dynare/mex/sources/libslicot/TB04BD.f

601 lines
22 KiB
Fortran

SUBROUTINE TB04BD( JOBD, ORDER, EQUIL, N, M, P, MD, A, LDA, B,
$ LDB, C, LDC, D, LDD, IGN, LDIGN, IGD, LDIGD,
$ GN, GD, TOL, IWORK, DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the transfer function matrix G of a state-space
C representation (A,B,C,D) of a linear time-invariant multivariable
C system, using the pole-zeros method. Each element of the transfer
C function matrix is returned in a cancelled, minimal form, with
C numerator and denominator polynomials stored either in increasing
C or decreasing order of the powers of the indeterminate.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOBD CHARACTER*1
C Specifies whether or not a non-zero matrix D appears in
C the given state-space model:
C = 'D': D is present;
C = 'Z': D is assumed to be a zero matrix.
C
C ORDER CHARACTER*1
C Specifies the order in which the polynomial coefficients
C are stored, as follows:
C = 'I': Increasing order of powers of the indeterminate;
C = 'D': Decreasing order of powers of the indeterminate.
C
C EQUIL CHARACTER*1
C Specifies whether the user wishes to preliminarily
C equilibrate the triplet (A,B,C) as follows:
C = 'S': perform equilibration (scaling);
C = 'N': do not perform equilibration.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the system (A,B,C,D). N >= 0.
C
C M (input) INTEGER
C The number of the system inputs. M >= 0.
C
C P (input) INTEGER
C The number of the system outputs. P >= 0.
C
C MD (input) INTEGER
C The maximum degree of the polynomials in G, plus 1. An
C upper bound for MD is N+1. MD >= 1.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the original state dynamics matrix A.
C On exit, if EQUIL = 'S', the leading N-by-N part of this
C array contains the balanced matrix inv(S)*A*S, as returned
C by SLICOT Library routine TB01ID.
C If EQUIL = 'N', this array is unchanged on exit.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the input matrix B.
C On exit, the contents of B are destroyed: all elements but
C those in the first row are set to zero.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading P-by-N part of this array must
C contain the output matrix C.
C On exit, if EQUIL = 'S', the leading P-by-N part of this
C array contains the balanced matrix C*S, as returned by
C SLICOT Library routine TB01ID.
C If EQUIL = 'N', this array is unchanged on exit.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C D (input) DOUBLE PRECISION array, dimension (LDD,M)
C If JOBD = 'D', the leading P-by-M part of this array must
C contain the matrix D.
C If JOBD = 'Z', the array D is not referenced.
C
C LDD INTEGER
C The leading dimension of array D.
C LDD >= MAX(1,P), if JOBD = 'D';
C LDD >= 1, if JOBD = 'Z'.
C
C IGN (output) INTEGER array, dimension (LDIGN,M)
C The leading P-by-M part of this array contains the degrees
C of the numerator polynomials in the transfer function
C matrix G. Specifically, the (i,j) element of IGN contains
C the degree of the numerator polynomial of the transfer
C function G(i,j) from the j-th input to the i-th output.
C
C LDIGN INTEGER
C The leading dimension of array IGN. LDIGN >= max(1,P).
C
C IGD (output) INTEGER array, dimension (LDIGD,M)
C The leading P-by-M part of this array contains the degrees
C of the denominator polynomials in the transfer function
C matrix G. Specifically, the (i,j) element of IGD contains
C the degree of the denominator polynomial of the transfer
C function G(i,j).
C
C LDIGD INTEGER
C The leading dimension of array IGD. LDIGD >= max(1,P).
C
C GN (output) DOUBLE PRECISION array, dimension (P*M*MD)
C This array contains the coefficients of the numerator
C polynomials, Num(i,j), of the transfer function matrix G.
C The polynomials are stored in a column-wise order, i.e.,
C Num(1,1), Num(2,1), ..., Num(P,1), Num(1,2), Num(2,2),
C ..., Num(P,2), ..., Num(1,M), Num(2,M), ..., Num(P,M);
C MD memory locations are reserved for each polynomial,
C hence, the (i,j) polynomial is stored starting from the
C location ((j-1)*P+i-1)*MD+1. The coefficients appear in
C increasing or decreasing order of the powers of the
C indeterminate, according to ORDER.
C
C GD (output) DOUBLE PRECISION array, dimension (P*M*MD)
C This array contains the coefficients of the denominator
C polynomials, Den(i,j), of the transfer function matrix G.
C The polynomials are stored in the same way as the
C numerator polynomials.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C The tolerance to be used in determining the
C controllability of a single-input system (A,b) or (A',c'),
C where b and c' are columns in B and C' (C transposed). If
C the user sets TOL > 0, then the given value of TOL is used
C as an absolute tolerance; elements with absolute value
C less than TOL are considered neglijible. If the user sets
C TOL <= 0, then an implicitly computed, default tolerance,
C defined by TOLDEF = N*EPS*MAX( NORM(A), NORM(bc) ) is used
C instead, where EPS is the machine precision (see LAPACK
C Library routine DLAMCH), and bc denotes the currently used
C column in B or C' (see METHOD).
C
C Workspace
C
C IWORK INTEGER array, dimension (N)
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX(1, N*(N+P) +
C MAX( N + MAX( N,P ), N*(2*N+5)))
C If N >= P, N >= 1, the formula above can be written as
C LDWORK >= N*(3*N + P + 5).
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the QR algorithm failed to converge when trying to
C compute the zeros of a transfer function;
C = 2: the QR algorithm failed to converge when trying to
C compute the poles of a transfer function.
C The errors INFO = 1 or 2 are unlikely to appear.
C
C METHOD
C
C The routine implements the pole-zero method proposed in [1].
C This method is based on an algorithm for computing the transfer
C function of a single-input single-output (SISO) system.
C Let (A,b,c,d) be a SISO system. Its transfer function is computed
C as follows:
C
C 1) Find a controllable realization (Ac,bc,cc) of (A,b,c).
C 2) Find an observable realization (Ao,bo,co) of (Ac,bc,cc).
C 3) Compute the r eigenvalues of Ao (the poles of (Ao,bo,co)).
C 4) Compute the zeros of (Ao,bo,co,d).
C 5) Compute the gain of (Ao,bo,co,d).
C
C This algorithm can be implemented using only orthogonal
C transformations [1]. However, for better efficiency, the
C implementation in TB04BD uses one elementary transformation
C in Step 4 and r elementary transformations in Step 5 (to reduce
C an upper Hessenberg matrix to upper triangular form). These
C special elementary transformations are numerically stable
C in practice.
C
C In the multi-input multi-output (MIMO) case, the algorithm
C computes each element (i,j) of the transfer function matrix G,
C for i = 1 : P, and for j = 1 : M. For efficiency reasons, Step 1
C is performed once for each value of j (each column of B). The
C matrices Ac and Ao result in Hessenberg form.
C
C REFERENCES
C
C [1] Varga, A. and Sima, V.
C Numerically Stable Algorithm for Transfer Function Matrix
C Evaluation.
C Int. J. Control, vol. 33, nr. 6, pp. 1123-1133, 1981.
C
C NUMERICAL ASPECTS
C
C The algorithm is numerically stable in practice and requires about
C 20*N**3 floating point operations at most, but usually much less.
C
C FURTHER COMMENTS
C
C For maximum efficiency of index calculations, GN and GD are
C implemented as one-dimensional arrays.
C
C CONTRIBUTORS
C
C V. Sima, Research Institute for Informatics, Bucharest, May 2002.
C Partly based on the BIMASC Library routine TSMT1 by A. Varga.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Eigenvalue, state-space representation, transfer function, zeros.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, C100
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, C100 = 100.0D0 )
C .. Scalar Arguments ..
CHARACTER EQUIL, JOBD, ORDER
DOUBLE PRECISION TOL
INTEGER INFO, LDA, LDB, LDC, LDD, LDIGD, LDIGN, LDWORK,
$ M, MD, N, P
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
$ DWORK(*), GD(*), GN(*)
INTEGER IGD(LDIGD,*), IGN(LDIGN,*), IWORK(*)
C .. Local Scalars ..
DOUBLE PRECISION ANORM, DIJ, EPSN, MAXRED, TOLDEF, X
INTEGER I, IA, IAC, IAS, IB, IC, ICC, IERR, IIP, IM,
$ IP, IPM1, IRP, ITAU, ITAU1, IZ, J, JJ, JWORK,
$ JWORK1, K, L, NCONT, WRKOPT
LOGICAL ASCEND, DIJNZ, FNDEIG, WITHD
C .. Local Arrays ..
DOUBLE PRECISION Z(1)
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, DLANGE
EXTERNAL DLAMCH, DLANGE, LSAME
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DHSEQR, DLACPY, MA02AD, MC01PD,
$ MC01PY, TB01ID, TB01ZD, TB04BX, XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, INT, MAX, MIN
C ..
C .. Executable Statements ..
C
C Test the input scalar parameters.
C
INFO = 0
WITHD = LSAME( JOBD, 'D' )
ASCEND = LSAME( ORDER, 'I' )
IF( .NOT.WITHD .AND. .NOT.LSAME( JOBD, 'Z' ) ) THEN
INFO = -1
ELSE IF( .NOT.ASCEND .AND. .NOT.LSAME( ORDER, 'D' ) ) THEN
INFO = -2
ELSE IF( .NOT. ( LSAME( EQUIL, 'S' ) .OR.
$ LSAME( EQUIL, 'N' ) ) ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( M.LT.0 ) THEN
INFO = -5
ELSE IF( P.LT.0 ) THEN
INFO = -6
ELSE IF( MD.LT.1 ) THEN
INFO = -7
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -11
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -13
ELSE IF( LDD.LT.1 .OR. ( WITHD .AND. LDD.LT.P ) ) THEN
INFO = -15
ELSE IF( LDIGN.LT.MAX( 1, P ) ) THEN
INFO = -17
ELSE IF( LDIGD.LT.MAX( 1, P ) ) THEN
INFO = -19
ELSE IF( LDWORK.LT.MAX( 1, N*( N + P ) +
$ MAX( N + MAX( N, P ), N*( 2*N + 5 ) ) )
$ ) THEN
INFO = -25
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'TB04BD', -INFO )
RETURN
END IF
C
C Initialize GN and GD to zero.
C
Z(1) = ZERO
CALL DCOPY( P*M*MD, Z, 0, GN, 1 )
CALL DCOPY( P*M*MD, Z, 0, GD, 1 )
C
C Quick return if possible.
C
IF( MIN( N, P, M ).EQ.0 ) THEN
IF( MIN( P, M ).GT.0 ) THEN
K = 1
C
DO 20 J = 1, M
C
DO 10 I = 1, P
IGN(I,J) = 0
IGD(I,J) = 0
IF ( WITHD )
$ GN(K) = D(I,J)
GD(K) = ONE
K = K + MD
10 CONTINUE
C
20 CONTINUE
C
END IF
DWORK(1) = ONE
RETURN
END IF
C
C Prepare the computation of the default tolerance.
C
TOLDEF = TOL
IF( TOLDEF.LE.ZERO ) THEN
EPSN = DBLE( N )*DLAMCH( 'Epsilon' )
ANORM = DLANGE( 'Frobenius', N, N, A, LDA, DWORK )
END IF
C
C Initializations.
C
IA = 1
IC = IA + N*N
ITAU = IC + P*N
JWORK = ITAU + N
IAC = ITAU
C
K = 1
DIJ = ZERO
C
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.)
C
IF( LSAME( EQUIL, 'S' ) ) THEN
C
C Scale simultaneously the matrices A, B and C:
C A <- inv(S)*A*S, B <- inv(S)*B and C <- C*S, where S is a
C diagonal scaling matrix.
C Workspace: need N.
C
MAXRED = C100
CALL TB01ID( 'All', N, M, P, MAXRED, A, LDA, B, LDB, C, LDC,
$ DWORK, IERR )
END IF
C
C Compute the transfer function matrix of the system (A,B,C,D).
C
DO 80 J = 1, M
C
C Save A and C.
C Workspace: need W1 = N*(N+P).
C
CALL DLACPY( 'Full', N, N, A, LDA, DWORK(IA), N )
CALL DLACPY( 'Full', P, N, C, LDC, DWORK(IC), P )
C
C Remove the uncontrollable part of the system (A,B(J),C).
C Workspace: need W1+N+MAX(N,P);
C prefer larger.
C
CALL TB01ZD( 'No Z', N, P, DWORK(IA), N, B(1,J), DWORK(IC), P,
$ NCONT, Z, 1, DWORK(ITAU), TOL, DWORK(JWORK),
$ LDWORK-JWORK+1, IERR )
IF ( J.EQ.1 )
$ WRKOPT = INT( DWORK(JWORK) ) + JWORK - 1
C
IB = IAC + NCONT*NCONT
ICC = IB + NCONT
ITAU1 = ICC + NCONT
IRP = ITAU1
IIP = IRP + NCONT
IAS = IIP + NCONT
JWORK1 = IAS + NCONT*NCONT
C
DO 70 I = 1, P
IF ( WITHD )
$ DIJ = D(I,J)
IF ( NCONT.GT.0 ) THEN
C
C Form the matrices of the state-space representation of
C the dual system for the controllable part.
C Workspace: need W2 = W1+N*(N+2).
C
CALL MA02AD( 'Full', NCONT, NCONT, DWORK(IA), N,
$ DWORK(IAC), NCONT )
CALL DCOPY( NCONT, B(1,J), 1, DWORK(IB), 1 )
CALL DCOPY( NCONT, DWORK(IC+I-1), P, DWORK(ICC), 1 )
C
C Remove the unobservable part of the system (A,B(J),C(I)).
C Workspace: need W2+2*N;
C prefer larger.
C
CALL TB01ZD( 'No Z', NCONT, 1, DWORK(IAC), NCONT,
$ DWORK(ICC), DWORK(IB), 1, IP, Z, 1,
$ DWORK(ITAU1), TOL, DWORK(IIP), LDWORK-IIP+1,
$ IERR )
IF ( I.EQ.1 )
$ WRKOPT = MAX( WRKOPT, INT( DWORK(IIP) ) + IIP - 1 )
C
IF ( IP.GT.0 ) THEN
C
C Save the state matrix of the minimal part.
C Workspace: need W3 = W2+N*(N+2).
C
CALL DLACPY( 'Full', IP, IP, DWORK(IAC), NCONT,
$ DWORK(IAS), IP )
C
C Compute the poles of the transfer function.
C Workspace: need W3+N;
C prefer larger.
C
CALL DHSEQR( 'Eigenvalues', 'No vectors', IP, 1, IP,
$ DWORK(IAC), NCONT, DWORK(IRP),
$ DWORK(IIP), Z, 1, DWORK(JWORK1),
$ LDWORK-JWORK1+1, IERR )
IF ( IERR.NE.0 ) THEN
INFO = 2
RETURN
END IF
WRKOPT = MAX( WRKOPT,
$ INT( DWORK(JWORK1) ) + JWORK1 - 1 )
C
C Compute the zeros of the transfer function.
C
IPM1 = IP - 1
DIJNZ = WITHD .AND. DIJ.NE.ZERO
FNDEIG = DIJNZ .OR. IPM1.GT.0
IF ( .NOT.FNDEIG ) THEN
IZ = 0
ELSE IF ( DIJNZ ) THEN
C
C Add the contribution due to D(i,j).
C Note that the matrix whose eigenvalues have to
C be computed remains in an upper Hessenberg form.
C
IZ = IP
CALL DLACPY( 'Full', IZ, IZ, DWORK(IAS), IP,
$ DWORK(IAC), NCONT )
CALL DAXPY( IZ, -DWORK(ICC)/DIJ, DWORK(IB), 1,
$ DWORK(IAC), NCONT )
ELSE
IF( TOL.LE.ZERO )
$ TOLDEF = EPSN*MAX( ANORM,
$ DLANGE( 'Frobenius', IP, 1,
$ DWORK(IB), 1, DWORK )
$ )
C
DO 30 IM = 1, IPM1
IF ( ABS( DWORK(IB+IM-1) ).GT.TOLDEF ) GO TO 40
30 CONTINUE
C
IZ = 0
GO TO 50
C
40 CONTINUE
C
C Restore (part of) the saved state matrix.
C
IZ = IP - IM
CALL DLACPY( 'Full', IZ, IZ, DWORK(IAS+IM*(IP+1)),
$ IP, DWORK(IAC), NCONT )
C
C Apply the output injection.
C
CALL DAXPY( IZ, -DWORK(IAS+IM*(IP+1)-IP)/
$ DWORK(IB+IM-1), DWORK(IB+IM), 1,
$ DWORK(IAC), NCONT )
END IF
C
IF ( FNDEIG ) THEN
C
C Find the zeros.
C Workspace: need W3+N;
C prefer larger.
C
CALL DHSEQR( 'Eigenvalues', 'No vectors', IZ, 1,
$ IZ, DWORK(IAC), NCONT, GN(K), GD(K),
$ Z, 1, DWORK(JWORK1), LDWORK-JWORK1+1,
$ IERR )
IF ( IERR.NE.0 ) THEN
INFO = 1
RETURN
END IF
END IF
C
C Compute the gain.
C
50 CONTINUE
IF ( DIJNZ ) THEN
X = DIJ
ELSE
CALL TB04BX( IP, IZ, DWORK(IAS), IP, DWORK(ICC),
$ DWORK(IB), DIJ, DWORK(IRP),
$ DWORK(IIP), GN(K), GD(K), X, IWORK )
END IF
C
C Form the numerator coefficients in increasing or
C decreasing powers of the indeterminate.
C IAS is used here as pointer to the workspace.
C
IF ( ASCEND ) THEN
CALL MC01PD( IZ, GN(K), GD(K), DWORK(IB),
$ DWORK(IAS), IERR )
ELSE
CALL MC01PY( IZ, GN(K), GD(K), DWORK(IB),
$ DWORK(IAS), IERR )
END IF
JJ = K
C
DO 60 L = IB, IB + IZ
GN(JJ) = DWORK(L)*X
JJ = JJ + 1
60 CONTINUE
C
C Form the denominator coefficients.
C
IF ( ASCEND ) THEN
CALL MC01PD( IP, DWORK(IRP), DWORK(IIP), GD(K),
$ DWORK(IAS), IERR )
ELSE
CALL MC01PY( IP, DWORK(IRP), DWORK(IIP), GD(K),
$ DWORK(IAS), IERR )
END IF
IGN(I,J) = IZ
IGD(I,J) = IP
ELSE
C
C Null element.
C
IGN(I,J) = 0
IGD(I,J) = 0
GN(K) = DIJ
GD(K) = ONE
END IF
C
ELSE
C
C Null element.
C
IGN(I,J) = 0
IGD(I,J) = 0
GN(K) = DIJ
GD(K) = ONE
END IF
C
K = K + MD
70 CONTINUE
C
80 CONTINUE
C
RETURN
C *** Last line of TB04BD ***
END