dynare/mex/sources/libslicot/BD01AD.f

1018 lines
34 KiB
Fortran

SUBROUTINE BD01AD( DEF, NR, DPAR, IPAR, VEC, N, M, P, E, LDE, A,
1 LDA, B, LDB, C, LDC, D, LDD, NOTE, DWORK,
2 LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To generate benchmark examples for time-invariant,
C continuous-time dynamical systems
C
C .
C E x(t) = A x(t) + B u(t)
C
C y(t) = C x(t) + D u(t)
C
C E, A are real N-by-N matrices, B is N-by-M, C is P-by-N, and
C D is P-by-M. In many examples, E is the identity matrix and D is
C the zero matrix.
C
C This routine is an implementation of the benchmark library
C CTDSX (Version 1.0) described in [1].
C
C ARGUMENTS
C
C Mode Parameters
C
C DEF CHARACTER*1
C Specifies the kind of values used as parameters when
C generating parameter-dependent and scalable examples
C (i.e., examples with NR(1) = 2, 3, or 4):
C = 'D': Default values defined in [1] are used;
C = 'N': Values set in DPAR and IPAR are used.
C This parameter is not referenced if NR(1) = 1.
C Note that the scaling parameter of examples with
C NR(1) = 3 or 4 is considered as a regular parameter in
C this context.
C
C Input/Output Parameters
C
C NR (input) INTEGER array, dimension (2)
C Specifies the index of the desired example according
C to [1].
C NR(1) defines the group:
C 1 : parameter-free problems of fixed size
C 2 : parameter-dependent problems of fixed size
C 3 : parameter-free problems of scalable size
C 4 : parameter-dependent problems of scalable size
C NR(2) defines the number of the benchmark example
C within a certain group according to [1].
C
C DPAR (input/output) DOUBLE PRECISION array, dimension (7)
C On entry, if DEF = 'N' and the desired example depends on
C real parameters, then the array DPAR must contain the
C values for these parameters.
C For an explanation of the parameters see [1].
C For Examples 2.1 and 2.2, DPAR(1) defines the parameter
C 'epsilon'.
C For Example 2.4, DPAR(1), ..., DPAR(7) define 'b', 'mu',
C 'r', 'r_c', 'k_l', 'sigma', 'a', respectively.
C For Example 2.7, DPAR(1) and DPAR(2) define 'mu' and 'nu',
C respectively.
C For Example 4.1, DPAR(1), ..., DPAR(7) define 'a', 'b',
C 'c', 'beta_1', 'beta_2', 'gamma_1', 'gamma_2',
C respectively.
C For Example 4.2, DPAR(1), ..., DPAR(3) define 'mu',
C 'delta', 'kappa', respectively.
C On exit, if DEF = 'D' and the desired example depends on
C real parameters, then the array DPAR is overwritten by the
C default values given in [1].
C
C IPAR (input/output) INTEGER array, dimension (1)
C On entry, if DEF = 'N' and the desired example depends on
C integer parameters, then the array IPAR must contain the
C values for these parameters.
C For an explanation of the parameters see [1].
C For Examples 2.3, 2.5, and 2.6, IPAR(1) defines the
C parameter 's'.
C For Example 3.1, IPAR(1) defines 'q'.
C For Examples 3.2 and 3.3, IPAR(1) defines 'n'.
C For Example 3.4, IPAR(1) defines 'l'.
C For Example 4.1, IPAR(1) defines 'n'.
C For Example 4.2, IPAR(1) defines 'l'.
C On exit, if DEF = 'D' and the desired example depends on
C integer parameters, then the array IPAR is overwritten by
C the default values given in [1].
C
C VEC (output) LOGICAL array, dimension (8)
C Flag vector which displays the availabilty of the output
C data:
C VEC(1), ..., VEC(3) refer to N, M, and P, respectively,
C and are always .TRUE..
C VEC(4) is .TRUE. iff E is NOT the identity matrix.
C VEC(5), ..., VEC(7) refer to A, B, and C, respectively,
C and are always .TRUE..
C VEC(8) is .TRUE. iff D is NOT the zero matrix.
C
C N (output) INTEGER
C The actual state dimension, i.e., the order of the
C matrices E and A.
C
C M (output) INTEGER
C The number of columns in the matrices B and D.
C
C P (output) INTEGER
C The number of rows in the matrices C and D.
C
C E (output) DOUBLE PRECISION array, dimension (LDE,N)
C The leading N-by-N part of this array contains the
C matrix E.
C NOTE that this array is overwritten (by the identity
C matrix), if VEC(4) = .FALSE..
C
C LDE INTEGER
C The leading dimension of array E. LDE >= N.
C
C A (output) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array contains the
C matrix A.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= N.
C
C B (output) DOUBLE PRECISION array, dimension (LDB,M)
C The leading N-by-M part of this array contains the
C matrix B.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= N.
C
C C (output) DOUBLE PRECISION array, dimension (LDC,N)
C The leading P-by-N part of this array contains the
C matrix C.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= P.
C
C D (output) DOUBLE PRECISION array, dimension (LDD,M)
C The leading P-by-M part of this array contains the
C matrix D.
C NOTE that this array is overwritten (by the zero
C matrix), if VEC(8) = .FALSE..
C
C LDD INTEGER
C The leading dimension of array D. LDD >= P.
C
C NOTE (output) CHARACTER*70
C String containing short information about the chosen
C example.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C
C LDWORK INTEGER
C The length of the array DWORK.
C For Example 3.4, LDWORK >= 4*IPAR(1) is required.
C For the other examples, no workspace is needed, i.e.,
C LDWORK >= 1.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value; in particular, INFO = -3 or -4 indicates
C that at least one of the parameters in DPAR or
C IPAR, respectively, has an illegal value;
C = 1: data file can not be opened or has wrong format.
C
C
C REFERENCES
C
C [1] Kressner, D., Mehrmann, V. and Penzl, T.
C CTDSX - a Collection of Benchmark Examples for State-Space
C Realizations of Continuous-Time Dynamical Systems.
C SLICOT Working Note 1998-9. 1998.
C
C NUMERICAL ASPECTS
C
C None
C
C CONTRIBUTOR
C
C D. Kressner, V. Mehrmann, and T. Penzl (TU Chemnitz)
C
C For questions concerning the collection or for the submission of
C test examples, please contact Volker Mehrmann
C (Email: volker.mehrmann@mathematik.tu-chemnitz.de).
C
C REVISIONS
C
C June 1999, V. Sima.
C
C KEYWORDS
C
C continuous-time dynamical systems
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, THREE, FOUR, PI
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
1 THREE = 3.0D0, FOUR = 4.0D0,
2 PI = .3141592653589793D1 )
C .. Scalar Arguments ..
CHARACTER DEF
CHARACTER*70 NOTE
INTEGER INFO, LDA, LDB, LDC, LDD, LDE, LDWORK, M, N, P
C .. Array Arguments ..
LOGICAL VEC(8)
INTEGER IPAR(*), NR(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*), DPAR(*),
1 DWORK(*), E(LDE,*)
C .. Local Scalars ..
CHARACTER*12 DATAF
INTEGER I, J, L, STATUS
DOUBLE PRECISION APPIND, B1, B2, C1, C2, TEMP, TTEMP
C .. Local Arrays ..
LOGICAL VECDEF(8)
C .. External Functions ..
C . LAPACK .
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
C . BLAS .
EXTERNAL DSCAL
C . LAPACK .
EXTERNAL DLASET
C .. Intrinsic Functions ..
INTRINSIC MAX, MIN, MOD
C .. Data Statements ..
C . default values for availabities .
DATA VECDEF /.TRUE., .TRUE., .TRUE., .FALSE.,
1 .TRUE., .TRUE., .TRUE., .FALSE./
C
C .. Executable Statements ..
C
INFO = 0
DO 10 I = 1, 8
VEC(I) = VECDEF(I)
10 CONTINUE
C
IF (NR(1) .EQ. 1) THEN
C
IF (NR(2) .EQ. 1) THEN
NOTE = 'Laub 1979, Ex.1'
N = 2
M = 1
P = 2
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
A(1,2) = ONE
B(1,1) = ZERO
B(2,1) = ONE
CALL DLASET('A', P, N, ZERO, ONE, C, LDC)
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 2) THEN
NOTE = 'Laub 1979, Ex.2: uncontrollable-unobservable data'
N = 2
M = 1
P = 1
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
A(1,1) = FOUR
A(2,1) = -.45D1
A(1,2) = .3D1
A(2,2) = -.35D1
B(1,1) = ONE
B(2,1) = -ONE
C(1,1) = THREE
C(1,2) = TWO
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 3) THEN
NOTE = 'Beale/Shafai 1989: model of L-1011 aircraft'
N = 4
M = 2
P = 4
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', P, N, ZERO, ONE, C, LDC)
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 4) THEN
NOTE = 'Bhattacharyya et al. 1983: binary distillation column'
N = 8
M = 2
P = 8
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', P, N, ZERO, ONE, C, LDC)
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 5) THEN
NOTE = 'Patnaik et al. 1980: tubular ammonia reactor'
N = 9
M = 3
P = 9
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', P, N, ZERO, ONE, C, LDC)
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 6) THEN
NOTE = 'Davison/Gesing 1978: J-100 jet engine'
N = 30
M = 3
P = 5
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 7) THEN
NOTE = 'Davison 1967: binary distillation column'
N = 11
M = 3
P = 3
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
C(2,1) = ONE
C(1,10) = ONE
C(3,11) = ONE
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
ELSE IF (NR(2) .EQ. 8) THEN
NOTE = 'Chien/Ergin/Ling/Lee 1958: drum boiler'
N = 9
M = 3
P = 2
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
C(1,6) = ONE
C(2,9) = ONE
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 9) THEN
NOTE = 'Ly, Gangsaas 1981: B-767 airplane'
N = 55
M = 2
P = 2
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 10) THEN
NOTE = 'control surface servo for an underwater vehicle'
N = 8
M = 2
P = 1
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
C(1,7) = ONE
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
ELSE
INFO = -2
END IF
C
IF ((NR(2) .GE. 3) .AND. (NR(2) .LE. 10)) THEN
C .. loading data files
WRITE (DATAF(1:11), '(A,I2.2,A)') 'BD011', NR(2), '.dat'
OPEN(1, IOSTAT = STATUS, STATUS = 'OLD', FILE = DATAF(1:11))
IF (STATUS .NE. 0) THEN
INFO = 1
ELSE
DO 110 I = 1, N
READ (1, FMT = *, IOSTAT = STATUS) (A(I,J), J = 1, N)
IF (STATUS .NE. 0) INFO = 1
110 CONTINUE
DO 120 I = 1, N
READ (1, FMT = *, IOSTAT = STATUS) (B(I,J), J = 1, M)
IF (STATUS .NE. 0) INFO = 1
120 CONTINUE
IF ((NR(2) .EQ. 6) .OR. (NR(2) .EQ. 9)) THEN
DO 130 I = 1, P
READ (1, FMT = *, IOSTAT = STATUS) (C(I,J), J = 1, N)
IF (STATUS .NE. 0) INFO = 1
130 CONTINUE
END IF
END IF
CLOSE(1)
END IF
C
ELSE IF (NR(1) .EQ. 2) THEN
IF (.NOT. (LSAME(DEF,'D') .OR. LSAME(DEF,'N'))) THEN
INFO = -1
RETURN
END IF
C
IF (NR(2) .EQ. 1) THEN
NOTE = 'Chow/Kokotovic 1976: magnetic tape control system'
IF (LSAME(DEF,'D')) DPAR(1) = 1D-6
IF (DPAR(1) .EQ. ZERO) INFO = -3
N = 4
M = 1
P = 2
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
A(1,2) = .400D0
A(2,3) = .345D0
A(3,2) = -.524D0/DPAR(1)
A(3,3) = -.465D0/DPAR(1)
A(3,4) = .262D0/DPAR(1)
A(4,4) = -ONE/DPAR(1)
CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
B(4,1) = ONE/DPAR(1)
CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
C(1,1) = ONE
C(2,3) = ONE
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 2) THEN
NOTE = 'Arnold/Laub 1984'
IF (LSAME(DEF,'D')) DPAR(1) = 1D-6
N = 4
M = 1
P = 1
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, DPAR(1), A, LDA)
A(1,1) = -DPAR(1)
A(2,1) = -ONE
A(1,2) = ONE
A(2,2) = -DPAR(1)
A(4,3) = -ONE
A(3,4) = ONE
CALL DLASET('A', N, M, ONE, ONE, B, LDB)
CALL DLASET('A', P, N, ONE, ONE, C, LDC)
D(1,1) = ZERO
C
ELSE IF (NR(2) .EQ. 3) THEN
NOTE = 'Vertical acceleration of a rigid guided missile'
IF (LSAME(DEF,'D')) IPAR(1) = 1
IF ((IPAR(1) .LT. 1) .OR. (IPAR(1) .GT. 10)) INFO = -4
N = 3
M = 1
P = 1
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
A(2,1) = ONE
A(3,3) = -.19D3
CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
B(3,1) = .19D3
D(1,1) = ZERO
OPEN(1, IOSTAT = STATUS, STATUS = 'OLD', FILE = 'BD01203.dat')
IF (STATUS .NE. 0) THEN
INFO = 1
ELSE
DO 210 I = 1, IPAR(1)
READ (1, FMT = *, IOSTAT = STATUS) (A(1,J), J = 1, N)
IF (STATUS .NE. 0) INFO = 1
READ (1, FMT = *, IOSTAT = STATUS) (A(2,J), J = 2, N)
IF (STATUS .NE. 0) INFO = 1
READ (1, FMT = *, IOSTAT = STATUS) (C(1,J), J = 1, N)
IF (STATUS .NE. 0) INFO = 1
210 CONTINUE
END IF
CLOSE(1)
C
ELSE IF (NR(2) .EQ. 4) THEN
NOTE = 'Senning 1980: hydraulic positioning system'
IF (LSAME(DEF,'D')) THEN
DPAR(1) = .14D5
DPAR(2) = .1287D0
DPAR(3) = .15D0
DPAR(4) = .1D-1
DPAR(5) = .2D-2
DPAR(6) = .24D0
DPAR(7) = .1075D2
END IF
IF (((DPAR(1) .LE. .9D4) .OR. (DPAR(1) .GE. .16D5)) .OR.
1 ((DPAR(2) .LE. .5D-1) .OR. (DPAR(2) .GE. .3D0)) .OR.
2 ((DPAR(3) .LE. .5D-1) .OR. (DPAR(3) .GE. .5D1)) .OR.
3 ((DPAR(4) .LE. ZERO) .OR. (DPAR(4) .GE. .5D-1)) .OR.
4 ((DPAR(5) .LE. .103D-3) .OR. (DPAR(5) .GE. .35D-2)) .OR.
5 ((DPAR(6) .LE. .1D-2) .OR. (DPAR(6) .GE. .15D2)) .OR.
6 ((DPAR(7) .LE. .105D2) .OR. (DPAR(7) .GE. .111D2))) THEN
INFO = -3
END IF
N = 3
M = 1
P = 1
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
A(1,2) = ONE
A(2,2) = -(DPAR(3) + FOUR*DPAR(4)/PI) / DPAR(2)
A(2,3) = DPAR(7) / DPAR(2)
A(3,2) = -FOUR * DPAR(7) * DPAR(1) / .874D3
A(3,3) = -FOUR * DPAR(1) * (DPAR(6) + DPAR(5)) / .874D3
CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
B(3,1) = -FOUR * DPAR(1) / .874D3
CALL DLASET('A', P, N, ZERO, ONE, C, LDC)
D(1,1) = 0
C
ELSE IF (NR(2) .EQ. 5) THEN
NOTE = 'Kwakernaak/Westdyk 1985: cascade of inverted pendula'
IF (LSAME(DEF,'D')) IPAR(1) = 1
IF ((IPAR(1) .LT. 1) .OR. (IPAR(1) .GT. 7)) INFO = -4
IF (IPAR(1) .LE. 6) THEN
M = IPAR(1)
ELSE
M = 10
END IF
N = 2 * M
P = M
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
WRITE (DATAF(1:12), '(A,I1,A)') 'BD01205', IPAR(1), '.dat'
OPEN(1, IOSTAT = STATUS, STATUS = 'OLD', FILE = DATAF(1:12))
IF (STATUS .NE. 0) THEN
INFO = 1
ELSE
DO 220 I = 1, N
READ (1, FMT = *, IOSTAT = STATUS) (A(I,J), J = 1, N)
IF (STATUS .NE. 0) INFO = 1
220 CONTINUE
DO 230 I = 1, N
READ (1, FMT = *, IOSTAT = STATUS) (B(I,J), J = 1, M)
IF (STATUS .NE. 0) INFO = 1
230 CONTINUE
DO 240 I = 1, P
READ (1, FMT = *, IOSTAT = STATUS) (C(I,J), J = 1, N)
IF (STATUS .NE. 0) INFO = 1
240 CONTINUE
END IF
CLOSE(1)
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 6) THEN
NOTE = 'Kallstrom/Astrom 1981: regulation of a ship heading'
IF (LSAME(DEF,'D')) IPAR(1) = 1
IF ((IPAR(1) .LT. 1) .OR. (IPAR(1) .GT. 5)) INFO = -4
N = 3
M = 1
P = 1
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
A(3,2) = ONE
B(3,1) = ZERO
CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
C(1,3) = ONE
D(1,1) = ZERO
OPEN(1, IOSTAT = STATUS, STATUS = 'OLD', FILE = 'BD01206.dat')
IF (STATUS .NE. 0) THEN
INFO = 1
ELSE
DO 250 I = 1, IPAR(1)
READ (1, FMT = *, IOSTAT = STATUS) (A(1,J), J = 1, 2)
IF (STATUS .NE. 0) INFO = 1
READ (1, FMT = *, IOSTAT = STATUS) (A(2,J), J = 1, 2)
IF (STATUS .NE. 0) INFO = 1
READ (1, FMT = *, IOSTAT = STATUS) (B(J,1), J = 1, 2)
IF (STATUS .NE. 0) INFO = 1
250 CONTINUE
END IF
CLOSE(1)
C
ELSE IF (NR(2) .EQ. 7) THEN
NOTE = 'Ackermann 1989: track-guided bus'
IF (LSAME(DEF,'D')) THEN
DPAR(1) = .15D2
DPAR(2) = .1D2
END IF
IF ((DPAR(1) .LT. .995D1) .OR. (DPAR(1) .GT. .16D2)) INFO = -3
IF ((DPAR(1) .LT. .1D1) .OR. (DPAR(1) .GT. .2D2)) INFO = -3
N = 5
M = 1
P = 1
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
A(1,1) = -.668D3 / (DPAR(1)*DPAR(2))
A(1,2) = -ONE + .1804D3 / (DPAR(1)*DPAR(2)**2)
A(2,1) = .1804D3 / (.1086D2*DPAR(1))
A(2,2) = -.44175452D4 / (.1086D2*DPAR(1)*DPAR(2))
A(1,5) = 198 / (DPAR(1)*DPAR(2))
A(2,5) = .72666D3 / (.1086D2*DPAR(1))
A(3,1) = DPAR(2)
A(3,4) = DPAR(2)
A(4,2) = ONE
CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
B(5,1) = ONE
CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
C(1,3) = ONE
C(1,4) = .612D1
D(1,1) = 0
C
ELSE
INFO = -2
END IF
C
ELSE IF (NR(1) .EQ. 3) THEN
IF (.NOT. (LSAME(DEF,'D') .OR. LSAME(DEF,'N'))) THEN
INFO = -1
RETURN
END IF
C
IF (NR(2) .EQ. 1) THEN
NOTE = 'Laub 1979, Ex.4: string of high speed vehicles'
IF (LSAME(DEF,'D')) IPAR(1) = 20
IF (IPAR(1) .LT. 2) INFO = -4
N = 2*IPAR(1) - 1
M = IPAR(1)
P = IPAR(1) - 1
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
DO 310 I = 1, N
IF (MOD(I,2) .EQ. 1) THEN
A(I,I) = -ONE
B(I,(I+1)/2) = ONE
ELSE
A(I,I-1) = ONE
A(I,I+1) = -ONE
C(I/2,I) = ONE
END IF
310 CONTINUE
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 2) THEN
NOTE = 'Hodel et al. 1996: heat flow in a thin rod'
IF (LSAME(DEF,'D')) IPAR(1) = 100
IF (IPAR(1) .LT. 1) INFO = -4
N = IPAR(1)
M = 1
P = N
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
TEMP = DBLE(N + 1)
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, -TWO * TEMP, A, LDA)
A(1,1) = -TEMP
DO 320 I = 1, N - 1
A(I,I+1) = TEMP
A(I+1,I) = TEMP
320 CONTINUE
CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
B(N,1) = TEMP
CALL DLASET('A', P, N, ZERO, ONE, C, LDC)
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 3) THEN
NOTE = 'Laub 1979, Ex.6'
IF (LSAME(DEF,'D')) IPAR(1) = 21
IF (IPAR(1) .LT. 1) INFO = -4
N = IPAR(1)
M = 1
P = 1
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
CALL DLASET('A', N-1, N-1, ZERO, ONE, A(1,2), LDA)
CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
B(N,1) = ONE
CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
C(1,1) = ONE
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 4) THEN
NOTE = 'Lang/Penzl 1994: rotating axle'
IF (LSAME(DEF,'D')) IPAR(1) = 211
IF ((IPAR(1) .LT. 1) .OR. (IPAR(1) .GT. 211)) INFO = -4
N = 2*IPAR(1) - 1
M = IPAR(1)
P = IPAR(1)
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (LDWORK .LT. M*4) INFO = -21
IF (INFO .NE. 0) RETURN
C
OPEN(1, IOSTAT = STATUS, STATUS = 'OLD', FILE = 'BD01304.dat')
IF (STATUS .NE. 0) THEN
INFO = 1
ELSE
DO 330 I = 1, M*4
READ (1, FMT = *, IOSTAT = STATUS) DWORK(I)
IF (STATUS .NE. 0) INFO = 1
330 CONTINUE
END IF
CLOSE(1)
IF (INFO .NE. 0) RETURN
CALL DLASET('A', N, N, ZERO, ONE, E, LDE)
E(1,1) = DWORK(1)
DO 340 I = 2, M
E(I,I-1) = DWORK((I-2) * 4 + 1)
E(I,I) = -DWORK((I-1) * 4 + 1)
340 CONTINUE
E(M,M) = -E(M,M)
DO 350 I = M-1, 1, -1
DO 345 J = I, M
IF (I .EQ. 1) THEN
E(J,I) = E(J,I) - E(J,I+1)
ELSE
E(J,I) = E(J,I+1) - E(J,I)
END IF
345 CONTINUE
350 CONTINUE
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
DO 360 I = 2, M
A(I-1,I) = DWORK((I-2) * 4 + 3)
A(I,I) = -TWO * DWORK((I-2) * 4 + 3) - DWORK((I-1) * 4 + 2)
A(I,1) = DWORK((I-1) * 4 + 2) - DWORK((I-2) * 4 + 2)
A(I-1,M+I-1) = DWORK((I-1) * 4)
A(I,M+I-1) = -TWO * DWORK((I-1) * 4)
IF (I .LT. M) THEN
A(I+1,I) = DWORK((I-2) * 4 + 3)
DO 355 J = I+1, M
A(J,I) = A(J,I) + DWORK((J-2) * 4 + 2)
1 - DWORK((J-1) * 4 + 2)
355 CONTINUE
A(I+1,M+I-1) = DWORK((I-1) * 4)
END IF
360 CONTINUE
A(1,1) = -DWORK(2)
A(1,2) = -DWORK(3)
A(1,M+1) = -A(1,M+1)
CALL DLASET('A', M-1, M-1, ZERO, ONE, A(M+1,2), LDA)
CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
CALL DLASET('A', P, N, ZERO, ZERO, C, LDC)
DO 370 I = 2, M
B(I,I) = -ONE
B(I,I-1) = ONE
C(I,I) = DWORK((I-2) * 4 + 3)
C(I,M+I-1) = DWORK((I-1) * 4)
370 CONTINUE
B(1,1) = ONE
C(1,1) = ONE
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE
INFO = -2
END IF
C
ELSE IF (NR(1) .EQ. 4) THEN
IF (.NOT. (LSAME(DEF,'D') .OR. LSAME(DEF,'N'))) THEN
INFO = -1
RETURN
END IF
C
IF (NR(2) .EQ. 1) THEN
NOTE = 'Rosen/Wang 1995: control of 1-dim. heat flow'
IF (LSAME(DEF,'D')) THEN
IPAR(1) = 100
DPAR(1) = .1D-1
DPAR(2) = ONE
DPAR(3) = ONE
DPAR(4) = .2D0
DPAR(5) = .3D0
DPAR(6) = .2D0
DPAR(7) = .3D0
END IF
IF (IPAR(1) .LT. 2) INFO = -4
N = IPAR(1)
M = 1
P = 1
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
VEC(4) = .TRUE.
APPIND = DBLE(N + 1)
TTEMP = -DPAR(1) * APPIND
TEMP = 1 / (.6D1 * APPIND)
CALL DLASET('A', N, N, ZERO, FOUR*TEMP, E, LDE)
CALL DLASET('A', N, N, ZERO, TWO*TTEMP, A, LDA)
DO 410 I = 1, N - 1
A(I+1,I) = -TTEMP
A(I,I+1) = -TTEMP
E(I+1,I) = TEMP
E(I,I+1) = TEMP
410 CONTINUE
DO 420 I = 1, N
B1 = MAX(DBLE(I-1)/APPIND, DPAR(4))
B2 = MIN(DBLE(I+1)/APPIND, DPAR(5))
C1 = MAX(DBLE(I-1)/APPIND, DPAR(6))
C2 = MIN(DBLE(I+1)/APPIND, DPAR(7))
IF (B1 .GE. B2) THEN
B(I,1) = ZERO
ELSE
B(I,1) = B2 - B1
TEMP = MIN(B2, DBLE(I)/APPIND)
IF (B1 .LT. TEMP) THEN
B(I,1) = B(I,1) + APPIND*(TEMP**2 - B1**2)/TWO
B(I,1) = B(I,1) + DBLE(I)*(B1 - TEMP)
END IF
TEMP = MAX(B1, DBLE(I)/APPIND)
IF (TEMP .LT. B2) THEN
B(I,1) = B(I,1) - APPIND*(B2**2 - TEMP**2)/TWO
B(I,1) = B(I,1) - DBLE(I)*(TEMP - B2)
END IF
END IF
IF (C1 .GE. C2) THEN
C(1,I) = ZERO
ELSE
C(1,I) = C2 - C1
TEMP = MIN(C2, DBLE(I)/APPIND)
IF (C1 .LT. TEMP) THEN
C(1,I) = C(1,I) + APPIND*(TEMP**2 - C1**2)/TWO
C(1,I) = C(1,I) + DBLE(I)*(C1 - TEMP)
END IF
TEMP = MAX(C1, DBLE(I)/APPIND)
IF (TEMP .LT. C2) THEN
C(1,I) = C(1,I) - APPIND*(C2**2 - TEMP**2)/TWO
C(1,I) = C(1,I) - DBLE(I)*(TEMP - C2)
END IF
END IF
420 CONTINUE
CALL DSCAL(N, DPAR(2), B(1,1), 1)
CALL DSCAL(N, DPAR(3), C(1,1), LDC)
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE IF (NR(2) .EQ. 2) THEN
NOTE = 'Hench et al. 1995: coupled springs, dashpots, masses'
IF (LSAME(DEF,'D')) THEN
IPAR(1) = 30
DPAR(1) = FOUR
DPAR(2) = FOUR
DPAR(3) = ONE
END IF
IF (IPAR(1) .LT. 2) INFO = -4
L = IPAR(1)
N = 2*L
M = 2
P = 2*L
IF (LDE .LT. N) INFO = -10
IF (LDA .LT. N) INFO = -12
IF (LDB .LT. N) INFO = -14
IF (LDC .LT. P) INFO = -16
IF (LDD .LT. P) INFO = -18
IF (INFO .NE. 0) RETURN
C
VEC(4) = .TRUE.
CALL DLASET('A', N, N, ZERO, DPAR(1), E, LDE)
CALL DLASET('A', N, N, ZERO, ZERO, A, LDA)
TEMP = -TWO * DPAR(3)
DO 430 I = 1, L
E(I,I) = ONE
A(I,I+L) = ONE
A(I+L,I+L) = -DPAR(2)
IF (I .LT. L) THEN
A(I+L,I+1) = DPAR(3)
A(I+L+1,I) = DPAR(3)
IF (I .GT. 1) THEN
A(I+L,I) = TEMP
END IF
END IF
430 CONTINUE
A(L+1,1) = -DPAR(3)
A(N,L) = -DPAR(3)
CALL DLASET('A', N, M, ZERO, ZERO, B, LDB)
B(L+1,1) = ONE
B(N,2) = -ONE
CALL DLASET('A', P, N, ZERO, ONE, C, LDC)
CALL DLASET('A', P, M, ZERO, ZERO, D, LDD)
C
ELSE
INFO = -2
END IF
ELSE
INFO = -2
END IF
C
RETURN
C *** Last Line of BD01AD ***
END