dlnprior, d2lnprior] = priordens(xparam1,bayestopt_.pshape,bayestopt_.p6,bayestopt_.p7,bayestopt_.p3,bayestopt_.p4);
Hess = Hess - d2lnprior;
else
[lnprior, dlnprior] = priordens(xparam1,bayestopt_.pshape,bayestopt_.p6,bayestopt_.p7,bayestopt_.p3,bayestopt_.p4);
end
if no_DLIK==0
DLIK = DLIK - dlnprior';
end
if outer_product_gradient
dlik = lik1{2};
dlik=[- dlnprior; dlik(start:end,:)];
Hess = dlik'*dlik;
end
else
lnprior = priordens(xparam1,bayestopt_.pshape,bayestopt_.p6,bayestopt_.p7,bayestopt_.p3,bayestopt_.p4);
end
if options_.endogenous_prior==1
if options_.lik_init==2 || options_.lik_init==3
error('Endogenous prior not supported with non-stationary models')
else
[lnpriormom] = endogenous_prior(Y,dataset_info,Pstar,bayestopt_,H);
fval = (likelihood-lnprior-lnpriormom);
end
else
fval = (likelihood-lnprior);
end
if options_.prior_restrictions.status
tmp = feval(options_.prior_restrictions.routine, M_, dr, endo_steady_state, exo_steady_state, exo_det_steady_state, options_, dataset_, dataset_info);
fval = fval - tmp;
end
if isnan(fval)
fval = Inf;
info(1) = 47;
info(4) = 0.1;
exit_flag = 0;
return
end
if imag(fval)~=0
fval = Inf;
info(1) = 48;
info(4) = 0.1;
exit_flag = 0;
return
end
if ~options_.kalman.keep_kalman_algo_if_singularity_is_detected
% Update options_.kalman_algo.
options_.kalman_algo = kalman_algo;
end
if analytic_derivation==0 && nargout>3
lik=lik(start:end,:);
DLIK=[-lnprior; lik(:)];
end
function a=set_Kalman_starting_values(a,M_,dr,options_,bayestopt_)
% function a=set_Kalman_starting_values(a,M_,dr,options_,bayestopt_)
% Sets initial states guess for Kalman filter/smoother based on M_.filter_initial_state
%
% INPUTS
% o a [double] (p*1) vector of states
% o M_ [structure] decribing the model
% o dr [structure] storing the decision rules
% o options_ [structure] describing the options
% o bayestopt_ [structure] describing the priors
%
% OUTPUTS
% o a [double] (p*1) vector of set initial states
if isfield(M_,'filter_initial_state') && ~isempty(M_.filter_initial_state)
state_indices=dr.order_var(dr.restrict_var_list(bayestopt_.mf0));
for ii=1:size(state_indices,1)
if ~isempty(M_.filter_initial_state{state_indices(ii),1})
if options_.loglinear && ~options_.logged_steady_state
a(bayestopt_.mf0(ii)) = log(eval(M_.filter_initial_state{state_indices(ii),2})) - log(dr.ys(state_indices(ii)));
elseif ~options_.loglinear && ~options_.logged_steady_state
a(bayestopt_.mf0(ii)) = eval(M_.filter_initial_state{state_indices(ii),2}) - dr.ys(state_indices(ii));
else
error(['The steady state is logged. This should not happen. Please contact the developers'])
end
end
end
end
function occbin_options = set_occbin_options(options_)
% this builds the opts_simul options field needed by occbin.solver
occbin_options.opts_simul = options_.occbin.simul;
occbin_options.opts_simul.curb_retrench = options_.occbin.likelihood.curb_retrench;
occbin_options.opts_simul.maxit = options_.occbin.likelihood.maxit;
occbin_options.opts_simul.periods = options_.occbin.likelihood.periods;
occbin_options.opts_simul.check_ahead_periods = options_.occbin.likelihood.check_ahead_periods;
occbin_options.opts_simul.max_check_ahead_periods = options_.occbin.likelihood.max_check_ahead_periods;
occbin_options.opts_simul.periodic_solution = options_.occbin.likelihood.periodic_solution;
occbin_options.opts_simul.restrict_state_space = options_.occbin.likelihood.restrict_state_space;
occbin_options.opts_simul.full_output = options_.occbin.likelihood.full_output;
occbin_options.opts_simul.piecewise_only = options_.occbin.likelihood.piecewise_only;
if ~isempty(options_.occbin.smoother.init_binding_indicator)
occbin_options.opts_simul.init_binding_indicator = options_.occbin.likelihood.init_binding_indicator;
occbin_options.opts_simul.init_regime_history=options_.occbin.likelihood.init_regime_history;
end