dynare/matlab/dynare_solve.m

227 lines
7.5 KiB
Matlab

function [x,info] = dynare_solve(func,x,options,varargin)
% function [x,info] = dynare_solve(func,x,options,varargin)
% proposes different solvers
%
% INPUTS
% func: name of the function to be solved
% x: guess values
% options: struct of Dynare options
% varargin: list of arguments following jacobian_flag
%
% OUTPUTS
% x: solution
% info=1: the model can not be solved
%
% SPECIAL REQUIREMENTS
% none
% Copyright (C) 2001-2015 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% jacobian_flag=1: jacobian given by the 'func' function
% jacobian_flag=0: jacobian obtained numerically
jacobian_flag = options.jacobian_flag;
% Set tolerance parameter depending the the caller function.
stack = dbstack;
if strcmp(stack(2).file,'simulation_core.m')
tolf = options.dynatol.f;
else
tolf = options.solve_tolf;
end
info = 0;
nn = size(x,1);
% checking initial values
if jacobian_flag
[fvec,fjac] = feval(func,x,varargin{:});
if any(any(isinf(fjac) | isnan(fjac)))
[infrow,infcol]=find(isinf(fjac) | isnan(fjac));
M=evalin('base','M_'); %get variable names from workspace
fprintf('\nSTEADY: The Jacobian contains Inf or NaN. The problem arises from: \n\n')
display_problematic_vars_Jacobian(infrow,infcol,M,x,'static','STEADY: ')
error('An element of the Jacobian is not finite or NaN')
end
else
fvec = feval(func,x,varargin{:});
fjac = zeros(nn,nn) ;
end
i = find(~isfinite(fvec));
if ~isempty(i)
disp(['STEADY: numerical initial values or parameters incompatible with the following' ...
' equations'])
disp(i')
disp('Please check for example')
disp(' i) if all parameters occurring in these equations are defined')
disp(' ii) that no division by an endogenous variable initialized to 0 occurs')
info = 1;
x = NaN(size(fvec));
return;
end
% this test doesn't check complementarity conditions and is not used for
% mixed complementarity problems
if (options.solve_algo ~= 10) && (max(abs(fvec)) < tolf)
return ;
end
if options.solve_algo == 0
if ~isoctave
if ~user_has_matlab_license('optimization_toolbox')
error('You can''t use solve_algo=0 since you don''t have MATLAB''s Optimization Toolbox')
end
end
options4fsolve=optimset('fsolve');
options4fsolve.MaxFunEvals = 50000;
options4fsolve.MaxIter = options.steady.maxit;
options4fsolve.TolFun = tolf;
options4fsolve.Display = 'iter';
if jacobian_flag
options4fsolve.Jacobian = 'on';
else
options4fsolve.Jacobian = 'off';
end
if ~isoctave
[x,fval,exitval,output] = fsolve(func,x,options4fsolve,varargin{:});
else
% Under Octave, use a wrapper, since fsolve() does not have a 4th arg
func2 = str2func(func);
func = @(x) func2(x, varargin{:});
% The Octave version of fsolve does not converge when it starts from the solution
fvec = feval(func,x);
if max(abs(fvec)) >= tolf
[x,fval,exitval,output] = fsolve(func,x,options4fsolve);
else
exitval = 3;
end;
end
if exitval == 1
info = 0;
elseif exitval > 1
func2 = str2func(func);
func = @(x) func2(x, varargin{:});
fvec = feval(func,x);
if max(abs(fvec)) >= tolf
info = 1;
else
info = 0;
end
else
info = 1;
end
elseif options.solve_algo == 1
[x,info]=solve1(func,x,1:nn,1:nn,jacobian_flag,options.gstep, ...
tolf,options.solve_tolx, ...
options.steady.maxit,options.debug,varargin{:});
elseif options.solve_algo == 9
[x,info]=trust_region(func,x,1:nn,1:nn,jacobian_flag,options.gstep, ...
tolf,options.solve_tolx, ...
options.steady.maxit,options.debug,varargin{:});
elseif options.solve_algo == 2 || options.solve_algo == 4
if options.solve_algo == 2
solver = @solve1;
else
solver = @trust_region;
end
if ~jacobian_flag
fjac = zeros(nn,nn) ;
dh = max(abs(x),options.gstep(1)*ones(nn,1))*eps^(1/3);
for j = 1:nn
xdh = x ;
xdh(j) = xdh(j)+dh(j) ;
fjac(:,j) = (feval(func,xdh,varargin{:}) - fvec)./dh(j) ;
end
end
[j1,j2,r,s] = dmperm(fjac);
if options.debug
disp(['DYNARE_SOLVE (solve_algo=2|4): number of blocks = ' num2str(length(r))]);
end
for i=length(r)-1:-1:1
if options.debug
disp(['DYNARE_SOLVE (solve_algo=2|4): solving block ' num2str(i) ', of size ' num2str(r(i+1)-r(i)) ]);
end
[x,info]=solver(func,x,j1(r(i):r(i+1)-1),j2(r(i):r(i+1)-1),jacobian_flag, ...
options.gstep, ...
tolf,options.solve_tolx, ...
options.steady.maxit,options.debug,varargin{:});
if info
return
end
end
fvec = feval(func,x,varargin{:});
if max(abs(fvec)) > tolf
[x,info]=solver(func,x,1:nn,1:nn,jacobian_flag, ...
options.gstep, tolf,options.solve_tolx, ...
options.steady.maxit,options.debug,varargin{:});
end
elseif options.solve_algo == 3
if jacobian_flag
[x,info] = csolve(func,x,func,1e-6,500,varargin{:});
else
[x,info] = csolve(func,x,[],1e-6,500,varargin{:});
end
elseif options.solve_algo == 10
% LMMCP
olmmcp = options.lmmcp;
[x,fval,exitflag] = lmmcp(func,x,olmmcp.lb,olmmcp.ub,olmmcp,varargin{:});
if exitflag == 1
info = 0;
else
info = 1;
end
elseif options.solve_algo == 11
% PATH linear mixed complementary problem
if ~exist('lcppath')
error(['PATH can''t be provided with Dynare. You need to install it ' ...
'yourself and add its location to Matlab/Octave path before ' ...
'running Dynare'])
end
if options.linear ~= 1
error(['solve_algo==11 (linear complementarity problem) requires ' ...
'linear option in model instruction']);
end
olcppath = options.lcppath;
[junk,M] = func(x,varargin{:});
[x,mu] = pathlcp(fjac,olcppath.q,olcppath.lb,olcppath.ub,x,olcppath.A,olcppath.b,olcppath.t,olcppath.mu0);
elseif options.solve_algo == 12
% PATH mixed complementary problem
% PATH linear mixed complementary problem
if ~exist('mcppath')
error(['PATH can''t be provided with Dynare. You need to install it ' ...
'yourself and add its location to Matlab/Octave path before ' ...
'running Dynare'])
end
omcppath = options.mcppath;
global mcp_data
mcp_data.func = func;
mcp_data.args = varargin;
[x,mu] = pathmcp(x,omcppath.lb,omcppath.ub,'mcp_func',omcppath.A,omcppath.b,omcppath.t,omcppath.mu0);
else
error('DYNARE_SOLVE: option solve_algo must be one of [0,1,2,3,4,9,10:12]')
end