dynare/matlab/UnivariateSpectralDensity.m

179 lines
5.1 KiB
Matlab

function [omega,f] = UnivariateSpectralDensity(dr,var_list)
% This function computes the theoretical spectral density of each
% endogenous variable declared in var_list. Results are stored in
% oo_ and may be plotted.
%
% Adapted from th_autocovariances.m.
% Copyright (C) 2006-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global options_ oo_ M_
omega = []; f = [];
if options_.order > 1
disp('UnivariateSpectralDensity :: I Cannot compute the theoretical spectral density')
disp('with a second order approximation of the DSGE model!')
disp('Please set order = 1. I abort')
return
end
pltinfo = options_.SpectralDensity.plot;
cutoff = options_.SpectralDensity.cutoff;
sdl = options_.SpectralDensity.sdl;
omega = (0:sdl:pi)';
GridSize = length(omega);
exo_names_orig_ord = M_.exo_names_orig_ord;
if exist('OCTAVE_VERSION')
warning('off', 'Octave:divide-by-zero')
else
warning off MATLAB:dividebyzero
end
if nargin<2
var_list = [];
end
if size(var_list,1) == 0
var_list = M_.endo_names(1:M_.orig_endo_nbr, :);
end
nvar = size(var_list,1);
ivar=zeros(nvar,1);
for i=1:nvar
i_tmp = strmatch(var_list(i,:),M_.endo_names,'exact');
if isempty(i_tmp)
error (['One of the variables specified does not exist']) ;
else
ivar(i) = i_tmp;
end
end
f = zeros(nvar,GridSize);
ghx = dr.ghx;
ghu = dr.ghu;
nspred = M_.nspred;
nstatic = M_.nstatic;
kstate = dr.kstate;
order = dr.order_var;
iv(order) = [1:length(order)];
nx = size(ghx,2);
ikx = [nstatic+1:nstatic+nspred];
A = zeros(nx,nx);
k0 = kstate(find(kstate(:,2) <= M_.maximum_lag+1),:);
i0 = find(k0(:,2) == M_.maximum_lag+1);
i00 = i0;
n0 = length(i0);
A(i0,:) = ghx(ikx,:);
AS = ghx(:,i0);
ghu1 = zeros(nx,M_.exo_nbr);
ghu1(i0,:) = ghu(ikx,:);
for i=M_.maximum_lag:-1:2
i1 = find(k0(:,2) == i);
n1 = size(i1,1);
j1 = zeros(n1,1);
j2 = j1;
for k1 = 1:n1
j1(k1) = find(k0(i00,1)==k0(i1(k1),1));
j2(k1) = find(k0(i0,1)==k0(i1(k1),1));
end
AS(:,j1) = AS(:,j1)+ghx(:,i1);
i0 = i1;
end
Gamma = zeros(nvar,cutoff+1);
[A,B] = kalman_transition_matrix(dr,ikx',1:nx,M_.exo_nbr);
[vx, u] = lyapunov_symm(A,B*M_.Sigma_e*B',options_.qz_criterium,options_.lyapunov_complex_threshold);
iky = iv(ivar);
if ~isempty(u)
iky = iky(find(any(abs(ghx(iky,:)*u) < options_.Schur_vec_tol,2)));
ivar = dr.order_var(iky);
end
aa = ghx(iky,:);
bb = ghu(iky,:);
if options_.hp_filter == 0
tmp = aa*vx*aa'+ bb*M_.Sigma_e*bb';
k = find(abs(tmp) < 1e-12);
tmp(k) = 0;
Gamma(:,1) = diag(tmp);
vxy = (A*vx*aa'+ghu1*M_.Sigma_e*bb');
tmp = aa*vxy;
k = find(abs(tmp) < 1e-12);
tmp(k) = 0;
Gamma(:,2) = diag(tmp);
for i=2:cutoff
vxy = A*vxy;
tmp = aa*vxy;
k = find(abs(tmp) < 1e-12);
tmp(k) = 0;
Gamma(:,i+1) = diag(tmp);
end
else
iky = iv(ivar);
aa = ghx(iky,:);
bb = ghu(iky,:);
lambda = options_.hp_filter;
ngrid = options_.hp_ngrid;
freqs = 0 : ((2*pi)/ngrid) : (2*pi*(1 - .5/ngrid));
tpos = exp( sqrt(-1)*freqs);
tneg = exp(-sqrt(-1)*freqs);
hp1 = 4*lambda*(1 - cos(freqs)).^2 ./ (1 + 4*lambda*(1 - cos(freqs)).^2);
mathp_col = [];
IA = eye(size(A,1));
IE = eye(M_.exo_nbr);
for ig = 1:ngrid
f_omega =(1/(2*pi))*( [inv(IA-A*tneg(ig))*ghu1;IE]...
*M_.Sigma_e*[ghu1'*inv(IA-A'*tpos(ig)) IE]); % state variables
g_omega = [aa*tneg(ig) bb]*f_omega*[aa'*tpos(ig); bb']; % selected variables
f_hp = hp1(ig)^2*g_omega; % spectral density of selected filtered series
mathp_col = [mathp_col ; (f_hp(:))']; % store as matrix row
% for ifft
end;
imathp_col = real(ifft(mathp_col))*(2*pi);
tmp = reshape(imathp_col(1,:),nvar,nvar);
k = find(abs(tmp)<1e-12);
tmp(k) = 0;
Gamma(:,1) = diag(tmp);
sy = sqrt(Gamma(:,1));
sy = sy *sy';
for i=1:cutoff-1
tmp = reshape(imathp_col(i+1,:),nvar,nvar)./sy;
k = find(abs(tmp) < 1e-12);
tmp(k) = 0;
Gamma(:,i+1) = diag(tmp);
end
end
H = 1:cutoff;
for i=1:nvar
f(i,:) = Gamma(i,1)/(2*pi) + Gamma(i,H+1)*cos(H'*omega')/pi;
end
if exist('OCTAVE_VERSION')
warning('on', 'Octave:divide-by-zero')
else
warning on MATLAB:dividebyzero
end
if pltinfo
for i= 1:nvar
figure('Name',['Spectral Density of ' deblank(M_.endo_names(ivar(i),:)) '.'])
plot(omega,f(i,:),'-k','linewidth',2)
xlabel('0 \leq \omega \leq \pi')
ylabel('f(\omega)')
box on
axis tight
end
end