dynare/mex/sources/libslicot/SB10HD.f

391 lines
13 KiB
Fortran

SUBROUTINE SB10HD( N, M, NP, NCON, NMEAS, A, LDA, B, LDB, C, LDC,
$ D, LDD, AK, LDAK, BK, LDBK, CK, LDCK, DK, LDDK,
$ RCOND, TOL, IWORK, DWORK, LDWORK, BWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the matrices of the H2 optimal n-state controller
C
C | AK | BK |
C K = |----|----|
C | CK | DK |
C
C for the system
C
C | A | B1 B2 | | A | B |
C P = |----|---------| = |---|---| ,
C | C1 | 0 D12 | | C | D |
C | C2 | D21 D22 |
C
C where B2 has as column size the number of control inputs (NCON)
C and C2 has as row size the number of measurements (NMEAS) being
C provided to the controller.
c
C It is assumed that
C
C (A1) (A,B2) is stabilizable and (C2,A) is detectable,
C
C (A2) The block D11 of D is zero,
C
C (A3) D12 is full column rank and D21 is full row rank.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the system. N >= 0.
C
C M (input) INTEGER
C The column size of the matrix B. M >= 0.
C
C NP (input) INTEGER
C The row size of the matrix C. NP >= 0.
C
C NCON (input) INTEGER
C The number of control inputs (M2). M >= NCON >= 0,
C NP-NMEAS >= NCON.
C
C NMEAS (input) INTEGER
C The number of measurements (NP2). NP >= NMEAS >= 0,
C M-NCON >= NMEAS.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array must contain the
C system state matrix A.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= max(1,N).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,M)
C The leading N-by-M part of this array must contain the
C system input matrix B.
C
C LDB INTEGER
C The leading dimension of the array B. LDB >= max(1,N).
C
C C (input) DOUBLE PRECISION array, dimension (LDC,N)
C The leading NP-by-N part of this array must contain the
C system output matrix C.
C
C LDC INTEGER
C The leading dimension of the array C. LDC >= max(1,NP).
C
C D (input) DOUBLE PRECISION array, dimension (LDD,M)
C The leading NP-by-M part of this array must contain the
C system input/output matrix D.
C
C LDD INTEGER
C The leading dimension of the array D. LDD >= max(1,NP).
C
C AK (output) DOUBLE PRECISION array, dimension (LDAK,N)
C The leading N-by-N part of this array contains the
C controller state matrix AK.
C
C LDAK INTEGER
C The leading dimension of the array AK. LDAK >= max(1,N).
C
C BK (output) DOUBLE PRECISION array, dimension (LDBK,NMEAS)
C The leading N-by-NMEAS part of this array contains the
C controller input matrix BK.
C
C LDBK INTEGER
C The leading dimension of the array BK. LDBK >= max(1,N).
C
C CK (output) DOUBLE PRECISION array, dimension (LDCK,N)
C The leading NCON-by-N part of this array contains the
C controller output matrix CK.
C
C LDCK INTEGER
C The leading dimension of the array CK.
C LDCK >= max(1,NCON).
C
C DK (output) DOUBLE PRECISION array, dimension (LDDK,NMEAS)
C The leading NCON-by-NMEAS part of this array contains the
C controller input/output matrix DK.
C
C LDDK INTEGER
C The leading dimension of the array DK.
C LDDK >= max(1,NCON).
C
C RCOND (output) DOUBLE PRECISION array, dimension (4)
C RCOND(1) contains the reciprocal condition number of the
C control transformation matrix;
C RCOND(2) contains the reciprocal condition number of the
C measurement transformation matrix;
C RCOND(3) contains an estimate of the reciprocal condition
C number of the X-Riccati equation;
C RCOND(4) contains an estimate of the reciprocal condition
C number of the Y-Riccati equation.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C Tolerance used for controlling the accuracy of the applied
C transformations for computing the normalized form in
C SLICOT Library routine SB10UD. Transformation matrices
C whose reciprocal condition numbers are less than TOL are
C not allowed. If TOL <= 0, then a default value equal to
C sqrt(EPS) is used, where EPS is the relative machine
C precision.
C
C Workspace
C
C IWORK INTEGER array, dimension max(2*N,N*N)
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) contains the optimal
C LDWORK.
C
C LDWORK INTEGER
C The dimension of the array DWORK.
C LDWORK >= N*M + NP*(N+M) + M2*M2 + NP2*NP2 +
C max(max(M2 + NP1*NP1 +
C max(NP1*N,3*M2+NP1,5*M2),
C NP2 + M1*M1 +
C max(M1*N,3*NP2+M1,5*NP2),
C N*M2,NP2*N,NP2*M2,1),
C N*(14*N+12+M2+NP2)+5),
C where M1 = M - M2 and NP1 = NP - NP2.
C For good performance, LDWORK must generally be larger.
C Denoting Q = max(M1,M2,NP1,NP2), an upper bound is
C 2*Q*(3*Q+2*N)+max(1,Q*(Q+max(N,5)+1),N*(14*N+12+2*Q)+5).
C
C BWORK LOGICAL array, dimension (2*N)
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: if the matrix D12 had not full column rank in
C respect to the tolerance TOL;
C = 2: if the matrix D21 had not full row rank in respect
C to the tolerance TOL;
C = 3: if the singular value decomposition (SVD) algorithm
C did not converge (when computing the SVD of one of
C the matrices D12 or D21).
C = 4: if the X-Riccati equation was not solved
C successfully;
C = 5: if the Y-Riccati equation was not solved
C successfully.
C
C METHOD
C
C The routine implements the formulas given in [1], [2].
C
C REFERENCES
C
C [1] Zhou, K., Doyle, J.C., and Glover, K.
C Robust and Optimal Control.
C Prentice-Hall, Upper Saddle River, NJ, 1996.
C
C [2] Balas, G.J., Doyle, J.C., Glover, K., Packard, A., and
C Smith, R.
C mu-Analysis and Synthesis Toolbox.
C The MathWorks Inc., Natick, Mass., 1995.
C
C NUMERICAL ASPECTS
C
C The accuracy of the result depends on the condition numbers of the
C input and output transformations and on the condition numbers of
C the two Riccati equations, as given by the values of RCOND(1),
C RCOND(2), RCOND(3) and RCOND(4), respectively.
C
C CONTRIBUTORS
C
C P.Hr. Petkov, D.W. Gu and M.M. Konstantinov, Oct. 1998.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, May 1999,
C Sept. 1999, Jan. 2000, Feb. 2000.
C
C KEYWORDS
C
C Algebraic Riccati equation, H2 optimal control, optimal regulator,
C robust control.
C
C *********************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C ..
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD,
$ LDDK, LDWORK, M, N, NCON, NMEAS, NP
DOUBLE PRECISION TOL
C ..
C .. Array Arguments ..
LOGICAL BWORK( * )
INTEGER IWORK( * )
DOUBLE PRECISION A( LDA, * ), AK( LDAK, * ), B( LDB, * ),
$ BK( LDBK, * ), C( LDC, * ), CK( LDCK, * ),
$ D( LDD, * ), DK( LDDK, * ), DWORK( * ),
$ RCOND( 4 )
C ..
C .. Local Scalars ..
INTEGER INFO2, IWC, IWD, IWF, IWH, IWRK, IWTU, IWTY,
$ IWY, LWAMAX, M1, M2, MINWRK, NP1, NP2
DOUBLE PRECISION TOLL
C ..
C .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
C ..
C .. External Subroutines ..
EXTERNAL DLACPY, SB10UD, SB10VD, SB10WD, XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC DBLE, INT, MAX, SQRT
C ..
C .. Executable Statements ..
C
C Decode and Test input parameters.
C
M1 = M - NCON
M2 = NCON
NP1 = NP - NMEAS
NP2 = NMEAS
C
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( NP.LT.0 ) THEN
INFO = -3
ELSE IF( NCON.LT.0 .OR. M1.LT.0 .OR. M2.GT.NP1 ) THEN
INFO = -4
ELSE IF( NMEAS.LT.0 .OR. NP1.LT.0 .OR. NP2.GT.M1 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( LDC.LT.MAX( 1, NP ) ) THEN
INFO = -11
ELSE IF( LDD.LT.MAX( 1, NP ) ) THEN
INFO = -13
ELSE IF( LDAK.LT.MAX( 1, N ) ) THEN
INFO = -15
ELSE IF( LDBK.LT.MAX( 1, N ) ) THEN
INFO = -17
ELSE IF( LDCK.LT.MAX( 1, M2 ) ) THEN
INFO = -19
ELSE IF( LDDK.LT.MAX( 1, M2 ) ) THEN
INFO = -21
ELSE
C
C Compute workspace.
C
MINWRK = N*M + NP*(N+M) + M2*M2 + NP2*NP2 +
$ MAX( MAX( M2 + NP1*NP1 +
$ MAX( NP1*N, 3*M2 + NP1, 5*M2 ),
$ NP2 + M1*M1 +
$ MAX( M1*N, 3*NP2 + M1, 5*NP2 ),
$ N*M2, NP2*N, NP2*M2, 1 ),
$ N*( 14*N + 12 + M2 + NP2 ) + 5 )
IF( LDWORK.LT.MINWRK )
$ INFO = -26
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SB10HD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( N.EQ.0 .OR. M.EQ.0 .OR. NP.EQ.0 .OR. M1.EQ.0 .OR. M2.EQ.0
$ .OR. NP1.EQ.0 .OR. NP2.EQ.0 ) THEN
RCOND( 1 ) = ONE
RCOND( 2 ) = ONE
RCOND( 3 ) = ONE
RCOND( 4 ) = ONE
DWORK( 1 ) = ONE
RETURN
END IF
C
TOLL = TOL
IF( TOLL.LE.ZERO ) THEN
C
C Set the default value of the tolerance for rank tests.
C
TOLL = SQRT( DLAMCH( 'Epsilon' ) )
END IF
C
C Workspace usage.
C
IWC = N*M + 1
IWD = IWC + NP*N
IWTU = IWD + NP*M
IWTY = IWTU + M2*M2
IWRK = IWTY + NP2*NP2
C
CALL DLACPY( 'Full', N, M, B, LDB, DWORK, N )
CALL DLACPY( 'Full', NP, N, C, LDC, DWORK( IWC ), NP )
CALL DLACPY( 'Full', NP, M, D, LDD, DWORK( IWD ), NP )
C
C Transform the system so that D12 and D21 satisfy the formulas
C in the computation of the H2 optimal controller.
C
CALL SB10UD( N, M, NP, NCON, NMEAS, DWORK, N, DWORK( IWC ), NP,
$ DWORK( IWD ), NP, DWORK( IWTU ), M2, DWORK( IWTY ),
$ NP2, RCOND, TOLL, DWORK( IWRK ), LDWORK-IWRK+1,
$ INFO2 )
IF( INFO2.GT.0 ) THEN
INFO = INFO2
RETURN
END IF
LWAMAX = INT( DWORK( IWRK ) ) + IWRK - 1
C
IWY = IWRK
IWF = IWY + N*N
IWH = IWF + M2*N
IWRK = IWH + N*NP2
C
C Compute the optimal state feedback and output injection matrices.
C AK is used to store X.
C
CALL SB10VD( N, M, NP, NCON, NMEAS, A, LDA, DWORK, N,
$ DWORK( IWC ), NP, DWORK( IWF ), M2, DWORK( IWH ), N,
$ AK, LDAK, DWORK( IWY ), N, RCOND( 3 ), IWORK,
$ DWORK( IWRK ), LDWORK-IWRK+1, BWORK, INFO2 )
IF( INFO2.GT.0 ) THEN
INFO = INFO2 + 3
RETURN
END IF
LWAMAX = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, LWAMAX )
C
C Compute the H2 optimal controller.
C
CALL SB10WD( N, M, NP, NCON, NMEAS, A, LDA, DWORK, N,
$ DWORK( IWC ), NP, DWORK( IWD ), NP, DWORK( IWF ), M2,
$ DWORK( IWH ), N, DWORK( IWTU ), M2, DWORK( IWTY ),
$ NP2, AK, LDAK, BK, LDBK, CK, LDCK, DK, LDDK, INFO2 )
C
DWORK( 1 ) = DBLE( LWAMAX )
RETURN
C *** Last line of SB10HD ***
END