dynare/preprocessor/StaticModel.cc

1821 lines
73 KiB
C++

/*
* Copyright (C) 2003-2012 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <http://www.gnu.org/licenses/>.
*/
#include <iostream>
#include <cmath>
#include <cstdlib>
#include <cassert>
#include <cstdio>
#include <cerrno>
#include <algorithm>
#include "StaticModel.hh"
// For mkdir() and chdir()
#ifdef _WIN32
# include <direct.h>
#else
# include <unistd.h>
# include <sys/stat.h>
# include <sys/types.h>
#endif
StaticModel::StaticModel(SymbolTable &symbol_table_arg,
NumericalConstants &num_constants_arg,
ExternalFunctionsTable &external_functions_table_arg) :
ModelTree(symbol_table_arg, num_constants_arg, external_functions_table_arg),
global_temporary_terms(true)
{
}
void
StaticModel::compileDerivative(ofstream &code_file, unsigned int &instruction_number, int eq, int symb_id, map_idx_t &map_idx, temporary_terms_t temporary_terms) const
{
first_derivatives_t::const_iterator it = first_derivatives.find(make_pair(eq, symbol_table.getID(eEndogenous, symb_id)));
if (it != first_derivatives.end())
(it->second)->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
else
{
FLDZ_ fldz;
fldz.write(code_file, instruction_number);
}
}
void
StaticModel::compileChainRuleDerivative(ofstream &code_file, unsigned int &instruction_number, int eqr, int varr, int lag, map_idx_t &map_idx, temporary_terms_t temporary_terms) const
{
map<pair<int, pair<int, int> >, expr_t>::const_iterator it = first_chain_rule_derivatives.find(make_pair(eqr, make_pair(varr, lag)));
if (it != first_chain_rule_derivatives.end())
(it->second)->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
else
{
FLDZ_ fldz;
fldz.write(code_file, instruction_number);
}
}
void
StaticModel::computeTemporaryTermsOrdered()
{
map<expr_t, pair<int, int> > first_occurence;
map<expr_t, int> reference_count;
BinaryOpNode *eq_node;
first_derivatives_t::const_iterator it;
first_chain_rule_derivatives_t::const_iterator it_chr;
ostringstream tmp_s;
v_temporary_terms.clear();
map_idx.clear();
unsigned int nb_blocks = getNbBlocks();
v_temporary_terms = vector< vector<temporary_terms_t> >(nb_blocks);
v_temporary_terms_local = vector< vector<temporary_terms_t> >(nb_blocks);
v_temporary_terms_inuse = vector<temporary_terms_inuse_t>(nb_blocks);
map_idx2 = vector<map_idx_t>(nb_blocks);
temporary_terms.clear();
//local temporay terms
for (unsigned int block = 0; block < nb_blocks; block++)
{
map<expr_t, int> reference_count_local;
reference_count_local.clear();
map<expr_t, pair<int, int> > first_occurence_local;
first_occurence_local.clear();
temporary_terms_t temporary_terms_l;
temporary_terms_l.clear();
unsigned int block_size = getBlockSize(block);
unsigned int block_nb_mfs = getBlockMfs(block);
unsigned int block_nb_recursives = block_size - block_nb_mfs;
v_temporary_terms_local[block] = vector<temporary_terms_t>(block_size);
for (unsigned int i = 0; i < block_size; i++)
{
if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
getBlockEquationRenormalizedExpr(block, i)->computeTemporaryTerms(reference_count_local, temporary_terms_l, first_occurence_local, block, v_temporary_terms_local, i);
else
{
eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
eq_node->computeTemporaryTerms(reference_count_local, temporary_terms_l, first_occurence_local, block, v_temporary_terms_local, i);
}
}
for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
{
expr_t id = it->second.second;
id->computeTemporaryTerms(reference_count_local, temporary_terms_l, first_occurence_local, block, v_temporary_terms_local, block_size-1);
}
set<int> temporary_terms_in_use;
temporary_terms_in_use.clear();
v_temporary_terms_inuse[block] = temporary_terms_in_use;
computeTemporaryTermsMapping(temporary_terms_l, map_idx2[block]);
}
// global temporay terms
for (unsigned int block = 0; block < nb_blocks; block++)
{
// Compute the temporary terms reordered
unsigned int block_size = getBlockSize(block);
unsigned int block_nb_mfs = getBlockMfs(block);
unsigned int block_nb_recursives = block_size - block_nb_mfs;
v_temporary_terms[block] = vector<temporary_terms_t>(block_size);
for (unsigned int i = 0; i < block_size; i++)
{
if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
getBlockEquationRenormalizedExpr(block, i)->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, i);
else
{
eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
eq_node->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, i);
}
}
for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
{
expr_t id = it->second.second;
id->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, block_size-1);
}
}
for (unsigned int block = 0; block < nb_blocks; block++)
{
// Collecte the temporary terms reordered
unsigned int block_size = getBlockSize(block);
unsigned int block_nb_mfs = getBlockMfs(block);
unsigned int block_nb_recursives = block_size - block_nb_mfs;
set<int> temporary_terms_in_use;
for (unsigned int i = 0; i < block_size; i++)
{
if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
getBlockEquationRenormalizedExpr(block, i)->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
else
{
eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
eq_node->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
}
}
for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
{
expr_t id = it->second.second;
id->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
}
for (int i = 0; i < (int) getBlockSize(block); i++)
for (temporary_terms_t::const_iterator it = v_temporary_terms[block][i].begin();
it != v_temporary_terms[block][i].end(); it++)
(*it)->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
v_temporary_terms_inuse[block] = temporary_terms_in_use;
}
computeTemporaryTermsMapping(temporary_terms, map_idx);
}
void
StaticModel::computeTemporaryTermsMapping(temporary_terms_t &temporary_terms, map_idx_t &map_idx)
{
// Add a mapping form node ID to temporary terms order
int j = 0;
for (temporary_terms_t::const_iterator it = temporary_terms.begin();
it != temporary_terms.end(); it++)
map_idx[(*it)->idx] = j++;
}
void
StaticModel::writeModelEquationsOrdered_M(const string &static_basename) const
{
string tmp_s, sps;
ostringstream tmp_output, tmp1_output, global_output;
expr_t lhs = NULL, rhs = NULL;
BinaryOpNode *eq_node;
map<expr_t, int> reference_count;
temporary_terms_t local_temporary_terms;
ofstream output;
vector<int> feedback_variables;
deriv_node_temp_terms_t tef_terms;
ExprNodeOutputType local_output_type;
local_output_type = oMatlabStaticModelSparse;
if (global_temporary_terms)
local_temporary_terms = temporary_terms;
//----------------------------------------------------------------------
//For each block
for (unsigned int block = 0; block < getNbBlocks(); block++)
{
//recursive_variables.clear();
feedback_variables.clear();
//For a block composed of a single equation determines wether we have to evaluate or to solve the equation
BlockSimulationType simulation_type = getBlockSimulationType(block);
unsigned int block_size = getBlockSize(block);
unsigned int block_mfs = getBlockMfs(block);
unsigned int block_recursive = block_size - block_mfs;
tmp1_output.str("");
tmp1_output << static_basename << "_" << block+1 << ".m";
output.open(tmp1_output.str().c_str(), ios::out | ios::binary);
output << "%\n";
output << "% " << tmp1_output.str() << " : Computes static model for Dynare\n";
output << "%\n";
output << "% Warning : this file is generated automatically by Dynare\n";
output << "% from model file (.mod)\n\n";
output << "%/\n";
if (simulation_type == EVALUATE_BACKWARD || simulation_type == EVALUATE_FORWARD)
output << "function y = " << static_basename << "_" << block+1 << "(y, x, params)\n";
else
output << "function [residual, y, g1] = " << static_basename << "_" << block+1 << "(y, x, params)\n";
BlockType block_type;
if (simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_COMPLETE)
block_type = SIMULTANS;
else if ((simulation_type == SOLVE_FORWARD_SIMPLE || simulation_type == SOLVE_BACKWARD_SIMPLE
|| simulation_type == EVALUATE_BACKWARD || simulation_type == EVALUATE_FORWARD)
&& getBlockFirstEquation(block) < prologue)
block_type = PROLOGUE;
else if ((simulation_type == SOLVE_FORWARD_SIMPLE || simulation_type == SOLVE_BACKWARD_SIMPLE
|| simulation_type == EVALUATE_BACKWARD || simulation_type == EVALUATE_FORWARD)
&& getBlockFirstEquation(block) >= equations.size() - epilogue)
block_type = EPILOGUE;
else
block_type = SIMULTANS;
output << " % ////////////////////////////////////////////////////////////////////////" << endl
<< " % //" << string(" Block ").substr(int (log10(block + 1))) << block + 1 << " " << BlockType0(block_type)
<< " //" << endl
<< " % // Simulation type "
<< BlockSim(simulation_type) << " //" << endl
<< " % ////////////////////////////////////////////////////////////////////////" << endl;
output << " global options_;" << endl;
//The Temporary terms
if (simulation_type != EVALUATE_BACKWARD && simulation_type != EVALUATE_FORWARD)
output << " g1 = spalloc(" << block_mfs << ", " << block_mfs << ", " << derivative_endo[block].size() << ");" << endl;
if (v_temporary_terms_inuse[block].size())
{
tmp_output.str("");
for (temporary_terms_inuse_t::const_iterator it = v_temporary_terms_inuse[block].begin();
it != v_temporary_terms_inuse[block].end(); it++)
tmp_output << " T" << *it;
output << " global" << tmp_output.str() << ";\n";
}
if (simulation_type != EVALUATE_BACKWARD && simulation_type != EVALUATE_FORWARD)
output << " residual=zeros(" << block_mfs << ",1);\n";
// The equations
for (unsigned int i = 0; i < block_size; i++)
{
if (!global_temporary_terms)
local_temporary_terms = v_temporary_terms[block][i];
temporary_terms_t tt2;
tt2.clear();
if (v_temporary_terms[block].size())
{
output << " " << "% //Temporary variables" << endl;
for (temporary_terms_t::const_iterator it = v_temporary_terms[block][i].begin();
it != v_temporary_terms[block][i].end(); it++)
{
if (dynamic_cast<ExternalFunctionNode *>(*it) != NULL)
(*it)->writeExternalFunctionOutput(output, local_output_type, tt2, tef_terms);
output << " " << sps;
(*it)->writeOutput(output, local_output_type, local_temporary_terms, tef_terms);
output << " = ";
(*it)->writeOutput(output, local_output_type, tt2, tef_terms);
// Insert current node into tt2
tt2.insert(*it);
output << ";" << endl;
}
}
int variable_ID = getBlockVariableID(block, i);
int equation_ID = getBlockEquationID(block, i);
EquationType equ_type = getBlockEquationType(block, i);
string sModel = symbol_table.getName(symbol_table.getID(eEndogenous, variable_ID));
eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
lhs = eq_node->get_arg1();
rhs = eq_node->get_arg2();
tmp_output.str("");
lhs->writeOutput(tmp_output, local_output_type, local_temporary_terms);
switch (simulation_type)
{
case EVALUATE_BACKWARD:
case EVALUATE_FORWARD:
evaluation:
output << " % equation " << getBlockEquationID(block, i)+1 << " variable : " << sModel
<< " (" << variable_ID+1 << ") " << c_Equation_Type(equ_type) << endl;
output << " ";
if (equ_type == E_EVALUATE)
{
output << tmp_output.str();
output << " = ";
rhs->writeOutput(output, local_output_type, local_temporary_terms);
}
else if (equ_type == E_EVALUATE_S)
{
output << "%" << tmp_output.str();
output << " = ";
if (isBlockEquationRenormalized(block, i))
{
rhs->writeOutput(output, local_output_type, local_temporary_terms);
output << "\n ";
tmp_output.str("");
eq_node = (BinaryOpNode *) getBlockEquationRenormalizedExpr(block, i);
lhs = eq_node->get_arg1();
rhs = eq_node->get_arg2();
lhs->writeOutput(output, local_output_type, local_temporary_terms);
output << " = ";
rhs->writeOutput(output, local_output_type, local_temporary_terms);
}
}
else
{
cerr << "Type missmatch for equation " << equation_ID+1 << "\n";
exit(EXIT_FAILURE);
}
output << ";\n";
break;
case SOLVE_BACKWARD_SIMPLE:
case SOLVE_FORWARD_SIMPLE:
case SOLVE_BACKWARD_COMPLETE:
case SOLVE_FORWARD_COMPLETE:
if (i < block_recursive)
goto evaluation;
feedback_variables.push_back(variable_ID);
output << " % equation " << equation_ID+1 << " variable : " << sModel
<< " (" << variable_ID+1 << ") " << c_Equation_Type(equ_type) << endl;
output << " " << "residual(" << i+1-block_recursive << ") = (";
goto end;
default:
end:
output << tmp_output.str();
output << ") - (";
rhs->writeOutput(output, local_output_type, local_temporary_terms);
output << ");\n";
}
}
// The Jacobian if we have to solve the block
if (simulation_type == SOLVE_BACKWARD_SIMPLE || simulation_type == SOLVE_FORWARD_SIMPLE
|| simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
output << " " << sps << "% Jacobian " << endl;
switch (simulation_type)
{
case SOLVE_BACKWARD_SIMPLE:
case SOLVE_FORWARD_SIMPLE:
case SOLVE_BACKWARD_COMPLETE:
case SOLVE_FORWARD_COMPLETE:
for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
{
unsigned int eq = it->first.first;
unsigned int var = it->first.second;
unsigned int eqr = getBlockEquationID(block, eq);
unsigned int varr = getBlockVariableID(block, var);
expr_t id = it->second.second;
output << " g1(" << eq+1-block_recursive << ", " << var+1-block_recursive << ") = ";
id->writeOutput(output, local_output_type, local_temporary_terms);
output << "; % variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, varr))
<< "(" << 0
<< ") " << varr+1
<< ", equation=" << eqr+1 << endl;
}
break;
default:
break;
}
output << "end" << endl;
output.close();
}
}
void
StaticModel::writeModelEquationsCode(const string file_name, const string bin_basename, map_idx_t map_idx) const
{
ostringstream tmp_output;
ofstream code_file;
unsigned int instruction_number = 0;
bool file_open = false;
string main_name = file_name;
main_name += ".cod";
code_file.open(main_name.c_str(), ios::out | ios::binary | ios::ate);
if (!code_file.is_open())
{
cout << "Error : Can't open file \"" << main_name << "\" for writing\n";
exit(EXIT_FAILURE);
}
int count_u;
int u_count_int = 0;
Write_Inf_To_Bin_File(file_name, u_count_int, file_open, false, symbol_table.endo_nbr());
file_open = true;
//Temporary variables declaration
FDIMST_ fdimst(temporary_terms.size());
fdimst.write(code_file, instruction_number);
FBEGINBLOCK_ fbeginblock(symbol_table.endo_nbr(),
SOLVE_FORWARD_COMPLETE,
0,
symbol_table.endo_nbr(),
variable_reordered,
equation_reordered,
false,
symbol_table.endo_nbr(),
0,
0,
u_count_int,
symbol_table.endo_nbr()
);
fbeginblock.write(code_file, instruction_number);
// Add a mapping form node ID to temporary terms order
int j = 0;
for (temporary_terms_t::const_iterator it = temporary_terms.begin();
it != temporary_terms.end(); it++)
map_idx[(*it)->idx] = j++;
compileTemporaryTerms(code_file, instruction_number, temporary_terms, map_idx, false, false);
compileModelEquations(code_file, instruction_number, temporary_terms, map_idx, false, false);
FENDEQU_ fendequ;
fendequ.write(code_file, instruction_number);
// Get the current code_file position and jump if eval = true
streampos pos1 = code_file.tellp();
FJMPIFEVAL_ fjmp_if_eval(0);
fjmp_if_eval.write(code_file, instruction_number);
int prev_instruction_number = instruction_number;
vector<vector<pair<int, int> > > derivatives;
derivatives.resize(symbol_table.endo_nbr());
count_u = symbol_table.endo_nbr();
for (first_derivatives_t::const_iterator it = first_derivatives.begin();
it != first_derivatives.end(); it++)
{
int deriv_id = it->first.second;
if (getTypeByDerivID(deriv_id) == eEndogenous)
{
expr_t d1 = it->second;
unsigned int eq = it->first.first;
int symb = getSymbIDByDerivID(deriv_id);
unsigned int var = symbol_table.getTypeSpecificID(symb);
FNUMEXPR_ fnumexpr(FirstEndoDerivative, eq, var);
fnumexpr.write(code_file, instruction_number);
if (!derivatives[eq].size())
derivatives[eq].clear();
derivatives[eq].push_back(make_pair(var, count_u));
d1->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
FSTPSU_ fstpsu(count_u);
fstpsu.write(code_file, instruction_number);
count_u++;
}
}
for (int i = 0; i < symbol_table.endo_nbr(); i++)
{
FLDR_ fldr(i);
fldr.write(code_file, instruction_number);
if (derivatives[i].size())
{
for (vector<pair<int, int> >::const_iterator it = derivatives[i].begin();
it != derivatives[i].end(); it++)
{
FLDSU_ fldsu(it->second);
fldsu.write(code_file, instruction_number);
FLDSV_ fldsv(eEndogenous, it->first);
fldsv.write(code_file, instruction_number);
FBINARY_ fbinary(oTimes);
fbinary.write(code_file, instruction_number);
if (it != derivatives[i].begin())
{
FBINARY_ fbinary(oPlus);
fbinary.write(code_file, instruction_number);
}
}
FBINARY_ fbinary(oMinus);
fbinary.write(code_file, instruction_number);
}
FSTPSU_ fstpsu(i);
fstpsu.write(code_file, instruction_number);
}
// Get the current code_file position and jump = true
streampos pos2 = code_file.tellp();
FJMP_ fjmp(0);
fjmp.write(code_file, instruction_number);
// Set code_file position to previous JMPIFEVAL_ and set the number of instructions to jump
streampos pos3 = code_file.tellp();
code_file.seekp(pos1);
FJMPIFEVAL_ fjmp_if_eval1(instruction_number - prev_instruction_number);
fjmp_if_eval1.write(code_file, instruction_number);
code_file.seekp(pos3);
prev_instruction_number = instruction_number;
temporary_terms_t tt2;
tt2.clear();
temporary_terms_t tt3;
tt3.clear();
// The Jacobian if we have to solve the block determinsitic bloc
for (first_derivatives_t::const_iterator it = first_derivatives.begin();
it != first_derivatives.end(); it++)
{
int deriv_id = it->first.second;
if (getTypeByDerivID(deriv_id) == eEndogenous)
{
expr_t d1 = it->second;
unsigned int eq = it->first.first;
int symb = getSymbIDByDerivID(deriv_id);
unsigned int var = symbol_table.getTypeSpecificID(symb);
FNUMEXPR_ fnumexpr(FirstEndoDerivative, eq, var);
fnumexpr.write(code_file, instruction_number);
if (!derivatives[eq].size())
derivatives[eq].clear();
derivatives[eq].push_back(make_pair(var, count_u));
d1->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
FSTPG2_ fstpg2(eq, var);
fstpg2.write(code_file, instruction_number);
}
}
// Set codefile position to previous JMP_ and set the number of instructions to jump
pos1 = code_file.tellp();
code_file.seekp(pos2);
FJMP_ fjmp1(instruction_number - prev_instruction_number);
fjmp1.write(code_file, instruction_number);
code_file.seekp(pos1);
FENDBLOCK_ fendblock;
fendblock.write(code_file, instruction_number);
FEND_ fend;
fend.write(code_file, instruction_number);
code_file.close();
}
void
StaticModel::writeModelEquationsCode_Block(const string file_name, const string bin_basename, map_idx_t map_idx, vector<map_idx_t> map_idx2) const
{
struct Uff_l
{
int u, var, lag;
Uff_l *pNext;
};
struct Uff
{
Uff_l *Ufl, *Ufl_First;
};
int i, v;
string tmp_s;
ostringstream tmp_output;
ofstream code_file;
unsigned int instruction_number = 0;
expr_t lhs = NULL, rhs = NULL;
BinaryOpNode *eq_node;
Uff Uf[symbol_table.endo_nbr()];
map<expr_t, int> reference_count;
vector<int> feedback_variables;
deriv_node_temp_terms_t tef_terms;
bool file_open = false;
string main_name = file_name;
main_name += ".cod";
code_file.open(main_name.c_str(), ios::out | ios::binary | ios::ate);
if (!code_file.is_open())
{
cout << "Error : Can't open file \"" << main_name << "\" for writing\n";
exit(EXIT_FAILURE);
}
//Temporary variables declaration
FDIMST_ fdimst(temporary_terms.size());
fdimst.write(code_file, instruction_number);
for (unsigned int block = 0; block < getNbBlocks(); block++)
{
feedback_variables.clear();
if (block > 0)
{
FENDBLOCK_ fendblock;
fendblock.write(code_file, instruction_number);
}
int count_u;
int u_count_int = 0;
BlockSimulationType simulation_type = getBlockSimulationType(block);
unsigned int block_size = getBlockSize(block);
unsigned int block_mfs = getBlockMfs(block);
unsigned int block_recursive = block_size - block_mfs;
if (simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE || simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE
|| simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
{
Write_Inf_To_Bin_File_Block(file_name, bin_basename, block, u_count_int, file_open);
file_open = true;
}
FBEGINBLOCK_ fbeginblock(block_mfs,
simulation_type,
getBlockFirstEquation(block),
block_size,
variable_reordered,
equation_reordered,
blocks_linear[block],
symbol_table.endo_nbr(),
0,
0,
u_count_int,
/*symbol_table.endo_nbr()*/ block_size
);
fbeginblock.write(code_file, instruction_number);
// Get the current code_file position and jump if eval = true
streampos pos1 = code_file.tellp();
FJMPIFEVAL_ fjmp_if_eval(0);
fjmp_if_eval.write(code_file, instruction_number);
int prev_instruction_number = instruction_number;
for (i = 0; i < (int) block_size; i++)
{
//The Temporary terms
temporary_terms_t tt2;
tt2.clear();
if (v_temporary_terms[block].size())
{
for (temporary_terms_t::const_iterator it = v_temporary_terms[block][i].begin();
it != v_temporary_terms[block][i].end(); it++)
{
if (dynamic_cast<ExternalFunctionNode *>(*it) != NULL)
(*it)->compileExternalFunctionOutput(code_file, instruction_number, false, tt2, map_idx, false, false, tef_terms);
FNUMEXPR_ fnumexpr(TemporaryTerm, (int) (map_idx.find((*it)->idx)->second));
fnumexpr.write(code_file, instruction_number);
(*it)->compile(code_file, instruction_number, false, tt2, map_idx, false, false, tef_terms);
FSTPST_ fstpst((int) (map_idx.find((*it)->idx)->second));
fstpst.write(code_file, instruction_number);
// Insert current node into tt2
tt2.insert(*it);
}
}
// The equations
int variable_ID, equation_ID;
EquationType equ_type;
switch (simulation_type)
{
evaluation:
case EVALUATE_BACKWARD:
case EVALUATE_FORWARD:
equ_type = getBlockEquationType(block, i);
{
FNUMEXPR_ fnumexpr(ModelEquation, getBlockEquationID(block, i));
fnumexpr.write(code_file, instruction_number);
}
if (equ_type == E_EVALUATE)
{
eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
lhs = eq_node->get_arg1();
rhs = eq_node->get_arg2();
rhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
lhs->compile(code_file, instruction_number, true, temporary_terms, map_idx, false, false);
}
else if (equ_type == E_EVALUATE_S)
{
eq_node = (BinaryOpNode *) getBlockEquationRenormalizedExpr(block, i);
lhs = eq_node->get_arg1();
rhs = eq_node->get_arg2();
rhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
lhs->compile(code_file, instruction_number, true, temporary_terms, map_idx, false, false);
}
break;
case SOLVE_BACKWARD_COMPLETE:
case SOLVE_FORWARD_COMPLETE:
if (i < (int) block_recursive)
goto evaluation;
variable_ID = getBlockVariableID(block, i);
equation_ID = getBlockEquationID(block, i);
feedback_variables.push_back(variable_ID);
Uf[equation_ID].Ufl = NULL;
goto end;
default:
end:
FNUMEXPR_ fnumexpr(ModelEquation, getBlockEquationID(block, i));
fnumexpr.write(code_file, instruction_number);
eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
lhs = eq_node->get_arg1();
rhs = eq_node->get_arg2();
lhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
rhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, false, false);
FBINARY_ fbinary(oMinus);
fbinary.write(code_file, instruction_number);
FSTPR_ fstpr(i - block_recursive);
fstpr.write(code_file, instruction_number);
}
}
FENDEQU_ fendequ;
fendequ.write(code_file, instruction_number);
// The Jacobian if we have to solve the block
if (simulation_type != EVALUATE_BACKWARD
&& simulation_type != EVALUATE_FORWARD)
{
switch (simulation_type)
{
case SOLVE_BACKWARD_SIMPLE:
case SOLVE_FORWARD_SIMPLE:
{
FNUMEXPR_ fnumexpr(FirstEndoDerivative, 0, 0);
fnumexpr.write(code_file, instruction_number);
}
compileDerivative(code_file, instruction_number, getBlockEquationID(block, 0), getBlockVariableID(block, 0), map_idx, temporary_terms);
{
FSTPG_ fstpg(0);
fstpg.write(code_file, instruction_number);
}
break;
case SOLVE_BACKWARD_COMPLETE:
case SOLVE_FORWARD_COMPLETE:
count_u = feedback_variables.size();
for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
{
unsigned int eq = it->first.first;
unsigned int var = it->first.second;
unsigned int eqr = getBlockEquationID(block, eq);
unsigned int varr = getBlockVariableID(block, var);
if (eq >= block_recursive && var >= block_recursive)
{
if (!Uf[eqr].Ufl)
{
Uf[eqr].Ufl = (Uff_l *) malloc(sizeof(Uff_l));
Uf[eqr].Ufl_First = Uf[eqr].Ufl;
}
else
{
Uf[eqr].Ufl->pNext = (Uff_l *) malloc(sizeof(Uff_l));
Uf[eqr].Ufl = Uf[eqr].Ufl->pNext;
}
Uf[eqr].Ufl->pNext = NULL;
Uf[eqr].Ufl->u = count_u;
Uf[eqr].Ufl->var = varr;
FNUMEXPR_ fnumexpr(FirstEndoDerivative, eqr, varr);
fnumexpr.write(code_file, instruction_number);
compileChainRuleDerivative(code_file, instruction_number, eqr, varr, 0, map_idx, temporary_terms);
FSTPSU_ fstpsu(count_u);
fstpsu.write(code_file, instruction_number);
count_u++;
}
}
for (i = 0; i < (int) block_size; i++)
{
if (i >= (int) block_recursive)
{
FLDR_ fldr(i-block_recursive);
fldr.write(code_file, instruction_number);
FLDZ_ fldz;
fldz.write(code_file, instruction_number);
v = getBlockEquationID(block, i);
for (Uf[v].Ufl = Uf[v].Ufl_First; Uf[v].Ufl; Uf[v].Ufl = Uf[v].Ufl->pNext)
{
FLDSU_ fldsu(Uf[v].Ufl->u);
fldsu.write(code_file, instruction_number);
FLDSV_ fldsv(eEndogenous, Uf[v].Ufl->var);
fldsv.write(code_file, instruction_number);
FBINARY_ fbinary(oTimes);
fbinary.write(code_file, instruction_number);
FCUML_ fcuml;
fcuml.write(code_file, instruction_number);
}
Uf[v].Ufl = Uf[v].Ufl_First;
while (Uf[v].Ufl)
{
Uf[v].Ufl_First = Uf[v].Ufl->pNext;
free(Uf[v].Ufl);
Uf[v].Ufl = Uf[v].Ufl_First;
}
FBINARY_ fbinary(oMinus);
fbinary.write(code_file, instruction_number);
FSTPSU_ fstpsu(i - block_recursive);
fstpsu.write(code_file, instruction_number);
}
}
break;
default:
break;
}
}
// Get the current code_file position and jump = true
streampos pos2 = code_file.tellp();
FJMP_ fjmp(0);
fjmp.write(code_file, instruction_number);
// Set code_file position to previous JMPIFEVAL_ and set the number of instructions to jump
streampos pos3 = code_file.tellp();
code_file.seekp(pos1);
FJMPIFEVAL_ fjmp_if_eval1(instruction_number - prev_instruction_number);
fjmp_if_eval1.write(code_file, instruction_number);
code_file.seekp(pos3);
prev_instruction_number = instruction_number;
temporary_terms_t tt2;
tt2.clear();
temporary_terms_t tt3;
tt3.clear();
deriv_node_temp_terms_t tef_terms2;
for (i = 0; i < (int) block_size; i++)
{
if (v_temporary_terms_local[block].size())
{
for (temporary_terms_t::const_iterator it = v_temporary_terms_local[block][i].begin();
it != v_temporary_terms_local[block][i].end(); it++)
{
if (dynamic_cast<ExternalFunctionNode *>(*it) != NULL)
(*it)->compileExternalFunctionOutput(code_file, instruction_number, false, tt3, map_idx2[block], false, false, tef_terms2);
FNUMEXPR_ fnumexpr(TemporaryTerm, (int) (map_idx2[block].find((*it)->idx)->second));
fnumexpr.write(code_file, instruction_number);
(*it)->compile(code_file, instruction_number, false, tt3, map_idx2[block], false, false, tef_terms);
FSTPST_ fstpst((int) (map_idx2[block].find((*it)->idx)->second));
fstpst.write(code_file, instruction_number);
// Insert current node into tt2
tt3.insert(*it);
tt2.insert(*it);
}
}
// The equations
int variable_ID, equation_ID;
EquationType equ_type;
switch (simulation_type)
{
evaluation_l:
case EVALUATE_BACKWARD:
case EVALUATE_FORWARD:
equ_type = getBlockEquationType(block, i);
{
FNUMEXPR_ fnumexpr(ModelEquation, getBlockEquationID(block, i));
fnumexpr.write(code_file, instruction_number);
}
if (equ_type == E_EVALUATE)
{
eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
lhs = eq_node->get_arg1();
rhs = eq_node->get_arg2();
rhs->compile(code_file, instruction_number, false, tt2, map_idx2[block], false, false);
lhs->compile(code_file, instruction_number, true, tt2, map_idx2[block], false, false);
}
else if (equ_type == E_EVALUATE_S)
{
eq_node = (BinaryOpNode *) getBlockEquationRenormalizedExpr(block, i);
lhs = eq_node->get_arg1();
rhs = eq_node->get_arg2();
rhs->compile(code_file, instruction_number, false, tt2, map_idx2[block], false, false);
lhs->compile(code_file, instruction_number, true, tt2, map_idx2[block], false, false);
}
break;
case SOLVE_BACKWARD_COMPLETE:
case SOLVE_FORWARD_COMPLETE:
if (i < (int) block_recursive)
goto evaluation_l;
variable_ID = getBlockVariableID(block, i);
equation_ID = getBlockEquationID(block, i);
feedback_variables.push_back(variable_ID);
Uf[equation_ID].Ufl = NULL;
goto end_l;
default:
end_l:
FNUMEXPR_ fnumexpr(ModelEquation, getBlockEquationID(block, i));
fnumexpr.write(code_file, instruction_number);
eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
lhs = eq_node->get_arg1();
rhs = eq_node->get_arg2();
lhs->compile(code_file, instruction_number, false, tt2, map_idx2[block], false, false);
rhs->compile(code_file, instruction_number, false, tt2, map_idx2[block], false, false);
FBINARY_ fbinary(oMinus);
fbinary.write(code_file, instruction_number);
FSTPR_ fstpr(i - block_recursive);
fstpr.write(code_file, instruction_number);
}
}
FENDEQU_ fendequ_l;
fendequ_l.write(code_file, instruction_number);
// The Jacobian if we have to solve the block determinsitic bloc
switch (simulation_type)
{
case SOLVE_BACKWARD_SIMPLE:
case SOLVE_FORWARD_SIMPLE:
{
FNUMEXPR_ fnumexpr(FirstEndoDerivative, 0, 0);
fnumexpr.write(code_file, instruction_number);
}
compileDerivative(code_file, instruction_number, getBlockEquationID(block, 0), getBlockVariableID(block, 0), map_idx2[block], tt2 /*temporary_terms*/);
{
FSTPG2_ fstpg2(0, 0);
fstpg2.write(code_file, instruction_number);
}
break;
case EVALUATE_BACKWARD:
case EVALUATE_FORWARD:
case SOLVE_BACKWARD_COMPLETE:
case SOLVE_FORWARD_COMPLETE:
count_u = feedback_variables.size();
for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
{
unsigned int eq = it->first.first;
unsigned int var = it->first.second;
unsigned int eqr = getBlockEquationID(block, eq);
unsigned int varr = getBlockVariableID(block, var);
FNUMEXPR_ fnumexpr(FirstEndoDerivative, eqr, varr, 0);
fnumexpr.write(code_file, instruction_number);
compileChainRuleDerivative(code_file, instruction_number, eqr, varr, 0, map_idx2[block], tt2 /*temporary_terms*/);
FSTPG2_ fstpg2(eq, var);
fstpg2.write(code_file, instruction_number);
}
break;
default:
break;
}
// Set codefile position to previous JMP_ and set the number of instructions to jump
pos1 = code_file.tellp();
code_file.seekp(pos2);
FJMP_ fjmp1(instruction_number - prev_instruction_number);
fjmp1.write(code_file, instruction_number);
code_file.seekp(pos1);
}
FENDBLOCK_ fendblock;
fendblock.write(code_file, instruction_number);
FEND_ fend;
fend.write(code_file, instruction_number);
code_file.close();
}
void
StaticModel::Write_Inf_To_Bin_File_Block(const string &static_basename, const string &bin_basename, const int &num,
int &u_count_int, bool &file_open) const
{
int j;
std::ofstream SaveCode;
if (file_open)
SaveCode.open((bin_basename + "_static.bin").c_str(), ios::out | ios::in | ios::binary | ios::ate);
else
SaveCode.open((bin_basename + "_static.bin").c_str(), ios::out | ios::binary);
if (!SaveCode.is_open())
{
cout << "Error : Can't open file \"" << bin_basename << "_static.bin\" for writing\n";
exit(EXIT_FAILURE);
}
u_count_int = 0;
unsigned int block_size = getBlockSize(num);
unsigned int block_mfs = getBlockMfs(num);
unsigned int block_recursive = block_size - block_mfs;
for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[num].begin(); it != (blocks_derivatives[num]).end(); it++)
{
unsigned int eq = it->first.first;
unsigned int var = it->first.second;
int lag = 0;
if (eq >= block_recursive && var >= block_recursive)
{
int v = eq - block_recursive;
SaveCode.write(reinterpret_cast<char *>(&v), sizeof(v));
int varr = var - block_recursive;
SaveCode.write(reinterpret_cast<char *>(&varr), sizeof(varr));
SaveCode.write(reinterpret_cast<char *>(&lag), sizeof(lag));
int u = u_count_int + block_mfs;
SaveCode.write(reinterpret_cast<char *>(&u), sizeof(u));
u_count_int++;
}
}
for (j = block_recursive; j < (int) block_size; j++)
{
unsigned int varr = getBlockVariableID(num, j);
SaveCode.write(reinterpret_cast<char *>(&varr), sizeof(varr));
}
for (j = block_recursive; j < (int) block_size; j++)
{
unsigned int eqr = getBlockEquationID(num, j);
SaveCode.write(reinterpret_cast<char *>(&eqr), sizeof(eqr));
}
SaveCode.close();
}
map<pair<int, pair<int, int > >, expr_t>
StaticModel::collect_first_order_derivatives_endogenous()
{
map<pair<int, pair<int, int > >, expr_t> endo_derivatives;
for (first_derivatives_t::iterator it2 = first_derivatives.begin();
it2 != first_derivatives.end(); it2++)
{
if (getTypeByDerivID(it2->first.second) == eEndogenous)
{
int eq = it2->first.first;
int var = symbol_table.getTypeSpecificID(it2->first.second);
int lag = 0;
endo_derivatives[make_pair(eq, make_pair(var, lag))] = it2->second;
}
}
return endo_derivatives;
}
void
StaticModel::computingPass(const eval_context_t &eval_context, bool no_tmp_terms, bool hessian, bool block, bool bytecode)
{
initializeVariablesAndEquations();
// Compute derivatives w.r. to all endogenous, and possibly exogenous and exogenous deterministic
set<int> vars;
for (int i = 0; i < symbol_table.endo_nbr(); i++)
vars.insert(symbol_table.getID(eEndogenous, i));
// Launch computations
cout << "Computing static model derivatives:" << endl
<< " - order 1" << endl;
first_derivatives.clear();
computeJacobian(vars);
if (hessian)
{
cout << " - order 2" << endl;
computeHessian(vars);
}
if (block)
{
jacob_map_t contemporaneous_jacobian, static_jacobian;
vector<unsigned int> n_static, n_forward, n_backward, n_mixed;
// for each block contains pair<Size, Feddback_variable>
vector<pair<int, int> > blocks;
evaluateAndReduceJacobian(eval_context, contemporaneous_jacobian, static_jacobian, dynamic_jacobian, cutoff, false);
computeNonSingularNormalization(contemporaneous_jacobian, cutoff, static_jacobian, dynamic_jacobian);
computePrologueAndEpilogue(static_jacobian, equation_reordered, variable_reordered);
map<pair<int, pair<int, int> >, expr_t> first_order_endo_derivatives = collect_first_order_derivatives_endogenous();
equation_type_and_normalized_equation = equationTypeDetermination(first_order_endo_derivatives, variable_reordered, equation_reordered, mfs);
cout << "Finding the optimal block decomposition of the model ...\n";
lag_lead_vector_t equation_lag_lead, variable_lag_lead;
computeBlockDecompositionAndFeedbackVariablesForEachBlock(static_jacobian, dynamic_jacobian, equation_reordered, variable_reordered, blocks, equation_type_and_normalized_equation, false, false, mfs, inv_equation_reordered, inv_variable_reordered, equation_lag_lead, variable_lag_lead, n_static, n_forward, n_backward, n_mixed);
block_type_firstequation_size_mfs = reduceBlocksAndTypeDetermination(dynamic_jacobian, blocks, equation_type_and_normalized_equation, variable_reordered, equation_reordered, n_static, n_forward, n_backward, n_mixed, block_col_type);
printBlockDecomposition(blocks);
computeChainRuleJacobian(blocks_derivatives);
blocks_linear = BlockLinear(blocks_derivatives, variable_reordered);
collect_block_first_order_derivatives();
global_temporary_terms = true;
if (!no_tmp_terms)
computeTemporaryTermsOrdered();
}
else
{
if (!no_tmp_terms)
{
computeTemporaryTerms(true);
if (bytecode)
computeTemporaryTermsMapping(temporary_terms, map_idx);
}
}
}
void
StaticModel::writeStaticMFile(const string &func_name) const
{
// Writing comments and function definition command
string filename = func_name + "_static.m";
ofstream output;
output.open(filename.c_str(), ios::out | ios::binary);
if (!output.is_open())
{
cerr << "ERROR: Can't open file " << filename << " for writing" << endl;
exit(EXIT_FAILURE);
}
output << "function [residual, g1, g2] = " << func_name + "_static(y, x, params)" << endl
<< "%" << endl
<< "% Status : Computes static model for Dynare" << endl
<< "%" << endl
<< "% Warning : this file is generated automatically by Dynare" << endl
<< "% from model file (.mod)" << endl << endl;
writeStaticModel(output, false);
output << "end" << endl;
output.close();
}
void
StaticModel::writeStaticModel(ostream &StaticOutput, bool use_dll) const
{
ostringstream model_output; // Used for storing model equations
ostringstream jacobian_output; // Used for storing jacobian equations
ostringstream hessian_output; // Used for storing Hessian equations
ExprNodeOutputType output_type = (use_dll ? oCStaticModel : oMatlabStaticModel);
deriv_node_temp_terms_t tef_terms;
writeModelLocalVariables(model_output, output_type, tef_terms);
writeTemporaryTerms(temporary_terms, model_output, output_type, tef_terms);
writeModelEquations(model_output, output_type);
// Write Jacobian w.r. to endogenous only
for (first_derivatives_t::const_iterator it = first_derivatives.begin();
it != first_derivatives.end(); it++)
{
int eq = it->first.first;
int symb_id = it->first.second;
expr_t d1 = it->second;
jacobianHelper(jacobian_output, eq, symbol_table.getTypeSpecificID(symb_id), output_type);
jacobian_output << "=";
d1->writeOutput(jacobian_output, output_type, temporary_terms, tef_terms);
jacobian_output << ";" << endl;
}
int g2ncols = symbol_table.endo_nbr() * symbol_table.endo_nbr();
// Write Hessian w.r. to endogenous only (only if 2nd order derivatives have been computed)
int k = 0; // Keep the line of a 2nd derivative in v2
for (second_derivatives_t::const_iterator it = second_derivatives.begin();
it != second_derivatives.end(); it++)
{
int eq = it->first.first;
int symb_id1 = it->first.second.first;
int symb_id2 = it->first.second.second;
expr_t d2 = it->second;
int tsid1 = symbol_table.getTypeSpecificID(symb_id1);
int tsid2 = symbol_table.getTypeSpecificID(symb_id2);
int col_nb = tsid1*symbol_table.endo_nbr()+tsid2;
int col_nb_sym = tsid2*symbol_table.endo_nbr()+tsid1;
sparseHelper(2, hessian_output, k, 0, output_type);
hessian_output << "=" << eq + 1 << ";" << endl;
sparseHelper(2, hessian_output, k, 1, output_type);
hessian_output << "=" << col_nb + 1 << ";" << endl;
sparseHelper(2, hessian_output, k, 2, output_type);
hessian_output << "=";
d2->writeOutput(hessian_output, output_type, temporary_terms, tef_terms);
hessian_output << ";" << endl;
k++;
// Treating symetric elements
if (symb_id1 != symb_id2)
{
sparseHelper(2, hessian_output, k, 0, output_type);
hessian_output << "=" << eq + 1 << ";" << endl;
sparseHelper(2, hessian_output, k, 1, output_type);
hessian_output << "=" << col_nb_sym + 1 << ";" << endl;
sparseHelper(2, hessian_output, k, 2, output_type);
hessian_output << "=";
sparseHelper(2, hessian_output, k-1, 2, output_type);
hessian_output << ";" << endl;
k++;
}
}
if (!use_dll)
{
StaticOutput << "residual = zeros( " << equations.size() << ", 1);" << endl << endl
<< "%" << endl
<< "% Model equations" << endl
<< "%" << endl << endl
<< model_output.str()
<< "if ~isreal(residual)" << endl
<< " residual = real(residual)+imag(residual).^2;" << endl
<< "end" << endl
<< "if nargout >= 2," << endl
<< " g1 = zeros(" << equations.size() << ", " << symbol_table.endo_nbr() << ");" << endl << endl
<< " %" << endl
<< " % Jacobian matrix" << endl
<< " %" << endl << endl
<< jacobian_output.str()
<< " if ~isreal(g1)" << endl
<< " g1 = real(g1)+2*imag(g1);" << endl
<< " end" << endl
<< "end" << endl
<< "if nargout >= 3," << endl
<< " %" << endl
<< " % Hessian matrix" << endl
<< " %" << endl
<< endl;
if (second_derivatives.size())
StaticOutput << " v2 = zeros(" << NNZDerivatives[1] << ",3);" << endl
<< hessian_output.str()
<< " g2 = sparse(v2(:,1),v2(:,2),v2(:,3)," << equations.size() << "," << g2ncols << ");" << endl;
else
StaticOutput << " g2 = sparse([],[],[]," << equations.size() << "," << g2ncols << ");" << endl;
StaticOutput << "end" << endl;
}
else
{
StaticOutput << "void Static(double *y, double *x, int nb_row_x, double *params, double *residual, double *g1, double *v2)" << endl
<< "{" << endl
<< " double lhs, rhs;" << endl
<< endl
<< " /* Residual equations */" << endl
<< model_output.str()
<< " /* Jacobian */" << endl
<< " if (g1 == NULL)" << endl
<< " return;" << endl
<< " else" << endl
<< " {" << endl
<< jacobian_output.str()
<< " }" << endl;
if (second_derivatives.size())
StaticOutput << " /* Hessian for endogenous and exogenous variables */" << endl
<< " if (v2 == NULL)" << endl
<< " return;" << endl
<< " else" << endl
<< " {" << endl
<< hessian_output.str()
<< " }" << endl;
}
}
void
StaticModel::writeStaticCFile(const string &func_name) const
{
// Writing comments and function definition command
string filename = func_name + "_static.c";
string filename_mex = func_name + "_static_mex.c";
ofstream output;
output.open(filename.c_str(), ios::out | ios::binary);
if (!output.is_open())
{
cerr << "ERROR: Can't open file " << filename << " for writing" << endl;
exit(EXIT_FAILURE);
}
output << "/*" << endl
<< " * " << filename << " : Computes static model for Dynare" << endl
<< " *" << endl
<< " * Warning : this file is generated automatically by Dynare" << endl
<< " * from model file (.mod)" << endl << endl
<< " */" << endl
<< "#include <math.h>" << endl;
if (external_functions_table.get_total_number_of_unique_model_block_external_functions())
// External Matlab function, implies Static function will call mex
output << "#include \"mex.h\"" << endl;
else
output << "#include <stdlib.h>" << endl;
output << "#define max(a, b) (((a) > (b)) ? (a) : (b))" << endl
<< "#define min(a, b) (((a) > (b)) ? (b) : (a))" << endl;
// Write function definition if oPowerDeriv is used
writePowerDerivCHeader(output);
// Writing the function body
writeStaticModel(output, true);
output << "}" << endl << endl;
writePowerDeriv(output, true);
output.close();
output.open(filename_mex.c_str(), ios::out | ios::binary);
if (!output.is_open())
{
cerr << "ERROR: Can't open file " << filename_mex << " for writing" << endl;
exit(EXIT_FAILURE);
}
// Writing the gateway routine
output << "/*" << endl
<< " * " << filename_mex << " : The gateway routine used to call the Static function "
<< "located in " << filename << endl
<< " *" << endl
<< " * Warning : this file is generated automatically by Dynare" << endl
<< " * from model file (.mod)" << endl << endl
<< " */" << endl << endl
<< "#include \"mex.h\"" << endl << endl
<< "void Static(double *y, double *x, int nb_row_x, double *params, double *residual, double *g1, double *v2);" << endl
<< "void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])" << endl
<< "{" << endl
<< " double *y, *x, *params;" << endl
<< " double *residual, *g1, *v2;" << endl
<< " int nb_row_x;" << endl
<< endl
<< " /* Create a pointer to the input matrix y. */" << endl
<< " y = mxGetPr(prhs[0]);" << endl
<< endl
<< " /* Create a pointer to the input matrix x. */" << endl
<< " x = mxGetPr(prhs[1]);" << endl
<< endl
<< " /* Create a pointer to the input matrix params. */" << endl
<< " params = mxGetPr(prhs[2]);" << endl
<< endl
<< " /* Gets number of rows of matrix x. */" << endl
<< " nb_row_x = mxGetM(prhs[1]);" << endl
<< endl
<< " residual = NULL;" << endl
<< " if (nlhs >= 1)" << endl
<< " {" << endl
<< " /* Set the output pointer to the output matrix residual. */" << endl
<< " plhs[0] = mxCreateDoubleMatrix(" << equations.size() << ",1, mxREAL);" << endl
<< " /* Create a C pointer to a copy of the output matrix residual. */" << endl
<< " residual = mxGetPr(plhs[0]);" << endl
<< " }" << endl
<< endl
<< " g1 = NULL;" << endl
<< " if (nlhs >= 2)" << endl
<< " {" << endl
<< " /* Set the output pointer to the output matrix g1. */" << endl
<< " plhs[1] = mxCreateDoubleMatrix(" << equations.size() << ", " << symbol_table.endo_nbr() << ", mxREAL);" << endl
<< " /* Create a C pointer to a copy of the output matrix g1. */" << endl
<< " g1 = mxGetPr(plhs[1]);" << endl
<< " }" << endl
<< endl
<< " v2 = NULL;" << endl
<< " if (nlhs >= 3)" << endl
<< " {" << endl
<< " /* Set the output pointer to the output matrix v2. */" << endl
<< " plhs[2] = mxCreateDoubleMatrix(" << NNZDerivatives[1] << ", " << 3
<< ", mxREAL);" << endl
<< " v2 = mxGetPr(plhs[2]);" << endl
<< " }" << endl
<< endl
<< " /* Call the C subroutines. */" << endl
<< " Static(y, x, nb_row_x, params, residual, g1, v2);" << endl
<< "}" << endl << endl;
output.close();
}
void
StaticModel::writeStaticFile(const string &basename, bool block, bool bytecode, bool use_dll) const
{
int r;
//assert(block);
#ifdef _WIN32
r = mkdir(basename.c_str());
#else
r = mkdir(basename.c_str(), 0777);
#endif
if (r < 0 && errno != EEXIST)
{
perror("ERROR");
exit(EXIT_FAILURE);
}
if (block && bytecode)
writeModelEquationsCode_Block(basename + "_static", basename, map_idx, map_idx2);
else if (!block && bytecode)
writeModelEquationsCode(basename + "_static", basename, map_idx);
else if (block && !bytecode)
{
chdir(basename.c_str());
writeModelEquationsOrdered_M(basename + "_static");
chdir("..");
writeStaticBlockMFSFile(basename);
}
else if(use_dll)
writeStaticCFile(basename);
else
writeStaticMFile(basename);
writeAuxVarRecursiveDefinitions(basename);
}
void
StaticModel::writeStaticBlockMFSFile(const string &basename) const
{
string filename = basename + "_static.m";
ofstream output;
output.open(filename.c_str(), ios::out | ios::binary);
if (!output.is_open())
{
cerr << "ERROR: Can't open file " << filename << " for writing" << endl;
exit(EXIT_FAILURE);
}
string func_name = basename + "_static";
output << "function [residual, g1, y, var_index] = " << func_name << "(nblock, y, x, params)" << endl
<< " residual = [];" << endl
<< " g1 = [];" << endl
<< " var_index = [];\n" << endl
<< " switch nblock" << endl;
unsigned int nb_blocks = getNbBlocks();
for (int b = 0; b < (int) nb_blocks; b++)
{
set<int> local_var;
output << " case " << b+1 << endl;
BlockSimulationType simulation_type = getBlockSimulationType(b);
if (simulation_type == EVALUATE_BACKWARD || simulation_type == EVALUATE_FORWARD)
{
output << " y_tmp = " << func_name << "_" << b+1 << "(y, x, params);\n";
ostringstream tmp;
for (int i = 0; i < (int) getBlockSize(b); i++)
tmp << " " << getBlockVariableID(b, i)+1;
output << " var_index = [" << tmp.str() << "];\n";
output << " residual = y(var_index) - y_tmp(var_index);\n";
output << " y = y_tmp;\n";
}
else
output << " [residual, y, g1] = " << func_name << "_" << b+1 << "(y, x, params);\n";
}
output << " end" << endl
<< "end" << endl;
output.close();
}
void
StaticModel::writeOutput(ostream &output, bool block) const
{
if (!block)
return;
unsigned int nb_blocks = getNbBlocks();
output << "M_.blocksMFS = cell(" << nb_blocks << ", 1);" << endl;
for (int b = 0; b < (int) nb_blocks; b++)
{
output << "M_.blocksMFS{" << b+1 << "} = [ ";
unsigned int block_size = getBlockSize(b);
unsigned int block_mfs = getBlockMfs(b);
unsigned int block_recursive = block_size - block_mfs;
BlockSimulationType simulation_type = getBlockSimulationType(b);
if (simulation_type != EVALUATE_BACKWARD && simulation_type != EVALUATE_FORWARD)
for (int i = block_recursive; i < (int) block_size; i++)
output << getBlockVariableID(b, i)+1 << "; ";
output << "];" << endl;
}
output << "M_.blocksEQU = cell(" << nb_blocks << ", 1);" << endl;
for (int b = 0; b < (int) nb_blocks; b++)
{
unsigned int block_size = getBlockSize(b);
output << "M_.blocksEQU{" << b+1 << "} = [ ";
for (int i = 0; i < (int) block_size; i++)
output << getBlockEquationID(b, i)+1 << "; ";
output << "];" << endl;
}
for (int b = 0; b < (int) nb_blocks; b++)
{
BlockSimulationType simulation_type = getBlockSimulationType(b);
unsigned int block_size = getBlockSize(b);
ostringstream tmp_s, tmp_s_eq;
tmp_s.str("");
tmp_s_eq.str("");
for (unsigned int i = 0; i < block_size; i++)
{
tmp_s << " " << getBlockVariableID(b, i)+1;
tmp_s_eq << " " << getBlockEquationID(b, i)+1;
}
output << "block_structure_stat.block(" << b+1 << ").Simulation_Type = " << simulation_type << ";\n";
output << "block_structure_stat.block(" << b+1 << ").endo_nbr = " << block_size << ";\n";
output << "block_structure_stat.block(" << b+1 << ").mfs = " << getBlockMfs(block) << ";\n";
output << "block_structure_stat.block(" << b+1 << ").equation = [" << tmp_s_eq.str() << "];\n";
output << "block_structure_stat.block(" << b+1 << ").variable = [" << tmp_s.str() << "];\n";
}
output << "M_.block_structure_stat.block = block_structure_stat.block;\n";
string cst_s;
int nb_endo = symbol_table.endo_nbr();
output << "M_.block_structure_stat.variable_reordered = [";
for (int i = 0; i < nb_endo; i++)
output << " " << variable_reordered[i]+1;
output << "];\n";
output << "M_.block_structure_stat.equation_reordered = [";
for (int i = 0; i < nb_endo; i++)
output << " " << equation_reordered[i]+1;
output << "];\n";
map<pair<int, int>, int> row_incidence;
for (first_derivatives_t::const_iterator it = first_derivatives.begin();
it != first_derivatives.end(); it++)
{
int deriv_id = it->first.second;
if (getTypeByDerivID(deriv_id) == eEndogenous)
{
int eq = it->first.first;
int symb = getSymbIDByDerivID(deriv_id);
int var = symbol_table.getTypeSpecificID(symb);
//int lag = getLagByDerivID(deriv_id);
row_incidence[make_pair(eq, var)] = 1;
}
}
output << "M_.block_structure_stat.incidence.sparse_IM = [";
for (map<pair< int, int >, int>::const_iterator it = row_incidence.begin(); it != row_incidence.end(); it++)
{
output << it->first.first+1 << " " << it->first.second+1 << ";\n";
}
output << "];\n";
}
SymbolType
StaticModel::getTypeByDerivID(int deriv_id) const throw (UnknownDerivIDException)
{
return symbol_table.getType(getSymbIDByDerivID(deriv_id));
}
int
StaticModel::getLagByDerivID(int deriv_id) const throw (UnknownDerivIDException)
{
return 0;
}
int
StaticModel::getSymbIDByDerivID(int deriv_id) const throw (UnknownDerivIDException)
{
return deriv_id;
}
int
StaticModel::getDerivID(int symb_id, int lag) const throw (UnknownDerivIDException)
{
if (symbol_table.getType(symb_id) == eEndogenous)
return symb_id;
else
return -1;
}
map<pair<pair<int, pair<int, int> >, pair<int, int> >, int>
StaticModel::get_Derivatives(int block)
{
map<pair<pair<int, pair<int, int> >, pair<int, int> >, int> Derivatives;
Derivatives.clear();
int block_size = getBlockSize(block);
int block_nb_recursive = block_size - getBlockMfs(block);
int lag = 0;
for (int eq = 0; eq < block_size; eq++)
{
int eqr = getBlockEquationID(block, eq);
for (int var = 0; var < block_size; var++)
{
int varr = getBlockVariableID(block, var);
if (dynamic_jacobian.find(make_pair(lag, make_pair(eqr, varr))) != dynamic_jacobian.end())
{
bool OK = true;
map<pair<pair<int, pair<int, int> >, pair<int, int> >, int>::const_iterator its = Derivatives.find(make_pair(make_pair(lag, make_pair(eq, var)), make_pair(eqr, varr)));
if (its != Derivatives.end())
{
if (its->second == 2)
OK = false;
}
if (OK)
{
if (getBlockEquationType(block, eq) == E_EVALUATE_S && eq < block_nb_recursive)
//It's a normalized equation, we have to recompute the derivative using chain rule derivative function
Derivatives[make_pair(make_pair(lag, make_pair(eq, var)), make_pair(eqr, varr))] = 1;
else
//It's a feedback equation we can use the derivatives
Derivatives[make_pair(make_pair(lag, make_pair(eq, var)), make_pair(eqr, varr))] = 0;
}
if (var < block_nb_recursive)
{
int eqs = getBlockEquationID(block, var);
for (int vars = block_nb_recursive; vars < block_size; vars++)
{
int varrs = getBlockVariableID(block, vars);
//A new derivative needs to be computed using the chain rule derivative function (a feedback variable appears in a recursive equation)
if (Derivatives.find(make_pair(make_pair(lag, make_pair(var, vars)), make_pair(eqs, varrs))) != Derivatives.end())
Derivatives[make_pair(make_pair(lag, make_pair(eq, vars)), make_pair(eqr, varrs))] = 2;
}
}
}
}
}
return (Derivatives);
}
void
StaticModel::computeChainRuleJacobian(blocks_derivatives_t &blocks_derivatives)
{
map<int, expr_t> recursive_variables;
unsigned int nb_blocks = getNbBlocks();
blocks_derivatives = blocks_derivatives_t(nb_blocks);
for (unsigned int block = 0; block < nb_blocks; block++)
{
block_derivatives_equation_variable_laglead_nodeid_t tmp_derivatives;
recursive_variables.clear();
BlockSimulationType simulation_type = getBlockSimulationType(block);
int block_size = getBlockSize(block);
int block_nb_mfs = getBlockMfs(block);
int block_nb_recursives = block_size - block_nb_mfs;
if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
{
blocks_derivatives.push_back(block_derivatives_equation_variable_laglead_nodeid_t(0));
for (int i = 0; i < block_nb_recursives; i++)
{
if (getBlockEquationType(block, i) == E_EVALUATE_S)
recursive_variables[getDerivID(symbol_table.getID(eEndogenous, getBlockVariableID(block, i)), 0)] = getBlockEquationRenormalizedExpr(block, i);
else
recursive_variables[getDerivID(symbol_table.getID(eEndogenous, getBlockVariableID(block, i)), 0)] = getBlockEquationExpr(block, i);
}
map<pair<pair<int, pair<int, int> >, pair<int, int> >, int> Derivatives = get_Derivatives(block);
map<pair<pair<int, pair<int, int> >, pair<int, int> >, int>::const_iterator it = Derivatives.begin();
for (int i = 0; i < (int) Derivatives.size(); i++)
{
int Deriv_type = it->second;
pair<pair<int, pair<int, int> >, pair<int, int> > it_l(it->first);
it++;
int lag = it_l.first.first;
int eq = it_l.first.second.first;
int var = it_l.first.second.second;
int eqr = it_l.second.first;
int varr = it_l.second.second;
if (Deriv_type == 0)
first_chain_rule_derivatives[make_pair(eqr, make_pair(varr, lag))] = first_derivatives[make_pair(eqr, getDerivID(symbol_table.getID(eEndogenous, varr), lag))];
else if (Deriv_type == 1)
first_chain_rule_derivatives[make_pair(eqr, make_pair(varr, lag))] = (equation_type_and_normalized_equation[eqr].second)->getChainRuleDerivative(getDerivID(symbol_table.getID(eEndogenous, varr), lag), recursive_variables);
else if (Deriv_type == 2)
{
if (getBlockEquationType(block, eq) == E_EVALUATE_S && eq < block_nb_recursives)
first_chain_rule_derivatives[make_pair(eqr, make_pair(varr, lag))] = (equation_type_and_normalized_equation[eqr].second)->getChainRuleDerivative(getDerivID(symbol_table.getID(eEndogenous, varr), lag), recursive_variables);
else
first_chain_rule_derivatives[make_pair(eqr, make_pair(varr, lag))] = equations[eqr]->getChainRuleDerivative(getDerivID(symbol_table.getID(eEndogenous, varr), lag), recursive_variables);
}
tmp_derivatives.push_back(make_pair(make_pair(eq, var), make_pair(lag, first_chain_rule_derivatives[make_pair(eqr, make_pair(varr, lag))])));
}
}
else
{
blocks_derivatives.push_back(block_derivatives_equation_variable_laglead_nodeid_t(0));
for (int i = 0; i < block_nb_recursives; i++)
{
if (getBlockEquationType(block, i) == E_EVALUATE_S)
recursive_variables[getDerivID(symbol_table.getID(eEndogenous, getBlockVariableID(block, i)), 0)] = getBlockEquationRenormalizedExpr(block, i);
else
recursive_variables[getDerivID(symbol_table.getID(eEndogenous, getBlockVariableID(block, i)), 0)] = getBlockEquationExpr(block, i);
}
for (int eq = block_nb_recursives; eq < block_size; eq++)
{
int eqr = getBlockEquationID(block, eq);
for (int var = block_nb_recursives; var < block_size; var++)
{
int varr = getBlockVariableID(block, var);
expr_t d1 = equations[eqr]->getChainRuleDerivative(getDerivID(symbol_table.getID(eEndogenous, varr), 0), recursive_variables);
if (d1 == Zero)
continue;
first_chain_rule_derivatives[make_pair(eqr, make_pair(varr, 0))] = d1;
tmp_derivatives.push_back(
make_pair(make_pair(eq, var), make_pair(0, first_chain_rule_derivatives[make_pair(eqr, make_pair(varr, 0))])));
}
}
}
blocks_derivatives[block] = tmp_derivatives;
}
}
void
StaticModel::collect_block_first_order_derivatives()
{
//! vector for an equation or a variable indicates the block number
vector<int> equation_2_block, variable_2_block;
unsigned int nb_blocks = getNbBlocks();
equation_2_block = vector<int>(equation_reordered.size());
variable_2_block = vector<int>(variable_reordered.size());
for (unsigned int block = 0; block < nb_blocks; block++)
{
unsigned int block_size = getBlockSize(block);
for (unsigned int i = 0; i < block_size; i++)
{
equation_2_block[getBlockEquationID(block, i)] = block;
variable_2_block[getBlockVariableID(block, i)] = block;
}
}
derivative_endo = vector<derivative_t>(nb_blocks);
endo_max_leadlag_block = vector<pair<int, int> >(nb_blocks, make_pair(0, 0));
max_leadlag_block = vector<pair<int, int> >(nb_blocks, make_pair(0, 0));
for (first_derivatives_t::iterator it2 = first_derivatives.begin();
it2 != first_derivatives.end(); it2++)
{
int eq = it2->first.first;
int var = symbol_table.getTypeSpecificID(getSymbIDByDerivID(it2->first.second));
int lag = 0;
int block_eq = equation_2_block[eq];
int block_var = variable_2_block[var];
max_leadlag_block[block_eq] = make_pair(0, 0);
max_leadlag_block[block_eq] = make_pair(0, 0);
endo_max_leadlag_block[block_eq] = make_pair(0, 0);
endo_max_leadlag_block[block_eq] = make_pair(0, 0);
derivative_t tmp_derivative;
lag_var_t lag_var;
if (getTypeByDerivID(it2->first.second) == eEndogenous && block_eq == block_var)
{
tmp_derivative = derivative_endo[block_eq];
tmp_derivative[make_pair(lag, make_pair(eq, var))] = first_derivatives[make_pair(eq, getDerivID(symbol_table.getID(eEndogenous, var), lag))];
derivative_endo[block_eq] = tmp_derivative;
}
}
}
void
StaticModel::writeChainRuleDerivative(ostream &output, int eqr, int varr, int lag,
ExprNodeOutputType output_type,
const temporary_terms_t &temporary_terms) const
{
map<pair<int, pair<int, int> >, expr_t>::const_iterator it = first_chain_rule_derivatives.find(make_pair(eqr, make_pair(varr, lag)));
if (it != first_chain_rule_derivatives.end())
(it->second)->writeOutput(output, output_type, temporary_terms);
else
output << 0;
}
void
StaticModel::writeLatexFile(const string &basename) const
{
writeLatexModelFile(basename + "_static.tex", oLatexStaticModel);
}
void
StaticModel::writeAuxVarInitval(ostream &output, ExprNodeOutputType output_type) const
{
for (int i = 0; i < (int) aux_equations.size(); i++)
{
dynamic_cast<ExprNode *>(aux_equations[i])->writeOutput(output, output_type);
output << ";" << endl;
}
}
void StaticModel::writeAuxVarRecursiveDefinitions(const string &basename) const
{
string func_name = basename + "_set_auxiliary_variables";
string filename = func_name + ".m";
ofstream output;
output.open(filename.c_str(), ios::out | ios::binary);
if (!output.is_open())
{
cerr << "ERROR: Can't open file " << filename << " for writing" << endl;
exit(EXIT_FAILURE);
}
output << "function y = " << func_name + "(y, x, params)" << endl
<< "%" << endl
<< "% Status : Computes static model for Dynare" << endl
<< "%" << endl
<< "% Warning : this file is generated automatically by Dynare" << endl
<< "% from model file (.mod)" << endl
<< endl;
for (int i = 0; i < (int) aux_equations.size(); i++)
{
dynamic_cast<ExprNode *>(aux_equations[i])->writeOutput(output, oMatlabStaticModel);
output << ";" << endl;
}
}