dynare/mex/sources/libslicot/SB16BD.f

653 lines
25 KiB
Fortran

SUBROUTINE SB16BD( DICO, JOBD, JOBMR, JOBCF, EQUIL, ORDSEL,
$ N, M, P, NCR, A, LDA, B, LDB, C, LDC, D, LDD,
$ F, LDF, G, LDG, DC, LDDC, HSV, TOL1, TOL2,
$ IWORK, DWORK, LDWORK, IWARN, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute, for a given open-loop model (A,B,C,D), and for
C given state feedback gain F and full observer gain G,
C such that A+B*F and A+G*C are stable, a reduced order
C controller model (Ac,Bc,Cc,Dc) using a coprime factorization
C based controller reduction approach. For reduction,
C either the square-root or the balancing-free square-root
C versions of the Balance & Truncate (B&T) or Singular Perturbation
C Approximation (SPA) model reduction methods are used in
C conjunction with stable coprime factorization techniques.
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies the type of the open-loop system as follows:
C = 'C': continuous-time system;
C = 'D': discrete-time system.
C
C JOBD CHARACTER*1
C Specifies whether or not a non-zero matrix D appears
C in the given state space model:
C = 'D': D is present;
C = 'Z': D is assumed a zero matrix.
C
C JOBMR CHARACTER*1
C Specifies the model reduction approach to be used
C as follows:
C = 'B': use the square-root B&T method;
C = 'F': use the balancing-free square-root B&T method;
C = 'S': use the square-root SPA method;
C = 'P': use the balancing-free square-root SPA method.
C
C JOBCF CHARACTER*1
C Specifies whether left or right coprime factorization is
C to be used as follows:
C = 'L': use left coprime factorization;
C = 'R': use right coprime factorization.
C
C EQUIL CHARACTER*1
C Specifies whether the user wishes to perform a
C preliminary equilibration before performing
C order reduction as follows:
C = 'S': perform equilibration (scaling);
C = 'N': do not perform equilibration.
C
C ORDSEL CHARACTER*1
C Specifies the order selection method as follows:
C = 'F': the resulting controller order NCR is fixed;
C = 'A': the resulting controller order NCR is
C automatically determined on basis of the given
C tolerance TOL1.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the open-loop state-space representation,
C i.e., the order of the matrix A. N >= 0.
C N also represents the order of the original state-feedback
C controller.
C
C M (input) INTEGER
C The number of system inputs. M >= 0.
C
C P (input) INTEGER
C The number of system outputs. P >= 0.
C
C NCR (input/output) INTEGER
C On entry with ORDSEL = 'F', NCR is the desired order of
C the resulting reduced order controller. 0 <= NCR <= N.
C On exit, if INFO = 0, NCR is the order of the resulting
C reduced order controller. NCR is set as follows:
C if ORDSEL = 'F', NCR is equal to MIN(NCR,NMIN), where NCR
C is the desired order on entry, and NMIN is the order of a
C minimal realization of an extended system Ge (see METHOD);
C NMIN is determined as the number of
C Hankel singular values greater than N*EPS*HNORM(Ge),
C where EPS is the machine precision (see LAPACK Library
C Routine DLAMCH) and HNORM(Ge) is the Hankel norm of the
C extended system (computed in HSV(1));
C if ORDSEL = 'A', NCR is equal to the number of Hankel
C singular values greater than MAX(TOL1,N*EPS*HNORM(Ge)).
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the original state dynamics matrix A.
C On exit, if INFO = 0, the leading NCR-by-NCR part of this
C array contains the state dynamics matrix Ac of the reduced
C controller.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,M)
C The leading N-by-M part of this array must
C contain the original input/state matrix B.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input) DOUBLE PRECISION array, dimension (LDC,N)
C The leading P-by-N part of this array must
C contain the original state/output matrix C.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C D (input) DOUBLE PRECISION array, dimension (LDD,M)
C If JOBD = 'D', the leading P-by-M part of this
C array must contain the system direct input/output
C transmission matrix D.
C The array D is not referenced if JOBD = 'Z'.
C
C LDD INTEGER
C The leading dimension of array D.
C LDD >= MAX(1,P), if JOBD = 'D';
C LDD >= 1, if JOBD = 'Z'.
C
C F (input/output) DOUBLE PRECISION array, dimension (LDF,N)
C On entry, the leading M-by-N part of this array must
C contain a stabilizing state feedback matrix.
C On exit, if INFO = 0, the leading M-by-NCR part of this
C array contains the state/output matrix Cc of the reduced
C controller.
C
C LDF INTEGER
C The leading dimension of array F. LDF >= MAX(1,M).
C
C G (input/output) DOUBLE PRECISION array, dimension (LDG,P)
C On entry, the leading N-by-P part of this array must
C contain a stabilizing observer gain matrix.
C On exit, if INFO = 0, the leading NCR-by-P part of this
C array contains the input/state matrix Bc of the reduced
C controller.
C
C LDG INTEGER
C The leading dimension of array G. LDG >= MAX(1,N).
C
C DC (output) DOUBLE PRECISION array, dimension (LDDC,P)
C If INFO = 0, the leading M-by-P part of this array
C contains the input/output matrix Dc of the reduced
C controller.
C
C LDDC INTEGER
C The leading dimension of array DC. LDDC >= MAX(1,M).
C
C HSV (output) DOUBLE PRECISION array, dimension (N)
C If INFO = 0, it contains the N Hankel singular values
C of the extended system ordered decreasingly (see METHOD).
C
C Tolerances
C
C TOL1 DOUBLE PRECISION
C If ORDSEL = 'A', TOL1 contains the tolerance for
C determining the order of the reduced extended system.
C For model reduction, the recommended value is
C TOL1 = c*HNORM(Ge), where c is a constant in the
C interval [0.00001,0.001], and HNORM(Ge) is the
C Hankel norm of the extended system (computed in HSV(1)).
C The value TOL1 = N*EPS*HNORM(Ge) is used by default if
C TOL1 <= 0 on entry, where EPS is the machine precision
C (see LAPACK Library Routine DLAMCH).
C If ORDSEL = 'F', the value of TOL1 is ignored.
C
C TOL2 DOUBLE PRECISION
C The tolerance for determining the order of a minimal
C realization of the coprime factorization controller
C (see METHOD). The recommended value is
C TOL2 = N*EPS*HNORM(Ge) (see METHOD).
C This value is used by default if TOL2 <= 0 on entry.
C If TOL2 > 0 and ORDSEL = 'A', then TOL2 <= TOL1.
C
C Workspace
C
C IWORK INTEGER array, dimension (LIWORK)
C LIWORK = 0, if ORDSEL = 'F' and NCR = N.
C Otherwise,
C LIWORK = MAX(PM,M), if JOBCF = 'L',
C LIWORK = MAX(PM,P), if JOBCF = 'R', where
C PM = 0, if JOBMR = 'B',
C PM = N, if JOBMR = 'F',
C PM = MAX(1,2*N), if JOBMR = 'S' or 'P'.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= P*N, if ORDSEL = 'F' and NCR = N. Otherwise,
C LDWORK >= (N+M)*(M+P) + MAX(LWR,4*M), if JOBCF = 'L',
C LDWORK >= (N+P)*(M+P) + MAX(LWR,4*P), if JOBCF = 'R',
C where LWR = MAX(1,N*(2*N+MAX(N,M+P)+5)+N*(N+1)/2).
C For optimum performance LDWORK should be larger.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = 1: with ORDSEL = 'F', the selected order NCR is
C greater than the order of a minimal
C realization of the controller.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the reduction of A+G*C to a real Schur form
C failed;
C = 2: the matrix A+G*C is not stable (if DICO = 'C'),
C or not convergent (if DICO = 'D');
C = 3: the computation of Hankel singular values failed;
C = 4: the reduction of A+B*F to a real Schur form
C failed;
C = 5: the matrix A+B*F is not stable (if DICO = 'C'),
C or not convergent (if DICO = 'D').
C
C METHOD
C
C Let be the linear system
C
C d[x(t)] = Ax(t) + Bu(t)
C y(t) = Cx(t) + Du(t), (1)
C
C where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
C for a discrete-time system, and let Go(d) be the open-loop
C transfer-function matrix
C -1
C Go(d) = C*(d*I-A) *B + D .
C
C Let F and G be the state feedback and observer gain matrices,
C respectively, chosen so that A+B*F and A+G*C are stable matrices.
C The controller has a transfer-function matrix K(d) given by
C -1
C K(d) = F*(d*I-A-B*F-G*C-G*D*F) *G .
C
C The closed-loop transfer-function matrix is given by
C -1
C Gcl(d) = Go(d)(I+K(d)Go(d)) .
C
C K(d) can be expressed as a left coprime factorization (LCF),
C -1
C K(d) = M_left(d) *N_left(d) ,
C
C or as a right coprime factorization (RCF),
C -1
C K(d) = N_right(d)*M_right(d) ,
C
C where M_left(d), N_left(d), N_right(d), and M_right(d) are
C stable transfer-function matrices.
C
C The subroutine SB16BD determines the matrices of a reduced
C controller
C
C d[z(t)] = Ac*z(t) + Bc*y(t)
C u(t) = Cc*z(t) + Dc*y(t), (2)
C
C with the transfer-function matrix Kr as follows:
C
C (1) If JOBCF = 'L', the extended system
C Ge(d) = [ N_left(d) M_left(d) ] is reduced to
C Ger(d) = [ N_leftr(d) M_leftr(d) ] by using either the
C B&T or SPA methods. The reduced order controller Kr(d)
C is computed as
C -1
C Kr(d) = M_leftr(d) *N_leftr(d) ;
C
C (2) If JOBCF = 'R', the extended system
C Ge(d) = [ N_right(d) ] is reduced to
C [ M_right(d) ]
C Ger(d) = [ N_rightr(d) ] by using either the
C [ M_rightr(d) ]
C B&T or SPA methods. The reduced order controller Kr(d)
C is computed as
C -1
C Kr(d) = N_rightr(d)* M_rightr(d) .
C
C If ORDSEL = 'A', the order of the controller is determined by
C computing the number of Hankel singular values greater than
C the given tolerance TOL1. The Hankel singular values are
C the square roots of the eigenvalues of the product of
C the controllability and observability Grammians of the
C extended system Ge.
C
C If JOBMR = 'B', the square-root B&T method of [1] is used.
C
C If JOBMR = 'F', the balancing-free square-root version of the
C B&T method [1] is used.
C
C If JOBMR = 'S', the square-root version of the SPA method [2,3]
C is used.
C
C If JOBMR = 'P', the balancing-free square-root version of the
C SPA method [2,3] is used.
C
C REFERENCES
C
C [1] Tombs, M.S. and Postlethwaite, I.
C Truncated balanced realization of stable, non-minimal
C state-space systems.
C Int. J. Control, Vol. 46, pp. 1319-1330, 1987.
C
C [2] Varga, A.
C Efficient minimal realization procedure based on balancing.
C Proc. of IMACS/IFAC Symp. MCTS, Lille, France, May 1991,
C A. El Moudui, P. Borne, S. G. Tzafestas (Eds.), Vol. 2,
C pp. 42-46, 1991.
C
C [3] Varga, A.
C Coprime factors model reduction method based on square-root
C balancing-free techniques.
C System Analysis, Modelling and Simulation, Vol. 11,
C pp. 303-311, 1993.
C
C [4] Liu, Y., Anderson, B.D.O. and Ly, O.L.
C Coprime factorization controller reduction with Bezout
C identity induced frequency weighting.
C Automatica, vol. 26, pp. 233-249, 1990.
C
C NUMERICAL ASPECTS
C
C The implemented methods rely on accuracy enhancing square-root or
C balancing-free square-root techniques.
C 3
C The algorithms require less than 30N floating point operations.
C
C CONTRIBUTOR
C
C A. Varga, German Aerospace Center, Oberpfaffenhofen, August 2000.
C D. Sima, University of Bucharest, August 2000.
C V. Sima, Research Institute for Informatics, Bucharest, Aug. 2000.
C
C REVISIONS
C
C A. Varga, Australian National University, Canberra, November 2000.
C V. Sima, Research Institute for Informatics, Bucharest, Dec. 2000,
C Aug. 2001.
C
C KEYWORDS
C
C Balancing, controller reduction, coprime factorization,
C minimal realization, multivariable system, state-space model.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO, EQUIL, JOBCF, JOBD, JOBMR, ORDSEL
INTEGER INFO, IWARN, LDA, LDB, LDC, LDD, LDDC,
$ LDF, LDG, LDWORK, M, N, NCR, P
DOUBLE PRECISION TOL1, TOL2
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
$ DC(LDDC,*), DWORK(*), F(LDF,*), G(LDG,*), HSV(*)
C .. Local Scalars ..
CHARACTER JOB
LOGICAL BAL, BTA, DISCR, FIXORD, LEFT, LEQUIL, SPA,
$ WITHD
INTEGER KBE, KCE, KDE, KW, LDBE, LDCE, LDDE, LW1, LW2,
$ LWR, MAXMP, WRKOPT
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL AB09AD, AB09BD, DGEMM, DLACPY, DLASET, SB08GD,
$ SB08HD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC INT, MAX, MIN
C .. Executable Statements ..
C
INFO = 0
IWARN = 0
DISCR = LSAME( DICO, 'D' )
WITHD = LSAME( JOBD, 'D' )
BTA = LSAME( JOBMR, 'B' ) .OR. LSAME( JOBMR, 'F' )
SPA = LSAME( JOBMR, 'S' ) .OR. LSAME( JOBMR, 'P' )
BAL = LSAME( JOBMR, 'B' ) .OR. LSAME( JOBMR, 'S' )
LEFT = LSAME( JOBCF, 'L' )
LEQUIL = LSAME( EQUIL, 'S' )
FIXORD = LSAME( ORDSEL, 'F' )
MAXMP = MAX( M, P )
C
LWR = MAX( 1, N*( 2*N + MAX( N, M+P ) + 5 ) + ( N*(N+1) )/2 )
LW1 = (N+M)*(M+P) + MAX( LWR, 4*M )
LW2 = (N+P)*(M+P) + MAX( LWR, 4*P )
C
C Test the input scalar arguments.
C
IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
INFO = -1
ELSE IF( .NOT. ( WITHD .OR. LSAME( JOBD, 'Z' ) ) ) THEN
INFO = -2
ELSE IF( .NOT. ( BTA .OR. SPA ) ) THEN
INFO = -3
ELSE IF( .NOT. ( LEFT .OR. LSAME( JOBCF, 'R' ) ) ) THEN
INFO = -4
ELSE IF( .NOT. ( LEQUIL .OR. LSAME( EQUIL, 'N' ) ) ) THEN
INFO = -5
ELSE IF( .NOT. ( FIXORD .OR. LSAME( ORDSEL, 'A' ) ) ) THEN
INFO = -6
ELSE IF( N.LT.0 ) THEN
INFO = -7
ELSE IF( M.LT.0 ) THEN
INFO = -8
ELSE IF( P.LT.0 ) THEN
INFO = -9
ELSE IF( FIXORD .AND. ( NCR.LT.0 .OR. NCR.GT.N ) ) THEN
INFO = -10
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -12
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -14
ELSE IF( LDC.LT.MAX( 1, P ) ) THEN
INFO = -16
ELSE IF( LDD.LT.1 .OR. ( WITHD .AND. LDD.LT.P ) ) THEN
INFO = -18
ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
INFO = -20
ELSE IF( LDG.LT.MAX( 1, N ) ) THEN
INFO = -22
ELSE IF( LDDC.LT.MAX( 1, M ) ) THEN
INFO = -24
ELSE IF( .NOT.FIXORD .AND. TOL2.GT.ZERO .AND. TOL2.GT.TOL1 ) THEN
INFO = -27
ELSE IF( ( ( .NOT.FIXORD .OR. NCR.LT.N ) .AND.
$ ( ( LEFT .AND. LDWORK.LT.LW1 ) ) .OR.
$ ( .NOT.LEFT .AND. LDWORK.LT.LW2 ) ) .OR.
$ ( FIXORD .AND. NCR.EQ.N .AND. LDWORK.LT.P*N ) ) THEN
INFO = -30
END IF
C
IF( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'SB16BD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( MIN( N, M, P ).EQ.0 .OR.
$ ( FIXORD .AND. BTA .AND. NCR.EQ.0 ) ) THEN
NCR = 0
DWORK(1) = ONE
RETURN
END IF
C
IF( NCR.EQ.N ) THEN
C
C Form the controller state matrix,
C Ac = A + B*F + G*C + G*D*F = A + B*F + G*(C+D*F) .
C Real workspace: need P*N.
C Integer workspace: need 0.
C
CALL DLACPY( 'Full', P, N, C, LDC, DWORK, P )
IF( WITHD ) CALL DGEMM( 'NoTranspose', 'NoTranspose', P, N, M,
$ ONE, D, LDD, F, LDF, ONE,
$ DWORK, P )
CALL DGEMM( 'NoTranspose', 'NoTranspose', N, N, P, ONE, G,
$ LDG, DWORK, P, ONE, A, LDA )
CALL DGEMM( 'NoTranspose', 'NoTranspose', N, N, M, ONE, B,
$ LDB, F, LDF, ONE, A, LDA )
C
DWORK(1) = P*N
RETURN
END IF
C
IF( BAL ) THEN
JOB = 'B'
ELSE
JOB = 'N'
END IF
C
C Reduce the coprime factors.
C
IF( LEFT ) THEN
C
C Form Ge(d) = [ N_left(d) M_left(d) ] as
C
C ( A+G*C | G B+GD )
C (------------------)
C ( F | 0 I )
C
C Real workspace: need (N+M)*(M+P).
C Integer workspace: need 0.
C
CALL DGEMM( 'NoTranspose', 'NoTranspose', N, N, P, ONE, G,
$ LDG, C, LDC, ONE, A, LDA )
KBE = 1
KDE = KBE + N*(P+M)
LDBE = MAX( 1, N )
LDDE = M
CALL DLACPY( 'Full', N, P, G, LDG, DWORK(KBE), LDBE )
CALL DLACPY( 'Full', N, M, B, LDB, DWORK(KBE+N*P), LDBE )
IF( WITHD ) CALL DGEMM( 'NoTranspose', 'NoTranspose', N, M, P,
$ ONE, G, LDG, D, LDD, ONE,
$ DWORK(KBE+N*P), LDBE )
CALL DLASET( 'Full', M, P, ZERO, ZERO, DWORK(KDE), LDDE )
CALL DLASET( 'Full', M, M, ZERO, ONE, DWORK(KDE+M*P), LDDE )
C
C Compute the reduced coprime factors,
C Ger(d) = [ N_leftr(d) M_leftr(d) ] ,
C by using either the B&T or SPA methods.
C
C Real workspace: need (N+M)*(M+P) +
C MAX(1,N*(2*N+MAX(N,M+P)+5)+N*(N+1)/2).
C Integer workspace: need 0, if JOBMR = 'B',
C N, if JOBMR = 'F', and
C MAX(1,2*N) if JOBMR = 'S' or 'P'.
C
KW = KDE + M*(P+M)
IF( BTA ) THEN
CALL AB09AD( DICO, JOB, EQUIL, ORDSEL, N, M+P, M, NCR, A,
$ LDA, DWORK(KBE), LDBE, F, LDF, HSV, TOL1,
$ IWORK, DWORK(KW), LDWORK-KW+1, IWARN, INFO )
ELSE
CALL AB09BD( DICO, JOB, EQUIL, ORDSEL, N, M+P, M, NCR, A,
$ LDA, DWORK(KBE), LDBE, F, LDF, DWORK(KDE),
$ LDDE, HSV, TOL1, TOL2, IWORK, DWORK(KW),
$ LDWORK-KW+1, IWARN, INFO )
END IF
IF( INFO.NE.0 )
$ RETURN
C
WRKOPT = INT( DWORK(KW) ) + KW - 1
C
C Compute the reduced order controller,
C -1
C Kr(d) = M_leftr(d) *N_leftr(d).
C
C Real workspace: need (N+M)*(M+P) + MAX(1,4*M).
C Integer workspace: need M.
C
CALL SB08GD( NCR, P, M, A, LDA, DWORK(KBE), LDBE, F, LDF,
$ DWORK(KDE), LDDE, DWORK(KBE+N*P), LDBE,
$ DWORK(KDE+M*P), LDDE, IWORK, DWORK(KW), INFO )
C
C Copy the reduced system matrices Bc and Dc.
C
CALL DLACPY( 'Full', NCR, P, DWORK(KBE), LDBE, G, LDG )
CALL DLACPY( 'Full', M, P, DWORK(KDE), LDDE, DC, LDDC )
C
ELSE
C
C Form Ge(d) = [ N_right(d) ]
C [ M_right(d) ] as
C
C ( A+B*F | G )
C (-----------)
C ( F | 0 )
C ( C+D*F | I )
C
C Real workspace: need (N+P)*(M+P).
C Integer workspace: need 0.
C
CALL DGEMM( 'NoTranspose', 'NoTranspose', N, N, M, ONE, B,
$ LDB, F, LDF, ONE, A, LDA )
KCE = 1
KDE = KCE + N*(P+M)
LDCE = M+P
LDDE = LDCE
CALL DLACPY( 'Full', M, N, F, LDF, DWORK(KCE), LDCE )
CALL DLACPY( 'Full', P, N, C, LDC, DWORK(KCE+M), LDCE )
IF( WITHD ) CALL DGEMM( 'NoTranspose', 'NoTranspose', P, N, M,
$ ONE, D, LDD, F, LDF, ONE,
$ DWORK(KCE+M), LDCE )
CALL DLASET( 'Full', M, P, ZERO, ZERO, DWORK(KDE), LDDE )
CALL DLASET( 'Full', P, P, ZERO, ONE, DWORK(KDE+M), LDDE )
C
C Compute the reduced coprime factors,
C Ger(d) = [ N_rightr(d) ]
C [ M_rightr(d) ],
C by using either the B&T or SPA methods.
C
C Real workspace: need (N+P)*(M+P) +
C MAX(1,N*(2*N+MAX(N,M+P)+5)+N*(N+1)/2).
C Integer workspace: need 0, if JOBMR = 'B',
C N, if JOBMR = 'F', and
C MAX(1,2*N) if JOBMR = 'S' or 'P'.
C
KW = KDE + P*(P+M)
IF( BTA ) THEN
CALL AB09AD( DICO, JOB, EQUIL, ORDSEL, N, P, M+P, NCR, A,
$ LDA, G, LDG, DWORK(KCE), LDCE, HSV, TOL1,
$ IWORK, DWORK(KW), LDWORK-KW+1, IWARN, INFO )
ELSE
CALL AB09BD( DICO, JOB, EQUIL, ORDSEL, N, P, M+P, NCR, A,
$ LDA, G, LDG, DWORK(KCE), LDCE, DWORK(KDE),
$ LDDE, HSV, TOL1, TOL2, IWORK, DWORK(KW),
$ LDWORK-KW+1, IWARN, INFO )
END IF
IF( INFO.NE.0 ) THEN
IF( INFO.NE.3 ) INFO = INFO + 3
RETURN
END IF
C
WRKOPT = INT( DWORK(KW) ) + KW - 1
C
C Compute the reduced order controller,
C -1
C Kr(d) = N_rightr(d)*M_rightr(d) .
C
C Real workspace: need (N+P)*(M+P) + MAX(1,4*P).
C Integer workspace: need P.
C
CALL SB08HD( NCR, P, M, A, LDA, G, LDG, DWORK(KCE), LDCE,
$ DWORK(KDE), LDDE, DWORK(KCE+M), LDCE,
$ DWORK(KDE+M), LDDE, IWORK, DWORK(KW), INFO )
C
C Copy the reduced system matrices Cc and Dc.
C
CALL DLACPY( 'Full', M, NCR, DWORK(KCE), LDCE, F, LDF )
CALL DLACPY( 'Full', M, P, DWORK(KDE), LDDE, DC, LDDC )
C
END IF
C
DWORK(1) = WRKOPT
C
RETURN
C *** Last line of SB16BD ***
END