dynare/matlab/+identification/get_minimal_state_represent...

293 lines
11 KiB
Matlab

function [CheckCO,minns,minSYS] = get_minimal_state_representation(SYS, derivs_flag)
% Derives and checks the minimal state representation
% Let x = A*x(-1) + B*u and y = C*x(-1) + D*u be a linear state space
% system, then this function computes the following representation
% xmin = minA*xmin(-1) + minB*u and and y=minC*xmin(-1) + minD*u
%
% -------------------------------------------------------------------------
% INPUTS
% SYS [structure]
% with the following necessary fields:
% A: [nspred by nspred] in DR order
% Transition matrix for all state variables
% B: [nspred by exo_nbr] in DR order
% Transition matrix mapping shocks today to states today
% C: [varobs_nbr by nspred] in DR order
% Measurement matrix linking control/observable variables to states
% D: [varobs_nbr by exo_nbr] in DR order
% Measurement matrix mapping shocks today to controls/observables today
% and optional fields:
% dA: [nspred by nspred by totparam_nbr] in DR order
% Jacobian (wrt to all parameters) of transition matrix A
% dB: [nspred by exo_nbr by totparam_nbr] in DR order
% Jacobian (wrt to all parameters) of transition matrix B
% dC: [varobs_nbr by nspred by totparam_nbr] in DR order
% Jacobian (wrt to all parameters) of measurement matrix C
% dD: [varobs_nbr by exo_nbr by totparam_nbr] in DR order
% Jacobian (wrt to all parameters) of measurement matrix D
% derivs_flag [scalar]
% (optional) indicator whether to output parameter derivatives
% -------------------------------------------------------------------------
% OUTPUTS
% CheckCO: [scalar]
% equals to 1 if minimal state representation is found
% minns: [scalar]
% length of minimal state vector
% SYS [structure]
% with the following fields:
% minA: [minns by minns] in DR-order
% transition matrix A for evolution of minimal state vector
% minB: [minns by exo_nbr] in DR-order
% transition matrix B for evolution of minimal state vector
% minC: [varobs_nbr by minns] in DR-order
% measurement matrix C for evolution of controls, depending on minimal state vector only
% minD: [varobs_nbr by minns] in DR-order
% measurement matrix D for evolution of controls, depending on minimal state vector only
% dminA: [minns by minns by totparam_nbr] in DR order
% Jacobian (wrt to all parameters) of transition matrix minA
% dminB: [minns by exo_nbr by totparam_nbr] in DR order
% Jacobian (wrt to all parameters) of transition matrix minB
% dminC: [varobs_nbr by minns by totparam_nbr] in DR order
% Jacobian (wrt to all parameters) of measurement matrix minC
% dminD: [varobs_nbr by u_nbr by totparam_nbr] in DR order
% Jacobian (wrt to all parameters) of measurement matrix minD
% -------------------------------------------------------------------------
% This function is called by
% * identification.get_jacobians.m (previously getJJ.m)
% -------------------------------------------------------------------------
% This function calls
% * check_minimality (embedded)
% * minrealold (embedded)
% =========================================================================
% Copyright © 2019-2020 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
% =========================================================================
if nargin == 1
derivs_flag = 0;
end
realsmall = 1e-7;
[nspred,exo_nbr] = size(SYS.B);
varobs_nbr = size(SYS.C,1);
% Check controllability and observability conditions for full state vector
CheckCO = check_minimality(SYS.A,SYS.B,SYS.C);
if CheckCO == 1 % If model is already minimal, we are finished
minns = nspred;
minSYS = SYS;
else
%Model is not minimal
try
minreal_flag = 1;
% In future we will use SLICOT TB01PD.f mex file [to do @wmutschl], currently use workaround
[mSYS,U] = minrealold(SYS,realsmall);
minns = size(mSYS.A,1);
CheckCO = check_minimality(mSYS.A,mSYS.B,mSYS.C);
if CheckCO
minSYS.A = mSYS.A;
minSYS.B = mSYS.B;
minSYS.C = mSYS.C;
minSYS.D = mSYS.D;
if derivs_flag
totparam_nbr = size(SYS.dA,3);
minSYS.dA = zeros(minns,minns,totparam_nbr);
minSYS.dB = zeros(minns,exo_nbr,totparam_nbr);
minSYS.dC = zeros(varobs_nbr,minns,totparam_nbr);
% Note that orthogonal matrix U is such that (U*dA*U',U*dB,dC*U') is a Kalman decomposition of (dA,dB,dC) %
for jp=1:totparam_nbr
dA_tmp = U*SYS.dA(:,:,jp)*U';
dB_tmp = U*SYS.dB(:,:,jp);
dC_tmp = SYS.dC(:,:,jp)*U';
minSYS.dA(:,:,jp) = dA_tmp(1:minns,1:minns);
minSYS.dB(:,:,jp) = dB_tmp(1:minns,:);
minSYS.dC(:,:,jp) = dC_tmp(:,1:minns);
end
minSYS.dD = SYS.dD;
end
else
minSYS = [];
minns = [];
return;
end
catch
minreal_flag = 0; % if something went wrong use below procedure
end
if minreal_flag == 0
fprintf('Use naive brute-force approach to find minimal state space system.\n These computations may be inaccurate/wrong as ''minreal'' is not available, please raise an issue on GitLab or the forum\n')
% create indices for unnecessary states
exogstateindex = find(abs(sum(SYS.A,1))>realsmall);
minns = length(exogstateindex);
% remove unnecessary states from solution matrices
A_2 = SYS.A(exogstateindex,exogstateindex);
B_2 = SYS.B(exogstateindex,:);
C_2 = SYS.C(:,exogstateindex);
D = SYS.D;
ind_A2 = exogstateindex;
% minimal representation
minSYS.A = A_2;
minSYS.B = B_2;
minSYS.C = C_2;
minSYS.D = D;
% Check controllability and observability conditions
CheckCO = check_minimality(minSYS.A,minSYS.B,minSYS.C);
if CheckCO ~=1
% do brute-force search
j=1;
while (CheckCO==0 && j<minns)
combis = nchoosek(1:minns,j);
i=1;
while i <= size(combis,1)
ind_A2 = exogstateindex;
ind_A2(combis(j,:)) = [];
% remove unnecessary states from solution matrices
A_2 = SYS.A(ind_A2,ind_A2);
B_2 = SYS.B(ind_A2,:);
C_2 = SYS.C(:,ind_A2);
D = SYS.D;
% minimal representation
minSYS.A = A_2;
minSYS.B = B_2;
minSYS.C = C_2;
minSYS.D = D;
% Check controllability and observability conditions
CheckCO = check_minimality(minSYS.A,minSYS.B,minSYS.C);
if CheckCO == 1
minns = length(ind_A2);
break;
end
i=i+1;
end
j=j+1;
end
end
if derivs_flag
minSYS.dA = SYS.dA(ind_A2,ind_A2,:);
minSYS.dB = SYS.dB(ind_A2,:,:);
minSYS.dC = SYS.dC(:,ind_A2,:);
minSYS.dD = SYS.dD;
end
end
end
function CheckCO = check_minimality(a,b,c)
%% This function computes the controllability and the observability matrices of the ABCD system and checks if the system is minimal
%
% Inputs: Solution matrices A,B,C of ABCD representation of a DSGE model
% Outputs: CheckCO: equals 1, if both rank conditions for observability and controllability are fullfilled
n = size(a,1);
CC = b; % Initialize controllability matrix
OO = c; % Initialize observability matrix
if n >= 2
for indn = 1:1:n-1
CC = [CC, (a^indn)*b]; % Set up controllability matrix
OO = [OO; c*(a^indn)]; % Set up observability matrix
end
end
CheckC = (rank(full(CC))==n); % Check rank of controllability matrix
CheckO = (rank(full(OO))==n); % Check rank of observability matrix
CheckCO = CheckC&CheckO; % equals 1 if minimal state
end % check_minimality end
function [mSYS,U] = minrealold(SYS,tol)
% This is a temporary replacement for minreal, will be replaced by a mex file from SLICOT TB01PD.f soon
a = SYS.A;
b = SYS.B;
c = SYS.C;
[ns,nu] = size(b);
[am,bm,cm,U,k] = ControllabilityStaircaseRosenbrock(a,b,c,tol);
kk = sum(k);
nu = ns - kk;
nn = nu;
am = am(nu+1:ns,nu+1:ns);
bm = bm(nu+1:ns,:);
cm = cm(:,nu+1:ns);
ns = ns - nu;
if ns
[am,bm,cm,t,k] = ObservabilityStaircaseRosenbrock(am,bm,cm,tol);
kk = sum(k);
nu = ns - kk;
nn = nn + nu;
am = am(nu+1:ns,nu+1:ns);
bm = bm(nu+1:ns,:);
cm = cm(:,nu+1:ns);
end
mSYS.A = am;
mSYS.B = bm;
mSYS.C = cm;
mSYS.D = SYS.D;
end
function [abar,bbar,cbar,t,k] = ObservabilityStaircaseRosenbrock(a,b,c,tol)
%Observability staircase form
[aa,bb,cc,t,k] = ControllabilityStaircaseRosenbrock(a',c',b',tol);
abar = aa'; bbar = cc'; cbar = bb';
end
function [abar,bbar,cbar,t,k] = ControllabilityStaircaseRosenbrock(a, b, c, tol)
% Controllability staircase algorithm of Rosenbrock, 1968
[ra,ca] = size(a);
[rb,cb] = size(b);
ptjn1 = eye(ra);
ajn1 = a;
bjn1 = b;
rojn1 = cb;
deltajn1 = 0;
sigmajn1 = ra;
k = zeros(1,ra);
if nargin == 3
tol = ra*norm(a,1)*eps;
end
for jj = 1 : ra
[uj,sj,vj] = svd(bjn1);
[rsj,csj] = size(sj);
%p = flip(eye(rsj),2);
p = eye(rsj);
p = p(:,end:-1:1);
p = permute(p,[2 1 3:ndims(eye(rsj))]);
uj = uj*p;
bb = uj'*bjn1;
roj = rank(bb,tol);
[rbb,cbb] = size(bb);
sigmaj = rbb - roj;
sigmajn1 = sigmaj;
k(jj) = roj;
if roj == 0, break, end
if sigmaj == 0, break, end
abxy = uj' * ajn1 * uj;
aj = abxy(1:sigmaj,1:sigmaj);
bj = abxy(1:sigmaj,sigmaj+1:sigmaj+roj);
ajn1 = aj;
bjn1 = bj;
[ruj,cuj] = size(uj);
ptj = ptjn1 * ...
[uj zeros(ruj,deltajn1); ...
zeros(deltajn1,cuj) eye(deltajn1)];
ptjn1 = ptj;
deltaj = deltajn1 + roj;
deltajn1 = deltaj;
end
t = ptjn1';
abar = t * a * t';
bbar = t * b;
cbar = c * t';
end
end % Main function end