dynare/mex/sources/libslicot/SB10RD.f

707 lines
24 KiB
Fortran

SUBROUTINE SB10RD( N, M, NP, NCON, NMEAS, GAMMA, A, LDA, B, LDB,
$ C, LDC, D, LDD, F, LDF, H, LDH, TU, LDTU, TY,
$ LDTY, X, LDX, Y, LDY, AK, LDAK, BK, LDBK, CK,
$ LDCK, DK, LDDK, IWORK, DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the matrices of an H-infinity (sub)optimal controller
C
C | AK | BK |
C K = |----|----|,
C | CK | DK |
C
C from the state feedback matrix F and output injection matrix H as
C determined by the SLICOT Library routine SB10QD.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the system. N >= 0.
C
C M (input) INTEGER
C The column size of the matrix B. M >= 0.
C
C NP (input) INTEGER
C The row size of the matrix C. NP >= 0.
C
C NCON (input) INTEGER
C The number of control inputs (M2). M >= NCON >= 0.
C NP-NMEAS >= NCON.
C
C NMEAS (input) INTEGER
C The number of measurements (NP2). NP >= NMEAS >= 0.
C M-NCON >= NMEAS.
C
C GAMMA (input) DOUBLE PRECISION
C The value of gamma. It is assumed that gamma is
C sufficiently large so that the controller is admissible.
C GAMMA >= 0.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array must contain the
C system state matrix A.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= max(1,N).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,M)
C The leading N-by-M part of this array must contain the
C system input matrix B.
C
C LDB INTEGER
C The leading dimension of the array B. LDB >= max(1,N).
C
C C (input) DOUBLE PRECISION array, dimension (LDC,N)
C The leading NP-by-N part of this array must contain the
C system output matrix C.
C
C LDC INTEGER
C The leading dimension of the array C. LDC >= max(1,NP).
C
C D (input) DOUBLE PRECISION array, dimension (LDD,M)
C The leading NP-by-M part of this array must contain the
C system input/output matrix D.
C
C LDD INTEGER
C The leading dimension of the array D. LDD >= max(1,NP).
C
C F (input) DOUBLE PRECISION array, dimension (LDF,N)
C The leading M-by-N part of this array must contain the
C state feedback matrix F.
C
C LDF INTEGER
C The leading dimension of the array F. LDF >= max(1,M).
C
C H (input) DOUBLE PRECISION array, dimension (LDH,NP)
C The leading N-by-NP part of this array must contain the
C output injection matrix H.
C
C LDH INTEGER
C The leading dimension of the array H. LDH >= max(1,N).
C
C TU (input) DOUBLE PRECISION array, dimension (LDTU,M2)
C The leading M2-by-M2 part of this array must contain the
C control transformation matrix TU, as obtained by the
C SLICOT Library routine SB10PD.
C
C LDTU INTEGER
C The leading dimension of the array TU. LDTU >= max(1,M2).
C
C TY (input) DOUBLE PRECISION array, dimension (LDTY,NP2)
C The leading NP2-by-NP2 part of this array must contain the
C measurement transformation matrix TY, as obtained by the
C SLICOT Library routine SB10PD.
C
C LDTY INTEGER
C The leading dimension of the array TY.
C LDTY >= max(1,NP2).
C
C X (input) DOUBLE PRECISION array, dimension (LDX,N)
C The leading N-by-N part of this array must contain the
C matrix X, solution of the X-Riccati equation, as obtained
C by the SLICOT Library routine SB10QD.
C
C LDX INTEGER
C The leading dimension of the array X. LDX >= max(1,N).
C
C Y (input) DOUBLE PRECISION array, dimension (LDY,N)
C The leading N-by-N part of this array must contain the
C matrix Y, solution of the Y-Riccati equation, as obtained
C by the SLICOT Library routine SB10QD.
C
C LDY INTEGER
C The leading dimension of the array Y. LDY >= max(1,N).
C
C AK (output) DOUBLE PRECISION array, dimension (LDAK,N)
C The leading N-by-N part of this array contains the
C controller state matrix AK.
C
C LDAK INTEGER
C The leading dimension of the array AK. LDAK >= max(1,N).
C
C BK (output) DOUBLE PRECISION array, dimension (LDBK,NMEAS)
C The leading N-by-NMEAS part of this array contains the
C controller input matrix BK.
C
C LDBK INTEGER
C The leading dimension of the array BK. LDBK >= max(1,N).
C
C CK (output) DOUBLE PRECISION array, dimension (LDCK,N)
C The leading NCON-by-N part of this array contains the
C controller output matrix CK.
C
C LDCK INTEGER
C The leading dimension of the array CK.
C LDCK >= max(1,NCON).
C
C DK (output) DOUBLE PRECISION array, dimension (LDDK,NMEAS)
C The leading NCON-by-NMEAS part of this array contains the
C controller input/output matrix DK.
C
C LDDK INTEGER
C The leading dimension of the array DK.
C LDDK >= max(1,NCON).
C
C Workspace
C
C IWORK INTEGER array, dimension (LIWORK), where
C LIWORK = max(2*(max(NP,M)-M2-NP2,M2,N),NP2)
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) contains the optimal
C LDWORK.
C
C LDWORK INTEGER
C The dimension of the array DWORK.
C LDWORK >= max(1, M2*NP2 + NP2*NP2 + M2*M2 +
C max(D1*D1 + max(2*D1, (D1+D2)*NP2),
C D2*D2 + max(2*D2, D2*M2), 3*N,
C N*(2*NP2 + M2) +
C max(2*N*M2, M2*NP2 +
C max(M2*M2+3*M2, NP2*(2*NP2+
C M2+max(NP2,N))))))
C where D1 = NP1 - M2, D2 = M1 - NP2,
C NP1 = NP - NP2, M1 = M - M2.
C For good performance, LDWORK must generally be larger.
C Denoting Q = max(M1,M2,NP1,NP2), an upper bound is
C max( 1, Q*(3*Q + 3*N + max(2*N, 4*Q + max(Q, N)))).
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: if the controller is not admissible (too small value
C of gamma);
C = 2: if the determinant of Im2 + Tu*D11HAT*Ty*D22 is zero.
C
C METHOD
C
C The routine implements the Glover's and Doyle's formulas [1],[2].
C
C REFERENCES
C
C [1] Glover, K. and Doyle, J.C.
C State-space formulae for all stabilizing controllers that
C satisfy an Hinf norm bound and relations to risk sensitivity.
C Systems and Control Letters, vol. 11, pp. 167-172, 1988.
C
C [2] Balas, G.J., Doyle, J.C., Glover, K., Packard, A., and
C Smith, R.
C mu-Analysis and Synthesis Toolbox.
C The MathWorks Inc., Natick, Mass., 1995.
C
C NUMERICAL ASPECTS
C
C The accuracy of the result depends on the condition numbers of the
C input and output transformations.
C
C CONTRIBUTORS
C
C P.Hr. Petkov, D.W. Gu and M.M. Konstantinov, October 1998.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, May 1999,
C Sept. 1999, Oct. 2001.
C
C KEYWORDS
C
C Algebraic Riccati equation, H-infinity optimal control, robust
C control.
C
C *********************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C ..
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD,
$ LDDK, LDF, LDH, LDTU, LDTY, LDWORK, LDX, LDY,
$ M, N, NCON, NMEAS, NP
DOUBLE PRECISION GAMMA
C ..
C .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION A( LDA, * ), AK( LDAK, * ), B( LDB, * ),
$ BK( LDBK, * ), C( LDC, * ), CK( LDCK, * ),
$ D( LDD, * ), DK( LDDK, * ), DWORK( * ),
$ F( LDF, * ), H( LDH, * ), TU( LDTU, * ),
$ TY( LDTY, * ), X( LDX, * ), Y( LDY, * )
C ..
C .. Local Scalars ..
INTEGER I, ID11, ID12, ID21, IJ, INFO2, IW1, IW2, IW3,
$ IW4, IWB, IWC, IWRK, J, LWAMAX, M1, M2, MINWRK,
$ ND1, ND2, NP1, NP2
DOUBLE PRECISION ANORM, EPS, RCOND
C ..
C .. External Functions ..
DOUBLE PRECISION DLAMCH, DLANGE, DLANSY
EXTERNAL DLAMCH, DLANGE, DLANSY
C ..
C .. External Subroutines ..
EXTERNAL DGECON, DGEMM, DGETRF, DGETRI, DGETRS, DLACPY,
$ DLASET, DPOTRF, DSYCON, DSYRK, DSYTRF, DSYTRS,
$ DTRMM, MA02AD, MB01RX, XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC DBLE, INT, MAX
C ..
C .. Executable Statements ..
C
C Decode and Test input parameters.
C
M1 = M - NCON
M2 = NCON
NP1 = NP - NMEAS
NP2 = NMEAS
C
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( NP.LT.0 ) THEN
INFO = -3
ELSE IF( NCON.LT.0 .OR. M1.LT.0 .OR. M2.GT.NP1 ) THEN
INFO = -4
ELSE IF( NMEAS.LT.0 .OR. NP1.LT.0 .OR. NP2.GT.M1 ) THEN
INFO = -5
ELSE IF( GAMMA.LT.ZERO ) THEN
INFO = -6
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -10
ELSE IF( LDC.LT.MAX( 1, NP ) ) THEN
INFO = -12
ELSE IF( LDD.LT.MAX( 1, NP ) ) THEN
INFO = -14
ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
INFO = -16
ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
INFO = -18
ELSE IF( LDTU.LT.MAX( 1, M2 ) ) THEN
INFO = -20
ELSE IF( LDTY.LT.MAX( 1, NP2 ) ) THEN
INFO = -22
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
INFO = -24
ELSE IF( LDY.LT.MAX( 1, N ) ) THEN
INFO = -26
ELSE IF( LDAK.LT.MAX( 1, N ) ) THEN
INFO = -28
ELSE IF( LDBK.LT.MAX( 1, N ) ) THEN
INFO = -30
ELSE IF( LDCK.LT.MAX( 1, M2 ) ) THEN
INFO = -32
ELSE IF( LDDK.LT.MAX( 1, M2 ) ) THEN
INFO = -34
ELSE
C
C Compute workspace.
C
ND1 = NP1 - M2
ND2 = M1 - NP2
MINWRK = MAX( 1, M2*NP2 + NP2*NP2 + M2*M2 +
$ MAX( ND1*ND1 + MAX( 2*ND1, ( ND1 + ND2 )*NP2 ),
$ ND2*ND2 + MAX( 2*ND2, ND2*M2 ), 3*N,
$ N*( 2*NP2 + M2 ) +
$ MAX( 2*N*M2, M2*NP2 +
$ MAX( M2*M2 + 3*M2, NP2*( 2*NP2 +
$ M2 + MAX( NP2, N ) ) ) ) ) )
IF( LDWORK.LT.MINWRK )
$ INFO = -37
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SB10RD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( N.EQ.0 .OR. M.EQ.0 .OR. NP.EQ.0 .OR. M1.EQ.0 .OR. M2.EQ.0
$ .OR. NP1.EQ.0 .OR. NP2.EQ.0 ) THEN
DWORK( 1 ) = ONE
RETURN
END IF
C
C Get the machine precision.
C
EPS = DLAMCH( 'Epsilon' )
C
C Workspace usage.
C
ID11 = 1
ID21 = ID11 + M2*NP2
ID12 = ID21 + NP2*NP2
IW1 = ID12 + M2*M2
IW2 = IW1 + ND1*ND1
IW3 = IW2 + ND1*NP2
IWRK = IW2
C
C Set D11HAT := -D1122 .
C
IJ = ID11
DO 20 J = 1, NP2
DO 10 I = 1, M2
DWORK( IJ ) = -D( ND1+I, ND2+J )
IJ = IJ + 1
10 CONTINUE
20 CONTINUE
C
C Set D21HAT := Inp2 .
C
CALL DLASET( 'Upper', NP2, NP2, ZERO, ONE, DWORK( ID21 ), NP2 )
C
C Set D12HAT := Im2 .
C
CALL DLASET( 'Lower', M2, M2, ZERO, ONE, DWORK( ID12 ), M2 )
C
C Compute D11HAT, D21HAT, D12HAT .
C
LWAMAX = 0
IF( ND1.GT.0 ) THEN
IF( ND2.EQ.0 ) THEN
C
C Compute D21HAT'*D21HAT = Inp2 - D1112'*D1112/gamma^2 .
C
CALL DSYRK( 'U', 'T', NP2, ND1, -ONE/GAMMA**2, D, LDD, ONE,
$ DWORK( ID21 ), NP2 )
ELSE
C
C Compute gdum = gamma^2*Ind1 - D1111*D1111' .
C
CALL DLASET( 'U', ND1, ND1, ZERO, GAMMA**2, DWORK( IW1 ),
$ ND1 )
CALL DSYRK( 'U', 'N', ND1, ND2, -ONE, D, LDD, ONE,
$ DWORK( IW1 ), ND1 )
ANORM = DLANSY( 'I', 'U', ND1, DWORK( IW1 ), ND1,
$ DWORK( IWRK ) )
CALL DSYTRF( 'U', ND1, DWORK( IW1 ), ND1, IWORK,
$ DWORK( IWRK ), LDWORK-IWRK+1, INFO2 )
IF( INFO2.GT.0 ) THEN
INFO = 1
RETURN
END IF
LWAMAX = INT( DWORK( IWRK ) ) + IWRK - 1
CALL DSYCON( 'U', ND1, DWORK( IW1 ), ND1, IWORK, ANORM,
$ RCOND, DWORK( IWRK ), IWORK( ND1+1 ), INFO2 )
C
C Return if the matrix is singular to working precision.
C
IF( RCOND.LT.EPS ) THEN
INFO = 1
RETURN
END IF
C
C Compute inv(gdum)*D1112 .
C
CALL DLACPY( 'Full', ND1, NP2, D( 1, ND2+1 ), LDD,
$ DWORK( IW2 ), ND1 )
CALL DSYTRS( 'U', ND1, NP2, DWORK( IW1 ), ND1, IWORK,
$ DWORK( IW2 ), ND1, INFO2 )
C
C Compute D11HAT = -D1121*D1111'*inv(gdum)*D1112 - D1122 .
C
CALL DGEMM( 'T', 'N', ND2, NP2, ND1, ONE, D, LDD,
$ DWORK( IW2 ), ND1, ZERO, DWORK( IW3 ), ND2 )
CALL DGEMM( 'N', 'N', M2, NP2, ND2, -ONE, D( ND1+1, 1 ),
$ LDD, DWORK( IW3 ), ND2, ONE, DWORK( ID11 ), M2 )
C
C Compute D21HAT'*D21HAT = Inp2 - D1112'*inv(gdum)*D1112 .
C
CALL MB01RX( 'Left', 'Upper', 'Transpose', NP2, ND1, ONE,
$ -ONE, DWORK( ID21 ), NP2, D( 1, ND2+1 ), LDD,
$ DWORK( IW2 ), ND1, INFO2 )
C
IW2 = IW1 + ND2*ND2
IWRK = IW2
C
C Compute gdum = gamma^2*Ind2 - D1111'*D1111 .
C
CALL DLASET( 'L', ND2, ND2, ZERO, GAMMA**2, DWORK( IW1 ),
$ ND2 )
CALL DSYRK( 'L', 'T', ND2, ND1, -ONE, D, LDD, ONE,
$ DWORK( IW1 ), ND2 )
ANORM = DLANSY( 'I', 'L', ND2, DWORK( IW1 ), ND2,
$ DWORK( IWRK ) )
CALL DSYTRF( 'L', ND2, DWORK( IW1 ), ND2, IWORK,
$ DWORK( IWRK ), LDWORK-IWRK+1, INFO2 )
IF( INFO2.GT.0 ) THEN
INFO = 1
RETURN
END IF
LWAMAX = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, LWAMAX )
CALL DSYCON( 'L', ND2, DWORK( IW1 ), ND2, IWORK, ANORM,
$ RCOND, DWORK( IWRK ), IWORK( ND2+1 ), INFO2 )
C
C Return if the matrix is singular to working precision.
C
IF( RCOND.LT.EPS ) THEN
INFO = 1
RETURN
END IF
C
C Compute inv(gdum)*D1121' .
C
CALL MA02AD( 'Full', M2, ND2, D( ND1+1, 1 ), LDD,
$ DWORK( IW2 ), ND2 )
CALL DSYTRS( 'L', ND2, M2, DWORK( IW1 ), ND2, IWORK,
$ DWORK( IW2 ), ND2, INFO2 )
C
C Compute D12HAT*D12HAT' = Im2 - D1121*inv(gdum)*D1121' .
C
CALL MB01RX( 'Left', 'Lower', 'NoTranspose', M2, ND2, ONE,
$ -ONE, DWORK( ID12 ), M2, D( ND1+1, 1 ), LDD,
$ DWORK( IW2 ), ND2, INFO2 )
END IF
ELSE
IF( ND2.GT.0 ) THEN
C
C Compute D12HAT*D12HAT' = Im2 - D1121*D1121'/gamma^2 .
C
CALL DSYRK( 'L', 'N', M2, ND2, -ONE/GAMMA**2, D, LDD, ONE,
$ DWORK( ID12 ), M2 )
END IF
END IF
C
C Compute D21HAT using Cholesky decomposition.
C
CALL DPOTRF( 'U', NP2, DWORK( ID21 ), NP2, INFO2 )
IF( INFO2.GT.0 ) THEN
INFO = 1
RETURN
END IF
C
C Compute D12HAT using Cholesky decomposition.
C
CALL DPOTRF( 'L', M2, DWORK( ID12 ), M2, INFO2 )
IF( INFO2.GT.0 ) THEN
INFO = 1
RETURN
END IF
C _
C Compute Z = In - Y*X/gamma^2 and its LU factorization in AK .
C
IWRK = IW1
CALL DLASET( 'Full', N, N, ZERO, ONE, AK, LDAK )
CALL DGEMM( 'N', 'N', N, N, N, -ONE/GAMMA**2, Y, LDY, X, LDX,
$ ONE, AK, LDAK )
ANORM = DLANGE( '1', N, N, AK, LDAK, DWORK( IWRK ) )
CALL DGETRF( N, N, AK, LDAK, IWORK, INFO2 )
IF( INFO2.GT.0 ) THEN
INFO = 1
RETURN
END IF
CALL DGECON( '1', N, AK, LDAK, ANORM, RCOND, DWORK( IWRK ),
$ IWORK( N+1 ), INFO )
C
C Return if the matrix is singular to working precision.
C
IF( RCOND.LT.EPS ) THEN
INFO = 1
RETURN
END IF
C
IWB = IW1
IWC = IWB + N*NP2
IW1 = IWC + ( M2 + NP2 )*N
IW2 = IW1 + N*M2
C
C Compute C2' + F12' in BK .
C
DO 40 J = 1, N
DO 30 I = 1, NP2
BK( J, I ) = C( NP1 + I, J ) + F( ND2 + I, J )
30 CONTINUE
40 CONTINUE
C _
C Compute the transpose of (C2 + F12)*Z , with Z = inv(Z) .
C
CALL DGETRS( 'Transpose', N, NP2, AK, LDAK, IWORK, BK, LDBK,
$ INFO2 )
C
C Compute the transpose of F2*Z .
C
CALL MA02AD( 'Full', M2, N, F( M1+1, 1 ), LDF, DWORK( IW1 ), N )
CALL DGETRS( 'Transpose', N, M2, AK, LDAK, IWORK, DWORK( IW1 ), N,
$ INFO2 )
C
C Compute the transpose of C1HAT = F2*Z - D11HAT*(C2 + F12)*Z .
C
CALL DGEMM( 'N', 'T', N, M2, NP2, -ONE, BK, LDBK, DWORK( ID11 ),
$ M2, ONE, DWORK( IW1 ), N )
C
C Compute CHAT .
C
CALL DGEMM( 'N', 'T', M2, N, M2, ONE, TU, LDTU, DWORK( IW1 ), N,
$ ZERO, DWORK( IWC ), M2+NP2 )
CALL MA02AD( 'Full', N, NP2, BK, LDBK, DWORK( IWC+M2 ), M2+NP2 )
CALL DTRMM( 'L', 'U', 'N', 'N', NP2, N, -ONE, DWORK( ID21 ), NP2,
$ DWORK( IWC+M2 ), M2+NP2 )
C
C Compute B2 + H12 .
C
IJ = IW2
DO 60 J = 1, M2
DO 50 I = 1, N
DWORK( IJ ) = B( I, M1 + J ) + H( I, ND1 + J )
IJ = IJ + 1
50 CONTINUE
60 CONTINUE
C
C Compute A + HC in AK .
C
CALL DLACPY( 'Full', N, N, A, LDA, AK, LDAK )
CALL DGEMM( 'N', 'N', N, N, NP, ONE, H, LDH, C, LDC, ONE, AK,
$ LDAK )
C
C Compute AHAT = A + HC + (B2 + H12)*C1HAT in AK .
C
CALL DGEMM( 'N', 'T', N, N, M2, ONE, DWORK( IW2 ), N,
$ DWORK( IW1 ), N, ONE, AK, LDAK )
C
C Compute B1HAT = -H2 + (B2 + H12)*D11HAT in BK .
C
CALL DLACPY( 'Full', N, NP2, H( 1, NP1+1 ), LDH, BK, LDBK )
CALL DGEMM( 'N', 'N', N, NP2, M2, ONE, DWORK( IW2 ), N,
$ DWORK( ID11 ), M2, -ONE, BK, LDBK )
C
C Compute the first block of BHAT, BHAT1 .
C
CALL DGEMM( 'N', 'N', N, NP2, NP2, ONE, BK, LDBK, TY, LDTY, ZERO,
$ DWORK( IWB ), N )
C
C Compute Tu*D11HAT .
C
CALL DGEMM( 'N', 'N', M2, NP2, M2, ONE, TU, LDTU, DWORK( ID11 ),
$ M2, ZERO, DWORK( IW1 ), M2 )
C
C Compute Tu*D11HAT*Ty in DK .
C
CALL DGEMM( 'N', 'N', M2, NP2, NP2, ONE, DWORK( IW1 ), M2, TY,
$ LDTY, ZERO, DK, LDDK )
C
C Compute P = Im2 + Tu*D11HAT*Ty*D22 and its condition.
C
IW2 = IW1 + M2*NP2
IWRK = IW2 + M2*M2
CALL DLASET( 'Full', M2, M2, ZERO, ONE, DWORK( IW2 ), M2 )
CALL DGEMM( 'N', 'N', M2, M2, NP2, ONE, DK, LDDK,
$ D( NP1+1, M1+1 ), LDD, ONE, DWORK( IW2 ), M2 )
ANORM = DLANGE( '1', M2, M2, DWORK( IW2 ), M2, DWORK( IWRK ) )
CALL DGETRF( M2, M2, DWORK( IW2 ), M2, IWORK, INFO2 )
IF( INFO2.GT.0 ) THEN
INFO = 2
RETURN
END IF
CALL DGECON( '1', M2, DWORK( IW2 ), M2, ANORM, RCOND,
$ DWORK( IWRK ), IWORK( M2+1 ), INFO2 )
C
C Return if the matrix is singular to working precision.
C
IF( RCOND.LT.EPS ) THEN
INFO = 2
RETURN
END IF
C
C Find the controller matrix CK, CK = inv(P)*CHAT(1:M2,:) .
C
CALL DLACPY( 'Full', M2, N, DWORK( IWC ), M2+NP2, CK, LDCK )
CALL DGETRS( 'NoTranspose', M2, N, DWORK( IW2 ), M2, IWORK, CK,
$ LDCK, INFO2 )
C
C Find the controller matrices AK, BK, and DK, exploiting the
C special structure of the relations.
C
C Compute Q = Inp2 + D22*Tu*D11HAT*Ty and its LU factorization.
C
IW3 = IW2 + NP2*NP2
IW4 = IW3 + NP2*M2
IWRK = IW4 + NP2*NP2
CALL DLASET( 'Full', NP2, NP2, ZERO, ONE, DWORK( IW2 ), NP2 )
CALL DGEMM( 'N', 'N', NP2, NP2, M2, ONE, D( NP1+1, M1+1 ), LDD,
$ DK, LDDK, ONE, DWORK( IW2 ), NP2 )
CALL DGETRF( NP2, NP2, DWORK( IW2 ), NP2, IWORK, INFO2 )
IF( INFO2.GT.0 ) THEN
INFO = 2
RETURN
END IF
C
C Compute A1 = inv(Q)*D22 and inv(Q) .
C
CALL DLACPY( 'Full', NP2, M2, D( NP1+1, M1+1 ), LDD, DWORK( IW3 ),
$ NP2 )
CALL DGETRS( 'NoTranspose', NP2, M2, DWORK( IW2 ), NP2, IWORK,
$ DWORK( IW3 ), NP2, INFO2 )
CALL DGETRI( NP2, DWORK( IW2 ), NP2, IWORK, DWORK( IWRK ),
$ LDWORK-IWRK+1, INFO2 )
LWAMAX = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, LWAMAX )
C
C Compute A2 = ( inv(Ty) - inv(Q)*inv(Ty) -
C A1*Tu*D11HAT )*inv(D21HAT) .
C
CALL DLACPY( 'Full', NP2, NP2, TY, LDTY, DWORK( IW4 ), NP2 )
CALL DGETRF( NP2, NP2, DWORK( IW4 ), NP2, IWORK, INFO2 )
CALL DGETRI( NP2, DWORK( IW4 ), NP2, IWORK, DWORK( IWRK ),
$ LDWORK-IWRK+1, INFO2 )
C
CALL DLACPY( 'Full', NP2, NP2, DWORK( IW4 ), NP2, DWORK( IWRK ),
$ NP2 )
CALL DGEMM( 'N', 'N', NP2, NP2, NP2, -ONE, DWORK( IW2), NP2,
$ DWORK( IWRK ), NP2, ONE, DWORK( IW4 ), NP2 )
CALL DGEMM( 'N', 'N', NP2, NP2, M2, -ONE, DWORK( IW3), NP2,
$ DWORK( IW1 ), M2, ONE, DWORK( IW4 ), NP2 )
CALL DTRMM( 'R', 'U', 'N', 'N', NP2, NP2, ONE, DWORK( ID21 ), NP2,
$ DWORK( IW4 ), NP2 )
C
C Compute [ A1 A2 ]*CHAT .
C
CALL DGEMM( 'N', 'N', NP2, N, M2+NP2, ONE, DWORK( IW3 ), NP2,
$ DWORK( IWC ), M2+NP2, ZERO, DWORK( IWRK ), NP2 )
C
C Compute AK := AHAT - BHAT1*[ A1 A2 ]*CHAT .
C
CALL DGEMM( 'N', 'N', N, N, NP2, -ONE, DWORK( IWB ), N,
$ DWORK( IWRK ), NP2, ONE, AK, LDAK )
C
C Compute BK := BHAT1*inv(Q) .
C
CALL DGEMM( 'N', 'N', N, NP2, NP2, ONE, DWORK( IWB ), N,
$ DWORK( IW2 ), NP2, ZERO, BK, LDBK )
C
C Compute DK := Tu*D11HAT*Ty*inv(Q) .
C
CALL DGEMM( 'N', 'N', M2, NP2, NP2, ONE, DK, LDDK, DWORK( IW2 ),
$ NP2, ZERO, DWORK( IW3 ), M2 )
CALL DLACPY( 'Full', M2, NP2, DWORK( IW3 ), M2, DK, LDDK )
C
DWORK( 1 ) = DBLE( LWAMAX )
RETURN
C *** Last line of SB10RD ***
END